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Abstract—In this work we study the methods for pedestrian
tracking in video sequences and indicate various applications of
these methods ranging from surveillance systems to aiding the
visually impaired persons. First, we define the general problem
of object tracking that comprises the tasks of object detection,
identifying the flow of object location in consecutive video images
and finally analysis of the tracked trajectory data. We review the
well known object tracking techniques i.e. the Mean-Shift and
the CAMSHIFT algorithm and discuss their properties. Then we
introduce the computational technique known as particle filtering
(PF) and explain how we have applied it to the tasks of pedestrian
tracking. We compare the PF approach against the Mean-Shift
and the CAMSHIFT algorithms in terms of tracking robustness
and the required computational demand. We conclude, that on
the tested video sequences, the PF tracker outperforms the Mean-
Shift and by a small margin the CAMSHIFT algorithm. The
PF tracker requires more computational power, however, its
tracking performance can be flexibly adjusted to the application
requirements.

I. INTRODUCTION

H
UMAN BEINGS, whether in a standstill or in motion,

have an extraordinary visual capability of detecting

objects and tracking them in the environment. This powerful

property of the human visual system allows people, e.g. to

manoeuvre in crowded pavements without bumping into other

pedestrians. Implementation of object tracking functionality

in computer vision systems is a challenging task and has

attracted researchers’ interest for decades. This is because

there are numerous applications in which object tracking

is important. They range from civilian applications (human-

computer interaction, robotics, surveillance systems, crowd

sourcing systems) to military applications (guided missile

systems) [1], [2], [3]. Tracking of objects in video sequences

is a particularly difficult task due to the following reasons:

– varying illumination of the monitored scene,

– loss of depth information in mono-camera image acqui-

sition systems,

– varying size and shape of the tracked object (due to

changes in orientation and distance to the camera),

– occlusions of the tracked objects,

– motion of the tracking camera (i.e. both the tracked object

and the background move in reference to the camera).

The object tracking task can be subdivided into the three

major steps:
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1) Object detection in a scene and determining its location

(i.e. applying methods for segmenting out the object of

interest from the background).

2) Identifying object position changes in consecutive image

frames, termed object tracking.

3) Analysis of the object tracking data (e.g. determination

of the motion trajectory, path prediction, etc.).

The latter processing step strongly depends on the application.

Our research goal is to develop a system that would serve as

a vision based travel aid for the visually impaired. Although,

a number of GPS-based navigation systems or remote guidance

systems were designed especially for the visually impaired,

they are expensive and offer poor position accuracy in urban

environments [4]. Also, electronic travel aids in which ultra-

sound or laser sensors are embedded into white canes and

also more advanced sensory substitution solutions (e.g. using

auditory display techniques) have not found wider acceptance

among the visually impaired users [5]. Our approach to aiding

the visual impaired in mobility and travel is to track the

position of a blind pedestrian in a city environment on the

basis of video sequences. Then the positioning data will be

integrated with the digital map data to work out the navigation

instructions for the blind user. Such a solution does not

require any additional hardware to be carried by a blind

pedestrian except for a mobile phone that would serve as

a communication device between the system and the user.

In this communication we report on our preliminary studies

aimed at developing and testing robustness of the vision based

object tracking methods with special focus on systems used for

pedestrians’ tracking. In Section II we review the related work

and highlight the widely used Mean-Shift and CAMSHIFT

object tracking algorithms. In Section III we introduce the

particle filtering algorithm and explain how we apply this

powerful computing technique to person tracking. In section

IV we describe the experimental tests of the algorithms and

evaluate their performance on example object tracking tasks.

II. REVIEW OF RELATED WORK

A. Object detection methods

Every tracking method requires an object detection tech-

nique to distinguish the tracked object from the background

and/or other objects. The result of tracking strongly relies on

the applied object detection method. These methods can be

subdivided into four categories [1]:
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– Point detectors are used to detect characteristic points in

a processed image (i.e. corners, edges). Among the most

commonly used methods are: the Moravec’s operator, the

Harris point detector and the Scale invariant Feature

Transform (SIFT). A comparative survey [6] provides

more information on the topic.

– Segmentation leads to partitioning an image into charac-

teristic regions (i.e. perceptually similar regions that can

be used for tracking). The Mean-shift clustering [7], [8],

the Graph-cuts and Active contours are within the most

relevant image segmentation techniques.

– Background modelling is based on an assumption that

moving objects appear on a very largely stable back-

ground [9], therefore the foreground can be obtained by

“subtracting” the estimated background image from the

current frame.

– Supervised classifiers that are based on a large collection

of labeled samples composed of feature vectors. Samples

are used as training data for the supervised learning

method to generate a function that maps inputs (e.g. ob-

ject features) to the desired outputs (e.g. class labels

unambiguously binding the object with given features).

These methods include neural networks, adaptive boost-

ing (e.g. Viola-Jones object detection framework used to

detect pedestrians [10]), decision trees and Support Vector

Machines (SVM) in many variations [3].

Among the image features commonly used in object tracking

are [1], [11]:

– Color is used as a feature in histogram-based methods,

where the object is represented by its appearance. Color

spaces such as L*a*b and HSV (Hue, Saturation, Value)

are more preferred in image processing, due to more

perceptual uniformity.

– Edges are strong changes in the intensity or color in

an image generated by object boundaries. Edges are less

sensitive to illumination changes than color features.

– Optical flow defines the apparent motion of an object by

a dense field of displacement vectors across consecutive

image frames.

– Texture of an object described by a number of properties

(such as lightness, density, regularity, linearity, direction-

ality, smoothness, etc. [12]) is an excellent feature to

track.

B. Approaches to object tracking

Object tracking techniques can be subdivided into the three

major categories:

– Point Tracking relies on the positions and motion

of points representing the target object in consecutive

frames. Therefore, object tracking can be defined as the

problem of finding points’ correspondences (Fig. 1a).

– Kernel Tracking relies on the shape or appearance of the

target object (referred to as kernel), which is represented

by a geometric primitive (e.g. a rectangular patch or

an ellipse), see Fig. 1b. The most popular representative

(a) Multi-point corre-
spondence

(b) Parametric trans-
formation of a rectan-
gular patch

(c) Contour evolution

Fig. 1. Different tracking approaches (source: [1])

(a)

(b)

Fig. 2. In the Mean-Shift algorithm (a) the search window size is fixed
throughout the tracking session, whereas in the CAMSHIFT (b) the search
window continuously adapts itself in size and orientation to fit the target object

of this category is the Mean-Shift [7], [8], [13] and

its modification, the CAMSHIFT (Continuously Adaptive

Mean-Shift) algorithm [14] (see Fig. 2).

– Silhouette Tracking relies on the information encoded

inside the region of a tracked object which usually, due

to the complexity of its shape, cannot be described well

using simple geometric primitives (Fig. 1c).

The idea of applying particle filtering to object tracking

was independently proposed by several research groups and is

described in [15], [16] and [17] among others. Although the

computational and probabilistic origins of the particle filter

usually remains (more or less) the same, different approaches

use different features to define the target model. Typically,

edge-based image features are used [18], [15], [19], but color-

based image features are also an option. The latter is even

more robust against the out-of-plane rotations (e.g., when

a person turns around), scale and rotation invariant [20], but

more sensitive to the illumination changes (as indicated in

Section II-A). For this reason, the color-based particle filter

has become the object of our study.

Reference [2] presents recent trends in object detection,

while [3] evaluates the state-of-the-art tracking algorithms.

III. APPLICATION OF PARTICLE FILTERING TO PERSON

TRACKING

A. Particle filter basis

Particle filtering, also called the Sequential Monte Carlo

(SMC) [21] method, is a simulation-based technique which

stems from the Monte Carlo method. The latter is a simple,
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yet effective, way of finding an optimal solution for multidi-

mensional problems by randomly generating a large number

of possible system states. This enables to observe the overall

system behaviour and select the best solution.

In the particle filter approach, the distribution of the st is

approximated by a set of so called particles. Every particle is

represented by the vector:

c
(n)
t =

[

s
(n)
t π

(n)
t

]T

(1)

where the superscript (n) denotes a particle number ranging

from 1 to N being the size of the particle set and t denotes

a time instant. Hence, the vector s
(n)
t represents the system

state, that is the variables of interest, π
(n)
t is a particle weight,

i.e. a value that reflects how accurately a given particle

approximates the system state.

The posterior distribution of st is approximated by the

probability mass function:

p(st|y0:t) ≈
N
∑

n=1

δ(s− s
(n)
t ) · π(n)

t (2)

where δ(·) is the Dirac delta function.

The algorithm can be summarized in its basic form as

follows [22]:

1) Initialization. At the algorithm’s outset, all particles’

states s
(n)
0 are randomly initialized according to a given

distribution. The weights π
(n)
0 are assigned equal values

of 1
N

.

2) Prediction. New particle states are predicted on the base

of the transition equation:

s
(n)
t = f

(

s
(n)
t−1,ut−1,w

(n)
t−1

)

(3)

where ut−1 is a driving vector and w
(n)
t−1 is the noise

vector introduced to the state due to the measurement

error of ut−1. Each particle is perturbed with an in-

dividually generated vector w
(n)
t−1; f(·) is the transition

function that calculates a new state on the base of the

previous one and the driving signals.

3) Measurement update. Each measurement zt updates

the weights of the particles by the equation:

π
(n)
t = π

(n)
t−1 · p

(

zt|s(n)t

)

(4)

where p
(

zt|s(n)t

)

is a conditional probability density of

measuring zt given the particle state s
(n)
t . Particles that

diverge in the long run from measurements will have

small weights π
(n)
t .

4) Weights’ normalization. For the sake of the next steps,

the weights need to be normalized so that they sum up

to 1:

π
(n)
t :=

π
(n)
t

N
∑

i=1

π
(n)
t

. (5)

5) State estimation. The system state is the weighted

average of all particles’ states:

s̄t =
N
∑

i=1

s
(n)
t · π(n)

t . (6)

6) Resampling. After a number of algorithm iterations,

all but a few particles have negligible weights and

therefore do not participate in the simulation effectively.

This situation is detected by calculating the so-called

degeneration indicator, expressed by:

dt =
1

N
N
∑

i=1

(

π
(n)
t

)2
. (7)

As the weights start to differ, the dt indicator decreases.

If dt falls below a given threshold, then a process called

resampling is evoked and a new set of particles is

created. Resampling causes that the probability density

function of st is refined in the next iterations of the

algorithm. Thus, a better estimate can be found.

7) Go to point 2

B. Implementation of particle filter for person tracking

The implementation of the particle filter tracker described

herein is based on the idea behind the ConDensation Algorithm

[15], once implemented in the OpenCV library, yet presently

deprecated due to some imperfections in the resampling part.

Target object is represented by a rectangular patch (Fig. 4a).

Such representation is suitable for representing simple non-

rigid targets and works well in terms of kernel-based tracking

methods [1]. Target model is defined by a (8×8×4 bins) HSV

histogram of the target object’s representation and an initial

size of the representation rectangle (during the tracking pro-

cess it is scaled in relation to its initial size). Reduced number

of levels for the V-component of the histogram makes the

method less sensitive to the changes in lighting conditions.

The use of HSV histogram may, however, make the method

more sensitive to noise [1]. Current version of the algorithm

does not update the target model automatically, but a new

target model can be built on-the-fly.

Due to the fact that the principle of operation of the

particle filter was described in the preceding section, in the

subsequent paragraphs we would like to limit ourselves just

to the adjustments which make use of particle filter in object

tracking.
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a) Initialization: A set of N -samples is generated. Each

sample represents the quantities of the target object’s repre-

sentation and is defined by a state vector and an initial weight:

s = [x, y,
dx

dt
,
dy

dt
, k]T

s
(n)
0 = [x, y, 0, 0, 1]T for n = 1, ..., N

π
(n)
0 = N−1 for n = 1, ..., N

(8)

where (x, y) are the coordinates of the center of the represen-

tation rectangle,
(

dx
dt ,

dy
dt

)

represents velocity vector (motion

model), k is the scale of the representation rectangle in relation

to its initial size and N is the number of samples.

b) Evolution of the samples: In every new frame a state

of each sample is generated by a second order linear difference

equation based on prior observations:

s
(n)
t = A s

(n)
t−1 +w

(n)
t−1 (9)

where w
(n)
t−1 ∼ N(0,Qt) is a vector of multivariate normally

distributed random variates (stochastic component) and A is

a transition matrix (deterministic component) defined for state

vector (8):

A =













1 0 dt 0 0
0 1 0 dt 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













(10)

c) Weighting the samples: Each sample represents a hy-

pothetical location of the tracked object. To weight the sample

set, a histogram of each hypothetical target representation is

compared to the target model. To quantify similarity between

the two histograms, the Hellinger distance is used:

d
(n)
t =

√

√

√

√1− 1

M
√

H̄1H̄2

M
∑

u=1

H1(u) ·H2(u)

H̄k =
1

M

M
∑

u=1

Hk(u),

(11)

where H1 and H2 are the histograms to be compared and

M is a total number of histogram bins. The result is a score

in range [0, 1], where the first value indicates a perfect match

and the latter a complete mismatch. The distance is used in the

measurement equation to update the weights of the samples,

according to:

π
(n)
t = π

(n)
t−1 · p(zt|st) (12)

π
(n)
t = π

(n)
t−1 ·

1

σ
√
2π

exp






−

(

d
(n)
t

)2

2σ2






, (13)

where σ is the standard deviation. The higher the weight, the

higher chance that the particle will be drawn during the next

iteration (particles with the lowest weights are to be replaced).

TABLE I
DETAILS OF THE TEST VIDEO SEQUENCE

Parameter Value

Format 320 × 240 at 25 frames/s
Length 1017 frames (∼ 41 sec.)
Target object person
Keywords moving cam, moving target, non-rigid

target, rotation, similar distractors, full
occlusion, outdoor

Link to dataset [23] /datasets/seqI.zip

The state of the tracked object at a time-step t can be

therefore estimated as the mean state [15]:

s̄t = E
[

s
(n)
t

]

=

N
∑

n=1

π
(n)
t · s(n)t . (14)

d) Re-initialization: The process of propagation of sam-

ples is being continued until the mean state moves off the

image or the probability of the mean state drops below

a certain threshold. It usually means that the target object

has been lost due to a mismatch between the predicted and

actual motion. In such scenario, particles are redistributed in

accordance with the continuous uniform distribution to re-

acquire the target:

s
(n)
t =













x
y

dx/dt
dy/dt
k













∼













U(0,Wimage)
U(0, Himage)
U(−0.05, 0.05)
U(−0.05, 0.05)
U(1.0, 2.0)













(15)

where (Wimage, Himage) is the size of the image.

IV. RESULTS OF EXPERIMENTAL TESTS

A. Test results and performance measures

The implemented PF tracker has been tested and evaluated

on a few short video sequences from the BoBoT benchmark

on tracking dataset [23]. Here we present results obtained

for one of the particularly difficult sequence which shows an

individual walking along a pavement and is being followed by

a camera (Fig. 4a). Ever and again a different person appears

and passes by, shadowing the tracked pedestrian (so-called

occlusion, cf. Fig. 4b), or is dressed in the same manner (so-

called similar distractor, cf. Fig. 4c), trying to confuse the

algorithm. Table I provides more details on the dataset.

The basic evaluation of the tracking algorithm relies on the

overlap rate calculated every frame of the video sequence and

defined as
area(RT∩RG)
area(RT∪RG) , where RT is the rectangular region

of the tracking result and RG denotes the ground truth [3].

If the overlap is larger than or equal to 1/3, it is considered

a hit (as shown in Fig. 5), otherwise a miss of target is denoted.

Tests with a various number of particles show that N = 100
particles seems to be a good trade-off between accuracy and

processing time of the algorithm (cf. Fig. 3). An interested

reader is referred to the video sequence published at [25],

which shows how the result of the tracking algorithm depends

on the number of particles.
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10
0

101 102 10
3

Number of particles (N )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a

n
o
v
e
rl

a
p max = 0.64

Fig. 3. The mean of ground truth and the tracking result overlap for N = 100

particles is equal to 0.62, which seems to be a trade-off between accuracy
and processing time. Gray region is the standard deviation

(a) (b)

(c) (d)

Fig. 4. PF tracker in action — tracked person is being followed by “particles”
(each particle represents a hypothetical location of the tracked object). The
tracking result is an outline around the target. Blue semi-transparent rectangle
is the ground truth (source: [24])

33%33%

Fig. 5. Two examples of the ground truth (blue rectangle in the middle) and
the tracking result (red dashed rectangle) overlap of 1/3
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(a) CAMSHIFT (best 100 of 278,784 results)
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(b) Implemented PF tracker (for N = 100 particles)

Fig. 6. The ground truth and tracking result overlap per frame for the test
video sequence. Grey region is the standard deviation

Fig. 6b shows the overlap for each frame of the test video

sequence (mean of 100 iterations) using N = 100 particles.

At the beginning the overlap reaches up to 92% and oscillates

around 80% for most of the time. Each drop below 1/3
(a miss) is caused by a full occlusion, when the algorithm has

lost the target and needed to be re-initialized. Slightly worse

results in the last quarter of the video sequence are caused

by the out-of-plane rotation of the tracked individual. After

the person turned right, his right side is visible on the video

instead of his back, on which the target model used to be built

(as it was mentioned before, current version of the algorithm

does not update the target model automatically, yet an adaptive

approach is within the further work). Notwithstanding, the

results are satisfactory — the PF tracker copes well with

similar distractors and occlusions. A non-rigid target and

motion of both the camera and the target also pose no problem.

B. PF based tracker vs. the MeanShift and the CAMSHIFT

As indicated in Section II-B, color-based image features

are robust against the out-of-plane rotations, scale and rotation

changes. Additionally, the use of histogram matching results in

relatively low computational cost. For this reason, color-based

segmentation and tracking methods such as Mean-Shift and

its extension CAMSHIFT (Continuously Adaptive Mean-Shift,

cf. Fig. 2 upon the differences between these two methods),

both within the OpenCV library, gained great popularity over

the years.

CAMSHIFT is a parameter-free1 tracking technique. It re-

1In the OpenCV library user can, however, define the maximum number
of Mean-Shift iterations to converge
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TABLE II
COMPARISON OF THE CAMSHIFT AND THE IMPLEMENTED PF TRACKER

CAMSHIFT PF tracker

Mean of ground truth and
tracking result overlap

0.53± 0.06 0.62± 0.10

Mean of hit ratioa
0.79± 0.02 0.87± 0.04

Mean number of Mean-
Shift iterations per frame

1.90± 0.52 n.a.

Mean execution time per
frameb

0.73 ± 0.03 ms 5.55± 0.00 ms

aHit ratio is the percentage of overlaps greater or equal to 1/3.
bIt should be noted that both the PF tracker and the evaluation script for

the CAMSHIFT were implemented in Python, which tends to be slow.

quires a probability image of the target object (i.e. the back-

projection of the object histogram) and an initial search

window. Our test CAMSHIFT-based pedestrian tracker was

based on the sample from the OpenCV library source code. It

utilizes the HSV histogram of the target object masked with

a binary image resulting from the thresholding of the initial

image of the target object with different boundaries of colors.

The purpose of masking was to extract as much of the target

object from the background as possible to avoid false positives.

A total number of over 270,000 different masks were used and

only first one hundred results in terms of mean overlap were

taken into account. The results are presented on Fig. 6a and

tabulated in Table II.

As one can note, in several cases the CAMSHIFT-based pedes-

trian tracker performs marginally better than the implemented

PF tracker, although the mean overlap and hit ratio of the

former one are clearly lower. The CAMSHIFT-based tracker

is also firmly faster. Please bear in mind though, that the result

of the CAMSHIFT tracker strongly relies on the probability

image of the target object. In this context it was selected

carefully so as to correspond strictly to the video sequence

used.

Finally, we encourage the reader to watch our short compari-

son video sequence available at [24].

V. CONCLUSIONS

In this study we have undertaken the problem of object

tracking in video sequences with a special focus on pedestrian

tracking. Our objective was to compare the performance of the

Mean-Shift and Camshift trackers to the powerful computation

technique known as particle filtering. We have explained theo-

retical background of the PF and shown how we have adapted

it for the purpose of pedestrian tracking. From the tests of the

compared trackers on example video sequences (shot from a

camera in motion) we conclude that the PF can outperform the

the Mean-Shift and Camshift trackers. This is, however, at the

cost of higher computational demand (cf. Table II summarizing

quantitative comparison of the performance of the compared

trackers). We argue, however, that the PF can be employed

to track multi-modal distributions, i.e. that are not confined

to Gaussian distributions. Finally, the strong advantage of the

PF is that its computing implementations can be mapped to

parallel processing architectures with a flexibly chosen number

of particles. Our intention is to employ the developed tracking

technique in a multi-camera video system aimed at aiding the

visually impaired in mobility and navigation.
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