
InterCriteria Analysis of Crossover and Mutation
Rates Relations in Simple Genetic Algorithm

Maria Angelova, Olympia Roeva, Tania Pencheva
Institute of Biophysics and Biomedical Engineering

Bulgarian Academy of Sciences

105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria

Email:{maria.angelova, olympia, tania.pencheva}@biomed.bas.bg

Abstract—In this investigation recently developed InterCriteria
Analysis (ICA) is applied to examine the influences of two main
genetic algorithms parameters – crossover and mutation rates
during the model parameter identification of S. cerevisiae and E.

coli fermentation processes. The apparatuses of index matrices
and intuitionistic fuzzy sets, which are the core of ICA, are used
to establish the relations between investigated genetic algorithms
parameters, from one hand, and fermentation process model
parameters, from the other hand. The obtained results after ICA
application are analysed towards convergence time and model
accuracy and some conclusions about derived interactions are
reported.

I. INTRODUCTION

INTERCRITERIA Analysis (ICA), given in details in [3],

is a contemporary approach for multi-criteria decision

making. ICA implements the apparatuses of index matrices

(IM) and intuitionistic fuzzy sets (IFS) in order to compare

some criteria reflecting the behaviour of considered objects.

Recently ICA has been successfully applied for EU Member

States competitiveness analysis [8], thus provoking the search

for further ICA applications. The idea to implement ICA in

the field of tuning of the optimization techniques parameters

has intuitively appeared.

Fermentation processes (FP) are objects of increased re-

search interest because of their widespread use in different

branches of industry. The FP modeling and optimization are a

real challenge for the investigators due to the fact that FP mod-

els have complex structures based on systems of non-linear dif-

ferential equations with several specific growth rates [9]. The

choice of appropriate model parameter identification procedure

is the most important problem for FP adequate modeling.

Among others biologically inspired optimization techniques,

genetic algorithms (GA) [12] has been proved as a global

search method [10] for solving different engineering and opti-

mization problems [18], among that for parameter identifica-

tion of FP [1], [16], [17], [19]. GA efficiency strongly depends

on the tuning of different operators, functions, and parameters.

These settings are specifically implemented to different prob-

lems. Current investigation is focused on the examining the

impact of two of the main GA parameters, namely crossover

(xovr) and mutation (mutr) rates. Simple GA (SGA) is

applied for the purposes of model parameter identification of

two fed-batch FP – S. cerevisiae and E. coli. Both yeast and

bacteria have numerous applications in food and pharmaceu-

tical industries. Also both microorganisms are widely used as

model organisms in genetic engineering and cell biology due

to their well known metabolic pathways [11], [14].

In this investigation the obtained results from SGA parame-

ter identification of considered here FP models are used to de-

termine some dependencies between some criteria preliminary

defined as of significant importance. The establishment of the

influences and relations between criteria – model parameters,

from one hand, and GA parameters crossover and mutation

rates, from the other hand, is performed by the ICA imple-

mentation. This is expected to lead to additional exploring of

the models or the relation between models and optimization

algorithm outcomes, which will be valuable especially in the

case of modelling of living systems, such as FP.

II. PROBLEM FORMULATION

A. Mathematical models of fermentation processes

Two Case studies are going to be presented here – for the

fermentation processes of S. cerevisiae (Case study 1) and of

E. coli (Case study 2).

Case study 1. S. cerevisiae fed-batch fermentation model

The mathematical model of S. cerevisiae fed-batch process

is presented by the following non-linear differential equations

system [16]:

dX

dt
= (µ2S

S

S + kS
+ µ2E

E

E + kE
)X −

Fin

V
X (1)

dS

dt
= −

µ2S

YS/X

S

S + kS
X +

Fin

V
(Sin − S) (2)

dV

dt
= Fin (3)

where X is the biomass concentration, [g/l]; S – substrate

concentration, [g/l]; E – ethanol concentration, [g/l]; Fin –

feeding rate, [l/h]; V – bioreactor volume, [l]; Sin – substrate

concentration in the feeding solution, [g/l]; µ2S , µ2E – the

maximum values of the specific growth rates, [1/h]; kS , kE –

saturation constants, [g/l]; YS/X – yield coefficient, [-].

For the considered here model (Eqs. (1-3)), the vector of

parameters to be identified is as follows:

p1 = [µ2S µ2E kS kE YS/X ].
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Case study 2. E. coli fed-batch fermentation model

The mathematical model of E. coli fed-batch process is

presented by the following non-linear differential equations

system [9], [16]:

dX

dt
= µmax

S

kS + S
X −

Fin

V
X (4)

dS

dt
= −

µmax

YS/X

S

S + kS
X +

Fin

V
(Sin − S) (5)

dV

dt
= Fin (6)

where all notations keep their meaning as described above,

and, additionally, µmax is the maximum value of the specific

growth rate, [1/h].

For the considered here model (Eqs. (4-6)), the vector of

parameters to be identified is as follows:

p2 = [µmax kS YS/X ].

Model parameters identification of both fed-batch FP is

performed based on experimental data for biomass, glucose

and ethanol concentrations. The detailed description of the

process conditions and experimental data can be found in [16].

B. Optimization criterion

The objective function is designed aiming at identification

of parameter vectors p1 and p2 in order to obtain the best fit

to a data set and is defined as:

J =

m∑

i=1

(Xexp(i)−Xmod(i))
2
+

n∑

i=1

(Sexp(i)− Smod(i))
2
→ min

(7)

where m and n are the experimental data dimensions; Xexp

and Sexp – available experimental data for biomass and

substrate; Xmod and Smod – model predictions for biomass and

substrate with a given model parameter vector.

C. Simple genetic algorithms for parameter identification

Simple genetic algorithm, initially presented in Goldberg

[12], searches a global optimal solution using three main

genetic operators in a sequence selection, crossover and muta-

tion. SGA starts with a creation of a randomly generated initial

population. Each solution is then evaluated and assigned a fit-

ness value. According to the fitness function, the most suitable

solutions are selected. After that, crossover proceeds to form

a new offspring. Mutation is then applied with determinate

probability aiming to prevent falling of all solutions into a

local optimum. The execution of GA has been repeated until

the termination criterion (i.e. reached number of populations,

or found solution with a specified tolerance, etc.) is satisfied.

Crossover and mutation are among of the most important

operators that can increase the efficiency of GA. The crossover

operator is used to generate offspring by exchanging bits in

a pair of parents chromosomes chosen from the population.

Crossover occurs with a crossover probability (crossover rate,

xovr), that indicates a ratio of how many couples will be

picked for mating. The mutation operator changes some el-

ements in selected chromosomes with a mutation probability

(mutation rate, mutr). As such, the operator introduces genetic

diversity and helps GA to escape the local optimum. It is

well known that optimal crossover and mutation rates vary

for different problems and the success of GA depends on

their choice [13]. Usually, determining what rates of crossover

and mutation should be used is doing on the trial-and-error

basis. In the literature there exist a number of guidelines how

crossover and mutation rates to be tuned [12], [13], [15].

Recommended values of crossover rate are high, usually in

the range 0.5-1.0 [13], [15]. On the other hand, low mutation

rate values for preventing search process to be turn into a

simple random search are commonly adopted in GA. Typical

values of mutation rate are in the range 0.001-0.1 [13], [15].

In this investigation the impact of crossover and mutation

rates is going to be examined choosing different values of the

both GA parameters. In Case study 1 SGA is applied with

the following values of crossover rate: xovr = {0.65; 0.75;

0.85; 0.95}, while in Case study 2 – with xovr = {0.5; 0.6;

0.7; 0.8; 0.9; 1}. Due to the specific peculiarities of two fed-

batch FP, again different strategies were applied for mutation

rates in both Case studies. In Case study 1 SGA is applied

with the following values of mutation rate: mutr = {0.02;

0.04; 0.06; 0.08; 0.1}, while in Case study 2 – with mutr
= {0.001; 0.01; 0.1; 0.5; 1}. The selected values of xovr
and mutr are chosen based on the following prerequisites:

i) concerning the recommended by the literature values and

trying to comprise different values in the ranges for both Case

studies [12], [13], [15]; ii) concerning the previous authors’

experience of modelling of FP using GA [1], [16], [17], [18],

[19]. All other GA operators and parameters are tuned as

presented in [1], [19].

III. INTERCRITERIA ANALYSIS

InterCriteria analysis, based on the apparatuses of index

matrices and intuitionistic fuzzy sets, is given in details in

[3]. Here, for a completeness, the proposed idea is briefly

presented.

An intuitionistic fuzzy pair (IFP) [4] is an ordered pair

of real non-negative numbers 〈a, b〉, where a, b ∈ [0, 1] and

a + b ≤ 1, that is used as an evaluation of some object

or process. According to [4], the components (a and b) of

IFP might be interpreted as degrees of “membership” and

“non-membership” to a given set, degrees of “agreement”

and “disagreement”, degrees of “validity” and “non-validity”,

degrees of “correctness” and “non-correctness”, etc.

The apparatus of index matrices (IM) is presented initially in

[5] and discussed in more details in [6], [7]. For the purposes

of ICA application, the initial index set consists of the criteria

(for rows) and objects (for columns) with the IM elements

assumed to be real numbers. Further, an IM with index sets

consisting of the criteria (for rows and for columns) with IFP

elements determining the degrees of correspondence between
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the respective criteria is constructed, as it is doing to be briefly

presented below.

Let the initial IM is presented in the form of Eq. (8),

where, for every p, q, (1 ≤ p ≤ m, 1 ≤ q ≤ n), Cp is a

criterion, taking part in the evaluation; Oq – an object to be

evaluated; aCp,Oq
– a real number or another object, that is

comparable about relation R with the other a-objects, so that

for each i, j, k: R(aCk,Oi
, aCk,Oj

) is defined. Let R be the

dual relation of R in the sense that if R is satisfied, then R
is not satisfied, and vice versa. For example, if “R” is the

relation “<”, then R is the relation “>”, and vice versa. If

Sµ
k,l is the number of cases in which R(aCk,Oi

, aCk,Oj
) and

R(aCl,Oi
, aCl,Oj

) are simultaneously satisfied, while Sν
k,l

is the number of cases is which R(aCk,Oi
, aCk,Oj

) and

R(aCl,Oi
, aCl,Oj

) are simultaneously satisfied, it is obvious,

that

Sµ
k,l + Sν

k,l ≤
n(n− 1)

2
.

Further, for every k, l, satisfying 1 ≤ k < l ≤ m, and for

n ≥ 2,

µCk,Cl
= 2

Sµ
k,l

n(n− 1)
, νCk,Cl

= 2
Sν
k,l

n(n− 1)
(9)

are defined. Therefore, 〈µCk,Cl
, νCk,Cl

〉 is an IFP. Next, the

following IM is constructed:

C1 . . . Cm

C1 〈µC1,C1
, νC1,C1

〉 . . . 〈µC1,Cm
, νC1,Cm

〉
...

...
. . .

...

Cm 〈µCm,C1
, νCm,C1

〉 . . . 〈µCm,Cm
, νCm,Cm

〉

,

that determines the degrees of correspondence between criteria

C1, ..., Cm.

In the most of the obtained pairs 〈µCk,Cl
, νCk,Cl

〉, the sum

µCk,Cl
+ νCk,Cl

is equal to 1. However, there may be some

pairs, for which this sum is less than 1. The difference

πCk,Cl
= 1− µCk,Cl

− νCk,Cl
(10)

is considered as a degree of “uncertainty”.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to obtain reliable results for convergence time,

optimization criterion and model parameters estimations, thirty

independent runs of SGA have been performed for each value

of crossover and mutation rates for both examined here Case

studies. Obtained results have been averaged and two IMs are

constructed for each Case study, involving values for crossover

or mutation rates, respectively. In other words, altogether four

IMs are constructed: IMs A1(xovr) (Eq. (11)) and A1(mutr)

(Eq. (12)) for the Case study 1 and IMs A2(xovr) (Eq. (13))

and A2(mutr) (Eq. (14)) for the Case study 2.

IM A1(xovr) presents average estimates of the model pa-

rameters µ2S , µ2E , kS , kE , and YS/X , as well as the re-

sulting convergence time T and objective function value J ,

respectively for xovr = {0.65; 0.75; 0.85; 0.95}, denoted as

GAxovr
1,1 ÷ GAxovr

1,4 . In the same way, IM A1(mutr) presents

the results for µ2S , µ2E , kS , kE , and YS/X , T, J and mutr,

respectively for mutr = {0.02; 0.04; 0.06; 0.08; 0.1}, denoted

as GAmutr
1,1 ÷ GAmutr

1,5 .

IMs A2(xovr) and A2(mutr) for the Case study 2 have been

created by analogy with the Case study 1.

Based on Eq. (9), ICA algorithm calculates the IFP 〈µ, ν〉
for every two pairs of considered criteria based on the obtained

IMs A1(xovr), A1(mutr), A2(xovr) and A2(mutr). Values of π
(Eq. (10)) are calculated too. Obtained results are grouped

in Table 1 for both Case studies, considering dependences

between crossover and mutation rates, optimization criterion,

convergence time and model parameters themselves.

Applied here non-linear models for two Case studies (re-

spectively Eqs. (1)-(3) and Eqs. (4)-(6)) are a prerequisite

some closer relations between observed criteria to be expected

after ICA application. On the other hand, some differences in

the parameters relations might appear caused by the different

specific growth rates in S. cerevisiae and E. coli FP.

As it could be seen from Table 1, there is a strong relation

between T ↔ xovr/mutr for the Case study 1, while in

the Case study 2 a weak relation is observed. The similar

discrepancy is identified in the correlation between YS/X ↔
xovr/mutr: in the Case study 2 there is a strong relation for

GA parameter xovr, while in the Case study 1 – a weak. These

discrepancies might be explained by the stochastic nature of

GA. Crossover rate strongly influences evaluation of model

parameter µ2E in Case study 1. In the Case study 2, there is a

significant indication for high correlation between J ↔ mutr.

For the rest of model parameters the observed correlations are

weak – there are no significant dependencies between T and

these parameters.

Going further in investigation of relations between algo-

rithm accuracy J and model parameters, higher µ-values is

observed between YS/X ↔ J in Case study 1 and for GA

parameter mutr. Less stronger correlations are identified in

the Case study 1 for GA parameter mutr between µ2S ↔ J ,

as well as in Case study 2 for GA parameter mutr between

YS/X ↔ J . These similarities are caused by the physical

meaning of considered model parameters. For the rest of

parameters the observed correlations are weak – there are no

significant dependencies between these parameters and J .

When considering the influence of convergence time T over

the model parameters, higher µ is observed in pairs µ2E ↔ T
in Case study 1 for GA parameter xovr. In the Case study 2,

higher µ-values are observed between µmax ↔ T and kS ↔
T for mutr GA parameter. Observed µ-values for the rest

of pairs of model parameters and T show that there are no

significant correlations between them.

The last group of examined correlations is between model

parameters themselves in both considered Case studies. Dif-

ferent model structures in both FP complicate the extraction

of some common correlations. Although that fact, there are

some coincidences for both Case studies. In the Case study 1

for GA parameter xovr, the strongest correlations are found

respectively for µ2S ↔ kS and µ2S ↔ YS/X , while less

stronger correlations are identified for the pairs kS ↔ kE ,
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A =

O1 . . . Ok . . . Ol . . . On

C1 aC1,O1
. . . aC1,Ok

. . . aC1,Ol
. . . aC1,On

...
...

. . .
...

. . .
...

. . .
...

Ci aCi,O1
. . . aCi,Ok

. . . aCi,Ol
. . . aCi,On

...
...

. . .
...

. . .
...

. . .
...

Cj aCj ,O1
. . . aCj,Ok

. . . aCj,Ol
. . . aCj,On

...
...

. . .
...

. . .
...

. . .
...

Cm aCm,O1
. . . aCm,Ok

. . . aCm,Ol
. . . aCm,On

, (8)

Case study 1, IM A1(xovr):

A1(xovr) =

GAxovr
1,1 GAxovr

1,2 GAxovr
1,3 GAxovr

1,4

J 0.0222 0.0222 0.0222 0.0221
T 69.140600 70.212400 69.475000 71.359200

xovr 0.65 0.75 0.85 0.95
µ2S 0.962120 0.949840 0.974790 0.923920
µ2E 0.103840 0.107940 0.115320 0.129580
kS 0.124640 0.119580 0.128700 0.119780
kE 0.799020 0.798700 0.798860 0.798960

YS/X 0.417885 0.413705 0.413850 0.409500

(11)

Case study 1, IM A1(mutr):

A1(mutr) =

GAmutr
1,1 GAmutr

1,2 GAmutr
1,3 GAmutr

1,4 GAmutr
1,5

J 0.022200 0.022167 0.022133 0.022300 0.022100
T 71.677000 76.104333 90.479000 101.400667 98.161667

mutr 0.02 0.04 0.06 0.08 0.1
µ2S 0.963433 0.987333 0.943333 0.960033 0.914933
µ2E 0.113100 0.111900 0.129733 0.094967 0.146100
kS 0.124000 0.123333 0.128167 0.117033 0.121300
kE 0.799867 0.799500 0.799600 0.792433 0.797833

YS/X 0.410841 0.411348 0.407914 0.421965 0.398290

(12)

Case study 2, IM A2(xovr):

A2(xovr) =

GAxovr
2,1 GAxovr

2,2 GAxovr
2,3 GAxovr

2,4 GAxovr
2,5 GAxovr

2,6

J 0.010700 0.000310 0.000320 0.000170 0.000450 0.000310
T 143.156 77.782 218.234 104.719 158.078 86.953

xovr 0.5 0.6 0.7 0.8 0.9 1
µmax 0.553000 0.549000 0.550000 0.551000 0.549000 0.548000
kS 0.011700 0.009800 0.010100 0.010000 0.009800 0.009900

YS/X 0.500275 0.499975 0.499950 0.500000 0.500250 0.500500

(13)

YS/X ↔ kS and YS/X ↔ kE . Considering GA parameter

mutr, the strongest correlations are between kS ↔ kE and

µ2S ↔ YS/X . Comparing to Case study 2 and taking into

account the simpler specific growth rate model structure, the

similar result for the pair µmax ↔ kS is observed. The highest

correlation is observed for both GA parameters xovr and

mutr. These strong parameter dependencies are again caused

by the physical meaning of FP models parameters. For the

rest correlations between model parameters themselves, the

µ-values are low – there are no significant dependencies.

It is also interesting to be noted that during the investigation

of xovr influence, there are some pairs of considered criteria

with reported degree of uncertainty π. For the Case study 1,

all observed appearances of degrees of uncertainty are in pairs

with optimization criterion value, while in Case study 2 – in

pairs of optimization criterion value or specific growth rate. All
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Case study 2, IM A2(mutr):

A2(mutr) =

GAmutr
2,1 GAmutr

2,2 GAmutr
2,3 GAmutr

2,4 GAmutr
2,5

J 0.019000 0.000360 0.007300 4.130700 25.622800
T 53.250000 116.594000 193.641000 70.937000 39.234000

mutr 0.001 0.01 0.1 0.5 1
µmax 0.546000 0.550000 0.554000 0.599000 0.432000
kS 0.007800 0.010200 0.011000 0.044400 0.002300

YS/X 0.499500 0.500250 0.500501 0.500325 0.518403

(14)

these facts have an obvious explanation – as it can be seen

from IM A1(xovr) for Case study 1, there are equal values

for optimization criterion value. In analogy, as seen from IM

A2(xovr), there are equal evaluations of optimization criterion

value and specific growth rate in Case study 2. Observed equal

values logically cause an uncertainty and makes difficult the

process of decision making.

As a summary of ICA implementation, the following main

results might be outlined:

• Considered GA parameters xovr and mutr show a high

correlation with T in both Case studies. In Case study

2, parameter mutr is in a high correlation with J and

model parameter YS/X . The values of xovr and mutr
reflect on T because of the more complex model used in

Case study 1 [1], [12], [15]. In opposite, the more simple

model structure in Case study 2 allows the relations

between mutr and J and one of the most sensitive model

parameter YS/X [17] to be outlined.

• When looking at T and J relations, strong connections

are observed for J ↔ YS/X , especially in Case study

1; between specific growth rates (respectively µ2E and

µmax) and T in both Case studies, as well as for kS ↔ T
in Case study 2. The stochastic nature of GA is a

preposition of a relatively small number of observed

strong relations [10], [12], [15].

• In the last group of examined correlations between model

parameters themselves, higher dependencies are obtained

between specific growth rates µ2S and µmax and model

parameter kS in both Case studies, especially in Case

study 2 at GA parameter mutr. Considering Case study

1, strong correlations are observed for kS ↔ kE and for

YS/X ↔ µ2S . The ascertained results are caused by the

physical meaning of FP models parameters, as well as by

the strong non-linearity of FP model structures [9], [11],

[14], [16].

V. CONCLUSION

In this paper the recently proposed InterCriteria Analysis

is applied to establish the relations and dependencies between

two GAs parameters – crossover and mutation rates, on one

hand, and convergence time, model accuracy and FP model

parameters, on the other hand. Simple GA with different

values of crossover and mutation rates is used for parameter

identification of two FP models – of yeast S. cerevisiae and

bacteria E. coli.

The obtained results from ICA show some existing relations

and dependencies that result from the physical meaning of the

model parameters, on one hand, and from stochastic nature of

the considered meta-heuristic, on the other hand. Moreover,

derived additional knowledge for ascertained correlations will

be useful in further identification procedures of FP models

and, in general, for more accurate SGA application.
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TABLE I
RESULTS FROM THE ICA OF S. serevisiae AND E. coli FED-BATCH FERMENTATION PROCESSES

Correlation

S. serevisiae fed-batch E. coli fed-batch

fermentation process fermentation process

xovr mutr xovr mutr

〈µ, ν〉 π 〈µ, ν〉 π 〈µ, ν〉 π 〈µ, ν〉 π
T ↔ xovr/mutr 0.8, 0.2 0 0.9, 0.1 0 0.5, 0.5 0 0.4, 0.6 0

J ↔ xovr/mutr 0, 0.5 0.5 0.3, 0.7 0 0.3, 0.6 0.1 0.8, 0.2 0

µ2S ↔ xovr/mutr 0.3, 0.7 0 0.2, 0.8 0

µ2E ↔ xovr/mutr 1, 0 0 0.6, 0,4 0

µmax ↔ xovr/mutr 0.2, 0.7 0.1 0.6, 0.4 0

YS/X ↔ xovr/mutr 0.2, 0.8 0 0.4, 0.6 0 0.7, 0.3 0 0.9, 0.1 0

kS ↔ xovr/mutr 0.5, 0.5 0 0.3, 0.7 0 0.3, 0.7 0 0.6, 0.4 0

kE ↔ xovr/mutr 0.5, 0.5 0 0.2, 0.8 0

T ↔ J 0, 0.5 0.5 0.4, 0.6 0 0.6, 0.3 0.1 0.2, 0.8 0

µ2S ↔ J 0.5, 0 0.5 0.7, 0.3 0

µ2E ↔ J 0, 0.5 0.5 0.1, 0.9 0

µmax ↔ J 0.5, 0.3 0.2 0.4, 0.6 0

YS/X ↔ J 0.5, 0 0 0.9, 0.1 0 0.5, 0.4 0.1 0.7, 0.3 0

kS ↔ J 0.3, 0.2 0.5 0.4, 0.6 0 0.5, 0.3 0.2 0.4, 0.6 0

kE ↔ J 0.2, 0.3 0.5 0.5, 0.5 0

µ2S ↔ T 0.2, 0.8 0 0.3, 0.7 0

µ2E ↔ T 0.8, 0.2 0 0.5, 0.5 0

µmax ↔ T 0.6, 0.3 0.1 0.8, 0.2 0

YS/X ↔ T 0, 1 0 0.5, 0.5 0 0.4, 0.6 0 0.5, 0.5 0

kS ↔ T 0.3, 0.7 0 0.2, 0.8 0 0.7, 0.3 0 0.8, 0.2 0

kS ↔ T 0.3, 0.7 0 0.1, 0.9 0

µ2S ↔ µ2E 0.3, 0.7 0 0.2, 0.8 0

µ2S ↔ kS 0.8, 0.2 0 0.5, 0.5 0

µ2E ↔ kS 0.5, 0.5 0 0.7, 0.3 0

µmax ↔ kS 0.8, 0.2 0 1, 0 0

µ2S ↔ kE 0.5, 0.5 0 0.6, 0.4 0

µ2E ↔ kE 0.5, 0.5 0 0.6, 0.4 0

kS ↔ kE 0.7, 0.3 0 0.9, 0.1 0

YS/X ↔ µ2S 0.8, 0.2 0 0.8, 0.2 0

YS/X ↔ µ2E 0.2, 0.8 0 0, 1 0

YS/X ↔ µmax 0.4, 0.5 0.1 0.5, 0.5 0

YS/X ↔ kS 0.7, 0.3 0 0.3, 0.7 0 0.5, 0.5 0 0.5, 0.5 0

YS/X ↔ kE 0.7, 0.3 0 0.4, 0.6 0
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