


Abstract—The  paper  is focused  on  the  use  of  methods  of

compressed  sensing  (CS)  in  energy  efficient  monitoring  of

signals. CS allows to minimize the number of data that need to

be transmitted to the sink node in the WSN environment. As a

case study, we use compressed sensing for monitoring of mains

voltage  deformation.  In  this  case  we  can  assume  that  the

measured signal  is  sparse  in  frequency domain and using  of

methods of  compressed sensing is  meaningful.  Computational

complexity  imposed on the sensor node is  minimized. On the

other  hand,  reconstruction  of  the  original  signal  in  the  sink

node requires relatively high computing power.

I. INTRODUCTION

NTERNET is  undergoing a  third stage  of  development

nowadays.  Since  1995,  the  Internet  has  evolved  from

interconnecting desktops and later  mobile devices (tablets,

smart  phones),  via  networking  of  all  devices  (Internet  of

Things) to the Internet of Everything - IoE (networking of

things, people, data and processes). According to estimate of

Cisco [1] there are about 200 things for every one person on

the  Earth  that  can  be  connected  to  the  data  network.  It

follows  that  in  the  near  future  we  can  see  the  network

containing up to 1.5 x 1012 elements. Meaningful use of such

a  network  is  a  huge  challenge  for  the  visionaries  and

theorists, but also for programmers, workers in the field of

transmission  technology  and  developers  and  technical

resources. According to [2] we expect that in the next five

years,  the number of connected devices will increase from

the current value of 12 x 1010 to about 35 x 1010, Fig.1. 

I

In  the IoE  raises  huge  space  for  development  and

implementation  of  new  applications  of  Wireless  Sensor

Netvorks  (WSN).  Recall  that  WSN  consists  of  spatially

distributed autonomous sensing elements that work together.

They are distributed in the monitoring area and continuously

evaluate the status of the monitored object. The term object

here is understood in its broadest sense and may represent

guarded area, production line or living being. Based on this

definition  the  WSN  represents  a  natural  part  of  a  global

network IoE. The above projections indicate that in the near

future we will see the growing number of WSN applications.
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It  is  natural  that during  development  of  successful

applications of WSN we are facing many constraints. Some

of these constraints arise from the relationship of the society

to the new information technologies (fear of loss of privacy,

inability to effectively utilize the benefits of the system and

many others). These limits are not analyzed in this paper. Let

us  mention  technical  limitations  that  determine the  extent

and success of WSN applications:

• limited energy resources of WSN elements,

• limited  processing  power,  storage  capacity,

communication  speed  and  range  of  broadcast

modules of network elements,

• limited size of individual elements,

• limited  (or  even  excluded)  maintenance  of  the

network elements during their lifetime,

• constraints  imposed  by  the  requirements  for

working conditions of WSN components,

• price  limits for  a  single network element  and  the

like. 

Many of these limits are becoming less important with the

continuous development of new electronic components and

technologies. Others, however, will permanently restrict the
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Fig 1.  The growth in the number of IoE devices
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development  of  new applications.  One of  such limitations

that must be respected in the development of applications is

the limited capacity of energy resources.  Note that limited

energy  consumption  of  WSN node  affects  other  technical

parameters  - computing power,  communication  speed  and

range, and so on.

The problem of efficient  powering of network elements

can be addressed in the following ways: 

• consistent use of energy harvesting (EH) exploiting

resources that are available in the application [3],

• appropriate  design  of  network  topology  with

minimal  demands  on  communication,  optimal

distribution  of  network  tasks,  dynamic

reconfiguration of the network with respect to the

current  state  of  energy  resources  of  individual

elements, etc.,

• reducing consumption of sensor nodes that can be

achieved by combining two approaches:

◦ using only low-power elements in the process

of sensor node development,

◦ choosing of such a mode of operation of sensor

node that minimizes energy consumption.

Energy harvesting systems used for powering of network

elements  are  usually  designed so  that  they  can  ensure

continued  operation  of  the  nodes.  The  term  Zero  Power

Wireless Sensor [4] indicate precisely those solutions that do

not need a power source for their operation, but are able to

drain  the  necessary  energy  from  the  environment.  The

construction of sensor nodes is based on modern circuit with

reduced consumption. During the operation the sensor nodes

use sleep modes with reduced consumption and the sensor

wakes up to the active state only when it is necessary. The

wake up event is usually based on external conditions. Such

systems  are  referred  to  as  "event-driven".  The  node  is

brought  into  active  mode  only under  specified  conditions

(e.g.  change of the observed variables by defined amount,

the achievement of pre-defined state of the object, etc.). In

many cases (e.g. by monitoring of non-stationary processes)

is  such  system  more  energy  efficient  when  compared  to

conventional "Time-driven" systems.

However, there is a group of systems that strictly speaking

cannot be classified into any of the above mentioned classes.

It is a class of systems that use for collection, transmission

and  processing  of  information  methods  known  under  the

name compressed  sensing.  The  next  section  describes  the

basic theoretical background of compressed sensing. 

II. COMPRESSED SENSING

The basis of the theory of digital processing of continuous

signals  is  Shannon's  theorem,  which  says  that  a  perfect

reconstruction of the sampled signal is only possible if the

sampling frequency is at least twice the maximum frequency

component contained in the original signal. The theorem is

universally  applicable,  however,  in  some  cases  the  strict

requirement  for  the  sampling  rate  can  be  substantially

released.  Recent  research  [5],  [6]  has  shown  that  this  is

possible particularly in the case if the sampled signal is in

some  domain  sparse.  Sparse  means  that  relatively  few

coefficients describing the signal in the domain are non-zero.

Let y be a one-dimensional discrete signal comprising of n

elements. Next, let x be the representation of the signal y in

some  domain  (e.g.  Fourier  or  wavelet).  For  linear

transformation it holds that x = Fy and y = Yx where F and

Y and are square n x n matrices representing the direct and

inverse  transformation  and  are  composed  from  linearly

independent base vectors (usually orthonormal).

We say that the signal x is s-sparse (for 1 ≤ s ≤ n) if it has

at most s non-zero coefficients. Intuitively, if the signal is s-

sparse, it should have only s degrees of freedom. In that case

one  needs  substantially  only  s measurements  for  the

reconstruction of the original signal. This is the basic idea of

the compressed sensing - the number of measurements that is

required for the perfect reconstruction of the original signal

is directly proportional to its sparsity.

Let's  show how it is possible to reconstruct  the original

signal  y,  if  we  have  only  m-dimensional  vector  of

measurements b, while s ≤ m < n. The challenge is to find a

solution to the equation Ax = b, where A has dimensions m x

n and is referred to as a measurement matrix. If  m < n, the

problem is underdetermined and generally it  has infinitely

many solutions. Provided that any subset of  2s columns of

the  matrix  A are  linearly independent,  the  solution  of  the

defined problem is the sparsest vector x: 

minx∥x∥0    subject to   Ax=b (1)

where

∥x∥0=∑
i=1

n

∣x i∣
0
     {1⩽i⩽n , xi≠0}

denotes the sparsity of the vector x.

Unfortunately,  l
0
 minimization  is,  in  general,  NP  hard

problem  as  it  requires  a  search  of  all ( s

n) possible

solutions. The problem is that the  l
0
 minimization is not a

convex optimization problem, and therefore one cannot use

the  appropriate  optimization  algorithms.  Replacing  l
0

minimization  by  l
2
 minimization  (least  squares  problem)

yields not satisfactory results. A more accurate estimate of

the solution xe can be obtained by l
0
 minimization:

x
e=minx∥x∥1    subject to   Ax=b (2)

where

∥x∥1=∑
i=1

n

∣xi∣

l
1
 norm as a means of finding the most sparse solution has

been used already in 1973 in reflection seismology [7]. The

problem (2) is a convex optimization problem, which can be

effectively solved using methods of linear programming. It is
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often referred to as basis pursuit (BP). Equivalence of l
0
 and

l
1
 minimization  is  guaranteed  if  either  of  the  following

sufficient  conditions  is  met.  The  first  condition  is  a

requirement that the matrix  A approximately maintains the

Euclidean length of the  s-sparse signals. This characteristic

of  the  matrix  A is  called  the  restricted  isometry property

(RIP) [9]. RIP is related to the isometric constant d
s
 defined

as the smallest number such that

(1−d s)∥x∥2

2⩽∥Ax∥2

2⩽(1+d s)∥x∥2

2
(3)

holds for all s-sparse vectors x. 

We can say that  A obeys the RIP of order  s if  d
S
 is not

very close to one. It is met if all the subsets of s columns of

the  matrix  A are  approximately  orthogonal.  However,

checking whether the matrix A obeys the RIP is generally NP

hard  problem. Some matrices  are  known to obey the RIP

with  overwhelming  probability  (e.g.  Random  Gaussian

Matrices, Bernoulli matrices, partial Fourier matrices). There

is  a  prove  in  [12]  that  Gaussian  and  Bernoulli  random

matrices  probably  obey  the  RIP  when  the  number  of

measurements satisfies the condition m ≥ Cs ln(n/s), where C

is some constant dependent on d
s
.

It is much easier to verify the second sufficient condition

based  on  mutual  coherence  μ(A).  Mutual  coherence  is

defined as the cosine of the smallest angle between any two

columns of matrix A. Mutual coherence has to be as small as

possible (cosine is  close to zero  for  angles  close to 90 °,

which means that the columns are independent). Incoherence

of the matrix  A indicates that if the signal is sparse in one

domain, it has to be spread out in the other domain (the one

in which it is sampled). In practice, this means that columns

of the matrix A are roughly uniform in magnitude.

Both sufficient  conditions  essentially  require

independence of columns of the matrix A. Interconnection of

RIP and mutual coherence has been shown in [11]. For an

orthogonal square matrix it holds that both d
S
 and µ(A) equal

to zero. However, for m x n matrix (m < n) it is not possible

to  ensure  the  complete  independence  of  columns, we just

require them to be roughly orthogonal.

Simulation experiments in [18] have shown that there is

rather universal dependence between the ratios m/n and s/m.

This  dependence  can be  used  for  selection  of  appropriate

number of samples m if the sparsity s of the signal is known.

Practical experiments indicate that most s-sparse signals can

be perfectly reconstructed if m is in range from 3s to 5s [13].

We  have  shown  that CS  is  applicable  for  the

reconstruction of sparse undersampled signals. However, to

be useful in practice, it is necessary for CS to cope with both

nearly sparse signals and with noise. In other words, CS must

be  robust.  Most  real  signals  are  not  strictly  sparse  and

measurements are corrupted with at least quantization noise,

as the sensors do not have infinite precision. In this case, it is

necessary to find solution to the equation: 

b=Ax+e (4)

where e is a random variable.

If the sensed signal is not strictly s-sparse, we require it to

be at least s-compressible. S-compressible signal has at most

s significant  coefficients  and  all  the  other  coefficients  are

close to zero. In other words, if the coefficients are sorted by

value, all coefficients, except for the first s, are smaller than

some  small  nonzero  constant.  Thus,  the  majority  of  the

signal’s information content is  concentrated  in only a few

coefficients.  Typical  examples  of  the compressible objects

are  images  when  expressed  in  appropriate  base  (e.g.

wavelet).  This  feature of  natural  images has been used  in

compression  algorithms such as  JPEG2000  for  years.  We

can say that many images are efficiently sparse in wavelet

base.

To  reconstruct  the original  signal  in  case  of  noisy

measurements  one  can  use  l
1
 minimization  with  relaxed

conditions: 

minx∥x∥1    subject to   ∥Ax−b∥2

2⩽ϵ (5)

This is a linear programming optimization problem with

quadratic conditions (Basis Pursuit Denoising - BPDN). The

problem  can  be  reformulated  as  quadratic  programming

problem with linear conditions (known as LASSO): 

minx∥Ax−b∥2

2
   subject to   ∥x∥1⩽ϵ (6)

For  appropriately selected  parameter  l the  problem (5)

can be expressed without conditions:

minx

1

2
∥Ax−b∥2

2+λ∥x∥1 (7)

Several types of algorithms can be used to reconstruct the

original signals. Methods based on a convex optimization are

computationally  demanding.  This  category  includes  Basis

Pursuit (BP), Basis Pursuit Denoising (BPDN), interior point

methods [17] and projected gradient methods. This category

is  sometimes  supplemented  by  Iterative  Shrinkage

algorithms such as Iterative Hard Thresholding (IHT).

The  second  group  of  algorithms  consists  of greedy

algorithms  that  are  looking  for  non-zero  coefficients

incrementally,  starting  with  the  most  significant.  Among

greedy  algorithms  belong  mainly  Matching  Pursuit  (MP)

[14] and its variations: Orthogonal Matching Pursuit (OMP)

[8], regularized OMP (ROMP), Stagewise OMP (StOMP),

OMP with Replacement (OMPR) and also the first sub-linear

algorithm  OMPR-Hash.  This  category  includes  also

Subspace  Pursuit  (SP)  [16]  and  Least  Angle

Regression(LARS)  [15].  Some  of  greedy  algorithms  are

capable of providing similar guarantees of stability as BPDN

while they are faster. Also they have the advantage of being

easier to understand.

There  are  also combinatorial  algorithms  (e.g.  HHS

pursuit),  which  are  very  fast,  but  they  require  a  lot  of

measurements.

Special  types  of  algorithms  are Total  Variation  (TV)

algorithms. These are used mainly in the reconstruction of
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images where one may require sparsity of the gradient of the

image.  TV  algorithms are  particularly suitable  for  images

composed from smooth areas separated by curves (objects

without  complex  textures).  Such  images  are  common  in

medicine (MRI, angiogram, and the like). 

Compressed sensing can be used if:

• the signal is sparse in any known base,

• measurements  or  calculations  at  the  sensor  are

expensive in some sense,

• calculations at the receiver are cheap.

The application area of compressed sensing is very broad:

MRI, astronomy, WSN, communication [10] and so on. The

use of CS in wireless sensor networks is particularly useful.

Compressed sensing allows to substantially simplify sensor

nodes. The use of compressed sensing saves limited energy

resources at several levels:

• Signal  sampling - the number of  AD conversions

required is a fraction compared to the conventional

sampling using Nyquist frequency.

• Preprocessing of the signal - transfer of all acquired

samples  is  usually  undesirable.  It  is  necessary to

reduce the amount of data to be transmitted by a

communication  channel.  Signal  preprocessing

algorithms often involve computationally intensive

transformations  such  as  Discrete  Fourier

transformation.  Compressed  sensing  does  not

require pre-processing at all.

• Data transfer - energy is saved especially if we need

to transfer the whole measured signal to the central

node.  Transmission  of  data  is  typically  the  most

energy  intensive  operation  in  the  processing  of

distributed data. Transmission of a smaller number

of data has a positive effect on energy balance of

the node and also on the throughput of the entire

network.

From the perspective of information processing the block

structure of the node only consist of two parts: sensing and

transmission. Simplification of the node and a reduction of

its  consumption  significantly  increases  its  reliability  and

extends its lifetime.

Note  that  the sampling process  can  be  done  in  several

ways.  We  can  use  random  sampling,  but  then  we  must

transmit  pairs  of  numbers  (sample-time).  The  major

advantage  of  the  compressed  sensing is  then  deteriorated.

The second possibility is to use a pseudo-random sampling

when the  signal  is  sampled  according  to  a  predetermined

scheme, which, of  course,  has  to be known in the central

node, in which the original signal is recovered. 

Pseudo-random sampling is advantageous also because it

is possible to fit  it  for  a  specific application. The sensing

matrix can be defined in order to meet all the prerequisites

needed  for  perfect  signal  reconstruction.  The  compressed

sensing can be realized also in such a way that the signal is

captured at a Nyquist rate and then a subset of the samples

corresponding to  the sensing matrix is  picked  out.  In  this

case there is no energy saving during sampling but only in

blocks of preprocessing and transmission. The development

of sensors that allow sensing of physical quantities using the

principles  of  compressed  sensing  is  one  of  intensively

researched  areas.  Successful  penetration  of  CS into  WSN

depends  mainly on  the  availability of  suitable  (cheap  and

energy-efficient) sensing elements.

III. EXAMPLE OF USING CS IN WSN

One of the cases where it is possible to effectively use the

compressed sensing is the monitoring of power quality. To

provide high quality electric power service, it is essential to

monitor  number  of  parameters  at  different  places  in  the

network.  Among the  monitored  parameters  belong current

and voltage RMS, phase relationship between waveforms of

a multi-phase signal, power factor, frequency, total harmonic

distortion, different kinds of power and many more. In this

example  we  will  focus  on  measuring  of  total  harmonic

distortion (THD). 

THD can be calculated using following equation:

THD=
√∑

i=2

N

V i

2

V 1

(8)

where V
i
 is the RMS voltage of i-th harmonic and i = 1 is

index of the fundamental frequency component.

As indicated  by  (8),  we  need  to  know  the  frequency

spectrum of  the  measured  signal  in order  to  calculate  the

THD.  The  second  option  is  to  use  filters  to  obtain  the

fundamental  component and all  other  components [19].  In

both  cases  it  is  necessary  to  make  quite  a  number  of

calculations on the sensor side.

THD monitoring is now more important than ever, given

the  increasing  use  of  switching  power  supplies  to  power

consumer electronics. Switching power supplies are causing

clipping of supply voltage. Fig. 2 shows a clipped sine wave

and its spectrum. The frequency of the sine wave is 50 Hz

and the amplitude is clipped to 0.9.

Fig 2.  Clipped sine wave and its spectrum
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The more clipped  is the sine wave,  the more energy is

concentrated in the higher harmonics and the greater is the

value  of  THD.  If  both  half-waves  are  clipped,  non-zero

coefficients  correspond  to  odd  order  harmonics.  Clipping

only  one  half  of  the  sinusoid  causes  a  doubling  of  the

number  of  harmonics  (all  the  harmonics  are  non-zero).

However, this case is not common in practice. The number

of non-zero coefficients in the spectrum of clipped sinusoid

is  theoretically  infinite  and  must  be  reduced  to  make

calculation feasible. This truncation causes some error, but it

is relatively small and it can be neglected. For example, the

THD of the example signal is 4.6416 % taking into account

only the first ten non-zero coefficients or it is 4.6444 % if the

number of non-zero coefficients is one hundred.

Since the representation of the clipped sine wave is sparse

in the frequency domain, it is possible to engage principles

of  the  compressed  sensing.  Compressed  sensing  allows

reducing the  cost  of  the  sensor  element  but,  on  the  other

hand, increases the demand for the computing power of the

central network node.

To verify the possibility of using compressed sensing in

this  case  we  conducted  simulation  experiments.  For  the

calculation of THD we used first 20 higher harmonics (i.e.

first  10 non-zero coefficients).  The fundamental  frequency

equals to line frequency:  50 Hz. The 20-th harmonic then

corresponds to 1 000 Hz. According to the Shanon theorem,

the signal must be sampled by frequency of at least 2 000

Hz. Suppose that the mains voltage is stationary within an

interval  of  200  ms  (i.e.  the  statistical  properties  of  the

voltage  are  constant  for  a  short  period  of  time).  In  this

example, we monitor the mains voltage within time windows

of a length of 200 ms, which corresponds to the number of

samples n = 400. Random sampling was realized by random

selection of  m-samples such that the mean period between

two samples equals to n/m. Input signal is a sine wave with a

frequency of 50 Hz and amplitude clipped to 0.9: 

x(t)=
0.9 ,             sin (2π ft )⩾0.9

sin (2π ft ) ,   ∣sin (2 π ft)∣<0.9

−0.9 ,              sin (2π ft )⩽−0.9

(9)

Using Monte Carlo method, we performed simulations for

different values of m and different values of signal to noise

ratio  (SNR).  For  each  pair  {m, SNR} we conducted  100

simulations.  The simulation consists of a reconstruction of

the  original  signal  in  the  frequency  domain  and  the

subsequent  calculation  of  THD  using  (8).  For  the

reconstruction  of  signal  we  used  collection  of  MATLAB

routines  l1-magic  [20].  The  resulting  THD  value  is

calculated as the arithmetic average of the 100 values. Fig. 3

shows the result  of  simulations.  The  THD of the  original

noise-free signal is 4.32 %. 

Reconstruction  of  the  original  signal  took  from 1  to  5

seconds  on  dual  core  2.6  GHz Athlon 64  processor.  The

duration of simulation depends on the length of the original

signal  n,  the  number  of  samples  m as  well  as  their

distribution.

The results show that decreasing the number of samples

and/or  increasing the SNR deteriorate  the accuracy of  the

reconstruction  of  the  signal  and  thus  the  accuracy  of  the

calculated THD. The simulations suggest that good results

can be obtained when the number of samples m is at least 80

and  the  SNR  is  greater  than  30  dB.  In  that  case  the

compression  ratio  would  be  1:5.  If  the  mains  voltage  is

stationary over longer periods, it is possible to achieve even

higher compression ratios. If  we increase the length of the

time window to 400 ms (n = 800), it is possible to achieve

even better  results  using the  same compression  ratio  m/n.

The effect of increasing the number of samples n is shown in

table 1. The simmulation was done with noise-free sinusoid.

TABLE I.

EFFECT OF DIFFERENT WINDOW LENGTHS ON

ACCURACY OF THD ESTIMATE 

m/n

THD [%]

n = 400 n = 600 n = 800

0.1 3.19 3.8 4.13

0.125 3.7 4.12 4.25

0.15 3.99 4.24 4.29

0.175 4.19 4.29 4.3

0.2 4.28 4.3 4.3

We see that doubling the length of the window allows to

reduce  the ratio  m/n from 0.2  to  0.15.  Knowledge  of  the

parameters  of  measured  signal  is  therefore  essential  in

optimal design of compressed sensing parameters.

IV. CONCLUSION

Simulation experiments  demonstrate  a  possibility to  use

compressed sensing in appropriately selected applications of

WSN. Energy savings due to the use of compressed sampling

Fig 3. THD as a function of m and SNR
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can be maximized if we know parameters of the measured
signals.

In  the future, we will  focus  on design  of  deterministic
sensing matrices suitable for compressed sensing of selected
signal classes. It is also necessary to develop fast algorithms
for reconstruction of the original signals so they can be used
even in less powerful network nodes.
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