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Abstract—The paper is devoted to discussion of the minimal
cycles of the so called Kaprekar’s transformations and some
of its generalizations. The considered transformations are the
self-maps of the sets of natural numbers possessing n digits
in their decimal expansions. In the paper there are introduced
several new characteristics of such maps, among others, the
ones connected with the Sharkovsky’s theorem and with the
Erdős-Szekeres theorem concerning the monotonic subsequences.
Because of the size the study is divided into two parts. Part I
includes the considerations of strictly theoretical nature resulting
from the definition of Kaprekar’s transformations. We find here
all the minimal orbits of Kaprekar’s transformations Tn, for
n = 3, ..., 7. Moreover, we define many different generalizations
of the Kaprekar’s transformations and we discuss their minimal
orbits for the selected cases. In Part II (ibidem), which is a
continuation of the current paper, the theoretical discussion
will be supported by the numerical observations. For example,
we notice there that each fixed point, familiar to us, of any
Kaprekar’s transformation generates an infinite sequence of fixed
points of the other Kaprekar’s transformations. The observed
facts concern also several generalizations of the Kaprekar’s
transformations defined in Part I.

I. INTRODUCTION

S
UBJECT concerning the form, description and coexistence

of orbits of the given map F : X → X became a

chart-topping object of research after popularization of the

Sharkovsky’s theorem ([1], [8], [9], [10], [23], [27], [28]). We

shall recall it to the Readers.

Let N denote the set of all positive integers. The following

ordering of elements of N is called the Sharkovsky’s ordering

of N:

3, 5, 7, 9, . . . , 2 · 3, 2 · 5, 2 · 7, 2 · 9, . . . ,

22 · 3, 22 · 5, 22 · 7, 22 · 9, . . .

2k · 3, 2k · 5, 2k · 7, 2k · 9, . . . , 24, 23, 22, 2, 1.

(1)

Sharkovsky’s theorem. The following facts hold:

(a) If f : [0, 1] → [0, 1] is a continuous map then there exists

n = n(f) ∈ N ∪ {2∞} ∪ {0} such that the set Per(f)
of periods of all periodic orbits of f is equal to the

set of all m ∈ N located on the right side of n in

the Sharkovsky’s order (if n = 2∞ then, by definition,

Per(f) =
{

2k : k = 0, 1, 2, . . .
}

, whereas, if n = 0 then

Per(f) := N).

(b) If n ∈ N∪{2∞}∪{0} then there exists a continuous map

f : [0, 1] → [0, 1] such that the set Per(f) is equal to the

set of all m ∈ N located on the right side of n in the

Sharkovsky’s order and for two selected cases, n = 2∞

and n = 0, the set Per(f) is equal to the one defined

above.

In the subject-matter referring to the Sharkovsky’s theorem

we know a lot at the moment and many facts have been also till

now discovered, like for example the description of periodic

orbits of triod (see [2]), the generalizations of Sharkovsky’s

theorem for hereditarily decomposable chainable continua

(see [22], [25], [26]) and the new order for periodic orbits

of interval maps (see [5] and references therein). Another

important fact (which we intend to discuss in this study

as well) concerns not only the periods of a given map but

also the so called orbit type. It was at first defined by S.

Baldwin in [3] for maps of an interval (see also [24] and

references therein) and next extended by others (for example

in [4] for the maps of a circle and in [21] for the groups

and the groups of graphs). We will use here the following

definition [1]. If f : X → X , where X ⊂ R has n-elements

(minimal) orbit {x0, f(x0), . . . , f
n−1(x0)}, where fk denotes

the k−times composition of f , then this orbit induces a cyclic

permutation of order n, called the orbit type. More precisely,

if the points of this orbit are indexed in increasing order

x1 < x2 < . . . < xn, then the respective orbit type p is

defined by p(k) = j whenever f(xk) = xj . In other words, if

x0 = xk1
, f(x0) = xk2

, . . ., f (n−1)(x0) = xkn
, then the orbit

type p is equal to (k1, k2, . . . , kn). We note that there exists

(n− 1)! orbit types of order n.

We say that the orbit type guarantees a period-3 point if

any continuous function with an orbit of that type possesses

a three-element orbit. Eric Lundberg proved in paper [19] that

lim
n→∞

γn

(n− 1)!
= 1,

where γn denotes the number of orbit types of order n that

guarantees a period-3 point.

Let us emphasize that almost all the above results cannot be

transformed so obviously onto many equally interesting cases

of maps, even so numerically attractive like the self-maps of

the finite sets.

A reason for creating this paper was the information,

surprising for the Authors, about the existence of the so

called Kaprekar constant [16], [17], which appeared to be,
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Fig. 1. Graphical illustration of a finite set X and a map F : X → X,

where X = {F k(x) : k ∈ N} for some x ∈ X , possessing one nontrivial
and proper orbit

Fig. 2. Graphical illustration of any map F : X → X operating, where X

is a finite set of all indicated circle-points

no more no less, a single element of a single orbit of

some map (we will describe this map in Section 2) onto

the finite set of all natural numbers with four-digit decimal

expansion. Let us notice in this moment that if F : X → X

and X is a finite nonempty set then for every x ∈ X

there exists n ∈ N0 such that n-th F -iteration of x, i.e.

the element Fn(x), belongs to some minimal orbit of F .

This means, by definition, that certain subset of X is of the

form
{

x0 = F ν+1(x0), F (x0), F
2(x0), . . . , F

ν(x0)
}

, where

ν ∈ N0. The above facts are illustrated in Figures 1 and 2.

Let us note that in general case there is no connection

between values n and ν (more precisely, for any n, ν ∈ N,

for the set X composed of elements – circles like in Fig.1,

we construct a map described in Fig.1 proving that there is no

relation between n and ν). However, we should remember that

in the case of some specific maps (and even for the families

of maps) the relation between n and ν may appear!

In case when F is a bijection on X , that is permutation

on X , then every element of set X belongs to some F -orbit

(F -orbit is created by elements of each cycle of permutation

F ). Certainly, if F is not a bijection on X then the situation

is also easy to describe, at least from the theoretical point of

view, namely the set

X :=

cardX
⋂

k=0

F k(X)

is a set-theoretical union of all orbits of the map F , and

moreover, F restricted to X is a bijection on X. Set X is

the largest fixed subset of map F , it means if Y ⊂ X and

F (Y ) = Y , then Y ⊂ X. Henceforward we will call such

set as the maxinvariant subset of F . The only problem in this

situation is the actual form of set X? (In Figure 2 the set

X is equal to the union of final single points and all points

located on the indicated ellipses.) Of course equally essential,

although much more difficult in practice, is the description of

all orbits of map F .

In this paper, as the input set X we will take the families

containing numbers 0, 10k−1 − 1 and the natural numbers

possessing k digits in their decimal expansion, that is

X = X(k) = {0} ∪
{

n ∈ N : 10k−1 − 1 ≤ n < 10k
}

for each k ∈ N. This additional "condition" will enable to

reduce determination of the orbits of the so called Kaprekar’s

transformations Tk : X(k) → X(k) – described in the next

section – to solution of some diophantine equations. Although

we have learnt about orbits of many maps Tk, this knowledge

did not help us unfortunately to answer the basic question:

how many orbits do these maps possess in dependence on the

value of parameter k for any k ∈ N? In both parts of our study

we are able to answer this question only for values k ≤ 20.

In Part II of our considerations we will present many

various remarks, facts and conjectures which arose basically

by observing the numerical results concerning the description

of the orbits of maps Tn for n ≤ 20. We will prove, among

others, that the fixed points of these maps generate the infinite

sequences of the fixed points of maps Tan+b, n ∈ N, for some

natural numbers a and b.

Additionally, we have noticed that many from among the

maps investigated by us (including the generalizations of the

Kaprekar’s transformation – we define them in last section

– however, with regard to this paper length, we will present

the appropriate considerations in a separate paper) preserve

the strong Sharkovsky’s order (the Sharkovsky’s order, respec-

tively). It should be understood in the following way.

Definition 1. Map T : X → X , where X is a finite set,

preserves the strong Sharkovsky’s order if the elements of the

set of cardinalities of all orbits of this map can be ordered
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in the sequence k1, k2, . . . , kn, being the sequence of natural

numbers, successive in the sense of order (1).

Definition 2. Map T : X → X , where X is a finite set,

preserves the Sharkovsky’s order if the elements of the set

of cardinalities of all orbits of this map can be ordered in

the sequences k
(r)
1 , k

(r)
2 , . . . , k

(r)
n , r = 1, 2, . . . , s, successive

in the sense of order (1), and the different values of super-

script r correspond with the different "numbers of levels" of

description (1). More precisely, the first level of description

(1) is formed by the numbers

3, 5, 7, 9, 11, . . . ,

the second level of description (1) is made by the numbers

2 · 3, 2 · 5, 2 · 7, 2 · 9, 2 · 11, . . . ,

the third level of description (1) is created by the numbers

4 · 3, 4 · 5, 4 · 7, 4 · 9, 4 · 11, . . . , and so on,

and finally "the last level" of description (1) is formed by the

numbers

. . . , 25, 24, 23, 22, 2, 1.

Reason of these definitions is also worth to recall. So, as it

is easy to prove, for any one-to-one sequence k1, k2, . . . , kn
of natural numbers there exist the sets Xi, i = 1, 2, . . . , n,

(pairwise disjoint and such that cardXi = ki) and the map

T :
n
⋃

i=1

Xi →
n
⋃

i=1

Xi, for which the sets Xi are the only

minimal orbits.

Moreover, we have investigated the minimal cycles of the

discussed here maps with regard to the Erdős-Szekeres theo-

rem, as well as to the maximal length of monotonic intervals

of the given cycle (see [30]) and, at last, by paying the special

attention to the relatively new but extremely dynamic theory

of "pattern avoiding permutations" (see [6], [20]).

Let us recall here at least few essential definitions and facts.

Let a = {ai}
n
i=1 be a one-to-one sequence of real numbers.

Each subsequence b of a having the form {al, al+1, ..., al+r}
for some l, r ∈ N0, 1 ≤ l ≤ l+r ≤ n, will be called an interval

of a. A subsequence b of a is said to be a monotonic interval

of a whenever b is an interval of a and, simultaneously, a is

a monotonic sequence. Moreover, we will denote by l(a) := n

the number of elements of a called as the length of a, by d(a)
– the maximal number from among the numbers denoting the

lengths of all decreasing subsequences of a and finally by i(a)
– the maximal number from among the numbers denoting the

lengths of all increasing subsequences of a.

Erdős-Szekeres’ theorem. Let us suppose that a is a finite

one-to-one sequence of real numbers. Then we have

d(a) i(a) ≥ l(a).

The above theorem comes from the joint paper by Erdős

and Szekeres concerning the Ramseys problem [12]. Next,

Wituła et al. in [30] have discussed whether the given one-

to-one sequence a of all numbers 1, 2, ..., n (which means

that a can be identified with the respective permutation on

set {1, 2, ..., n}) contains a monotonic interval b of length 3.

The following fact is, among others, proven there.

Theorem 1. Let a = {ai}
3n
i=1 be a permutation on

{1, 2, ..., 3n} and let n ≥ 4. If i(a) = n, d(a) = 3, ak = 3n
and al = 1 for some k < l, then a contains a monotonic

interval b of length 3.

In the next section of this paper we will present the defini-

tion of Kaprekar’s transformations Tn and we will formulate

the conditions describing the elements of minimal orbits of

Tn for 4 ≤ n ≤ 7. In fact, it will be only the necessary

conditions, yet they will "reduce" enough the sets of natural

numbers containing the maxinvariant subset of the respective

Kaprekar’s transformation, so that the final calculations will

be possible to make even by hand.

II. KAPREKAR’S TRANSFORMATIONS

In this section we discuss the Kaprekar’s transformations

Tn : {0}∪
{

α : 10n−1 − 1 ≤ α < 10n
}

→

→ {0} ∪
{

α : 10n−1 − 1 ≤ α < 10n
}

for every n ∈ N, defined in the following way. We set Tn(0) =
0 and let α ∈ N be any n-digit number, the decimal expansion

of which is composed of digits 0 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ 9.

We take

Tn(α) :=

n
∑

k=1

(ak − an−k+1)10
k−1 =

= anan−1 . . . a1 − a1a2 . . . an.

The orbits of operator Tn will be called as the Tn-orbits for

every n ∈ N. Moreover, we will call the k-fold composition of

operator Tn, for any k, n ∈ N, as the Tn-composition. Next,

the fixed points of operator Tn, where n ∈ N, will be called

as the Kaprekar’s constants of n-th order.

Let us note that Hindu mathematician Dattathreya Ra-

machandra Kaprekar has started in 1949 in paper [16] the

discussion on the, called now, Kaprekar’s transformations Tn.

The classical Kaprekar’s constant, that is number 6174, was

also announced in this paper. But only in paper [17] Kaprekar

proved that after applying operator T4 at most 7-times every

four-digit number in base 10 leads to the same result, that is

6174 = T4(6174).
Properties of operator T5, acting on the five-digit integers in

bases r < 13, were investigated by Charles W. Trigg [29], the

mathematician well-known mostly for his great involvement in

the issues of recreational mathematics. Next, Klaus E. Eldridge

and Seok Sagong in their paper [11] from 1988 described the

convergence of {T n
3 (x)}

∞

n=1 for all three-digit numbers x for

any base r ∈ N, r ≥ 2. They obtained, among others, the

following result.

Theorem 2.

a) T n
3 (x) is convergent (in usual sense) to nontrivial con-

stant (also called the Kaprekar’s constant) if and only if
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r is even. The respective Kaprekar’s constant is equal to

the 3-digit number
(

r−2
2 , r − 1, r

2

)

in base r.

b) If r is odd then T3 possesses (except the trivial or-

bit) only one two-element orbit consisting of numbers
(

r−3
2 , r − 1, r+1

2

)

and
(

r−1
2 , r − 1, r−1

2

)

in base r.

Papers [7], [15], [18] are also devoted to the discussion on

Kaprekar’s transformations.

We will present now the descriptions of elements of orbits

of maps Tn for values of n equal in turn 5,6,7 and 4. These

facts are partly new and originally presented.

Theorem 3. Every orbit of operator T5 must contain exclu-

sively the numbers of the form ABA × 99, where 0 ≤ B ≤
A ≤ 9.

Proof: For five-digit number n composed only of digits

0 ≤ e ≤ d ≤ c ≤ b ≤ a ≤ 9 we have

T5(n) = (a− e)(104 − 1) + (b− d)(103 − 10) =

= 99× ((a− e)× 101 + (b − d)× 10)

= 99×ABA,

where 0 ≤ B := b− d ≤ A := a− e ≤ 9.

Corollary 1. The orbits of operator T5 can be sought just and

only from among the T5-iteration of the following 54 numbers

101× 99, 111× 99, 202× 99, 212× 99, 222× 99,

303× 99, 313× 99, 323× 99, 333× 99,

...

909× 99, 919× 99, 929× 99, . . . , 999× 99.

Moreover, each T5-orbit must be the subset of the above set

of numbers.

Remark 1. We have T5(99× 111) = T5(99× 999).

Theorem 4. Each orbit of operator T7 must contain only the

numbers of the form

AB(A + C)BA× 99, (2)

where 0 ≤ C ≤ B ≤ A ≤ (A+ C) ≤ 9, or

A(B + 1)(A+ C − 10)BA× 99, (3)

where 1 ≤ C ≤ B ≤ A ≤ 9 < (A+ C) and B ≤ 8.

Proof: Let n be the seven-digit number composed of the

following seven digits

0 ≤ g ≤ f ≤ e ≤ d ≤ c ≤ b ≤ a ≤ 9.

Then we have

T7(n) = (a− g)(106 − 1) + (b− f)(105 − 10)+

+ (c− e)(104 − 102) = 99× ((a− g)× 10101+

+ (b − f)× 1010 + (c− e)× 100) =

=







AB(A+ C)BA × 99, if A+ C ≤ 9,
A(B + 1)(A+ C − 10)BA× 99, if A+ C > 9

and B ≤ 8,

where A := a− g, B := b− f , C := c− e. It is obvious that

we have 0 ≤ C ≤ B ≤ A ≤ 9.

Corollary 2. Orbits of operator T7 can be sought only from

among the T7-compositions on the following numbers (we give

first the numbers defined by formula (2)):

10101× 99, 11111× 99, 11211× 99,

20202× 99, 21212× 99, 21312× 99,

22222× 99, 22322× 99, 22422× 99,

30303× 99, . . . ,

...

90909× 99, . . . , 98989× 99, 999999× 99,

and (it is about 163 numbers described by formula (3)):

99089× 99, 99189× 99, . . . , 99889× 99,

98079× 99, 98179× 99, . . . , 98679× 99,

...

93029× 99, 93129× 99,

92019× 99,

89088× 99, 89188× 99, . . . , 89688× 99,

88078× 99, 88178× 99, . . . , 88578× 99,

...

84038× 99, 84138× 99,

83028× 99,

...

67066× 99, 67166× 99, 67266× 99,

66056× 99, 66156× 99,

65046× 99,

56055× 99.

Theorem 5. Each orbit of operator T6 contains only the

numbers described by the following seven formulae

9×A(A+B)(A +B + C)(A +B)A, (4)

where 0 ≤ C ≤ B ≤ A ≤ A+B + C ≤ 9, or

9×A(A +B + 1)(A+B + C − 10)(A+B)A, (5)

where 0 ≤ C ≤ B ≤ A ≤ A+B ≤ 8 and 10 ≤ A+B+C <

20, or

9× (A+ 1)0(A+B + C − 10)9A, (6)

where 1 ≤ C ≤ B ≤ A ≤ 9 and A+B = 9, or

9× (A+1)(A+B− 9)(A+B+C− 9)(A+B− 10)A, (7)

where 0 ≤ C ≤ B ≤ A ≤ 9 and 10 ≤ A+B ≤ A+B+C ≤
18, or

9× (A+1)(A+B−8)(A+B+C−19)(A+B−10)A, (8)
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where 0 ≤ C ≤ B ≤ A ≤ 9 and A + B + C ≥ 19 (we note

that then A+B ≥ 10) and A+B ≤ 17, or

9× 110(C − 1)89, (9)

where C ≥ 1, or

9× 109989. (10)

Proof: In order to get the presented formulae let us

assume that n is the natural six-digits number composed of

the digits 0 ≤ a6 ≤ a5 . . . ≤ a1 ≤ 9. Then we obtain

T6(n) = 9((a1 − a6)(10
4 + 103 + 102 + 10 + 1)+

+ (a2 − a5)(10
3 + 102 + 10) + (a3 − a4)10

2).

By taking A := a1 − a6, B := a2 − a5, C := a3 − a4 we find

T6(n) = A104+(A+B)103+(A+B+C)102+(A+B)10+A,

where 0 ≤ C ≤ B ≤ A ≤ 9. The only thing which left is to

analyze the value of sums A+B+C and A+B which gives

the thesis of theorem.

Remark 2. Although we have as many as seven different

formulae describing potential numbers belonging to the orbits

of operator T6, their description can be directly generated in

easy way. However, we will omit here this description.

Remark 3. It was numerically proved by the Authors that

operator T6 possesses three fixed points (the Kaprekar’s

constants of sixth order):

0, 549945, 631764

and one 7-element orbit (we give it in a table in Part II of

this paper). The information on an existing 7-element orbit

is omitted in the table presented in the Polish version of

Wikipedia (http://pl.wikipedia.org/wiki/Stala_Kaprekara).

Theorem 6. Orbits of operator T4 contain only the numbers

described by formulae

9×A(A+B)A, (11)

where 0 ≤ B ≤ A ≤ A+B ≤ 9, or

9× (A+ 1)(A+B − 10)A, (12)

where 1 ≤ B ≤ A ≤ 9 and A+B ≥ 10.

Proof: Let n ∈ N be the four-digit number composed of

digits 0 ≤ d ≤ c ≤ b ≤ a ≤ 9. Then we have

T4(n) = (a− d)(103 − 1) + (b − c)(102 − 10) =

= 9×
(

(a− d)(102 + 10 + 1) + (b− c)10
)

=

=

{

9×A(A+B)A, if A+B ≤ 9,
9× (A+ 1)(A+ B − 10)A, if A+B > 9,

where A := a − d, B := b − c. Certainly we have 0 ≤ B ≤
A ≤ 9.

Remark 4. Formulae (11) and (12) describe the following 45

numbers

111× 9, 121× 9,

222× 9, 232× 9, 242× 9,

333× 9, 343× 9, 353× 9, 363× 9,

444× 9, 454× 9, . . . , 484× 9,

555× 9, 565× 9, . . . , 595× 9,

605× 9,

666× 9, 676× 9, 686× 9∗, 696× 9,

706× 9, 716× 9, 726× 9,

777× 9, 787× 9, 797× 9,

807× 9, 817× 9, . . . , 847× 9,

888× 9, 898× 9, 908× 9, . . . , 968× 9, 999× 9.

where by ∗ we have distinguished the Kaprekar’s constant.

Directly calculating (even by hand – if we are extremely

dogged) we can verify that T4 possesses only one orbit

{686× 9 = 6174}.

Let us recall, that this fixed point of T4, i.e. number 6174, is

called the Kaprekar’s constant (of fourth order).

III. FINAL REMARKS

Authors of this paper, apart from the discussed here

Kaprekar’s transformations, have also defined and investigated

the minimal orbits (cycles, respectively) of few generalizations

of these transformations, like for example

— the symmetric Kaprekar’s transformation

Let a1a2 . . . an be the decimal expansion of number

a ∈ N, 10n−1 ≤ a < 10n. Then the n-th symmetric

Kaprekar’s transformation M is defined as

M(a1a2 . . . an) =

n
∑

k=1

|ck − bk|10
k−1

where (b1, b2, . . . , bn) and (c1, c2, . . . , cn) are the se-

quences, nondecreasing and nonincreasing, respectively,

composed of the digits a1, a2, ..., an. We include to the

set of n-digit numbers also the number zero. Orbits of

operators M for the odd values n ≤ 19, although "quite

easy" to calculate even by hand, surprise yet with their

final form. We will present here only few quantitative

pieces of information.

So, if n = 2k+1, 1 ≤ k ≤ 5, then M possesses only the

fixed points and k-element orbits, for n = 13 operator

M possesses two fixed points, 0 and 65432101. . . 6, four

2-element cycles, eleven 3-element cycles and 827 cycles

of length 6 (sic). For n = 15 the operator M possesses

44 fixed points, 342 different 2-elements orbits and 2678

different 4-elements orbits. For n = 17 the operator

M possesses only 6 fixed points, 32 different 2-element

orbits and 6060 different 4-element orbits. Finally, for

n = 2k the operator M possesses only trivial orbit = {0}
for every k ∈ N.
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— nonoptimal Kaprekar’s transformations

One of the examples of this transformation, called by us

the Q-Kaprekar’s transformation, is defined as

Qn(A) := (an − a2)10
n−1 + (an−1 − a1)10

n−2+

+
∑n−2

k=1 (ak − an−k+1)10
k−1,

where 0 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ 9 are the all digits

of decimal expansion of number A. We note that, in

contrast to the Kaprekar’s transformation T4, the transfor-

mation Q4 possesses two 2-element orbits: {2187, 6543}
and {3285, 5274} and the trivial fixed point. Next, Q5

possesses the trivial fixed point and the 2-element orbit

{52974, 54963} (in contrast, transformation T5 has four

different orbits). Transformations Q6 and T6 have both

three fixed points and, respectively, the 8-element orbit

and the 7-element orbit. Transformations Q7 and T7

possess both the trivial fixed point and one 8-element

orbit (but of different orbit types).

— general Kaprekar’s transformations

We take that the natural number A, 10n−1 ≤
A < 10n, possesses the following decimal expansion

A = d1d2 . . . dn. Let a1 := max{d1, d2, . . . , dn},
a2 := max{d2, d3, . . . , dn} and in general ak :=
max{dk, dk+1, . . . , dn}, for k = 1, 2, . . . , n. The an-

nounced general Kaprekar’s transformations are defined

by relations

dσ,π(A) :=

n
∑

k=1

|dσ(k) − dπ(k)|10
n−k,

dweak
σ,π (A) :=

∣

∣

∣

∣

∣

n
∑

k=1

(dσ(k) − dπ(k))10
n−k

∣

∣

∣

∣

∣

,

and

Df,g(A) :=

n
∑

k=1

|df(k) − dg(k)|10
n−k,

Dweak
f,g (A) :=

∣

∣

∣

∣

∣

n
∑

k=1

(df(k) − dg(k))10
n−k

∣

∣

∣

∣

∣

,

Rf (A) :=

n
∑

k=1

|ak − af(k)|10
n−k,

Rweak
f (A) :=

∣

∣

∣

∣

∣

n
∑

k=1

(ak − af(k))10
n−k

∣

∣

∣

∣

∣

,

for any permutations σ, π on set {1, 2, . . . , n} and for

any functions f, g : {1, 2, . . . , n} → {1, 2, . . . , n}.
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