
Unified Compile-Time and Runtime Java
Annotation Processing

Peter Pigula and Milan Nosál’
Technical University of Košice

Letná 9, 042 00 Košice, Slovakia
Email: peter.pigula@student.tuke.sk, milan.nosal@gmail.com

Abstract—Java provides two different options for processing
source code annotations. One of them is the annotation processing
API used in compile time, and the other is the Reflection API
used in runtime. Both options provide different API for accessing
program metamodel. In this paper, we examine the differences
between those representations and we discuss options on how
to unify these models along with advantages and disadvantages
of this approach. Based on this proposal, we design a unified
Java language model and present a prototype tool which can
populate a unified model during both compilation and runtime.
The paper includes the designed API of this unified language
model. To verify our approach, we have performed experiments
to show the usability of the unified metamodel.

I. INTRODUCTION

S
INCE the year 2004, when annotations were first intro-
duced to Java, this programming technique is on the rise.

More and more programs use annotations during compile time
for code generation [1], [2], and in runtime for configuration
and reflection [3]. In spite of the fact that usage of annotations
in both instances is often very similar, means to access anno-
tations and program model, as well as their representations,
are different. If a developer needs to complete the same task
in both compile time and runtime, she has to be familiar with
both of them, and would have to create two different versions
of the source codes. That is because code using annotation
processing API cannot be used during runtime, and vice versa.

We came across this problem during our previous work.
We designed a tool (Bridge to Equalia [4]) that provided an
abstraction layer to two most common configuration formats
in Java – XML and source code annotations. Bridge to Equalia

(abbreviated: BTE) uses XML to annotations mapping patterns
[5] to shorten the configuration interface code in cases when
both annotations and XML should be accepted interchange-
ably. To query the annotations, BTE uses Java Reflection API
in combination with the Scannotation [6] library. Therefore,
it works only in runtime (Reflection API requires compiled
classes). As we wanted to use BTE also in projects that work
during compile time, we faced the problem of working with
different APIs for annotation processing during in runtime and
in compile time.

This work was supported by VEGA Grant No. 1/0341/13 "Principles and
Methods of Automated Abstraction of Computer Languages and Software
Development Based on the Semantic Enrichment Caused by Communication".

Algorithm 1 Checking whether a field is public during runtime

boolean isFieldPublic (Field field) {

if (Modifier.isPublic(field.getModifiers())) {

return true;

}

return false;

}

Algorithm 2 Checking whether a field is public during
compile time

boolean isFieldPublic (Element field) {

for (Modifier modifier : field.getModifiers()) {

if (modifier == Modifier.PUBLIC) {

return true;

}

}

return false;

}

BTE is a medium size project with a complex implementa-
tion, therefore we will not use its source code as a case study
for the illustration of the problem. Just as an example of the
APIs’ diversity we can take a look at the representation of
the accessibility modifiers of Java program elements. During
runtime, modifiers are encoded to a single integer value. Every
bit of this integer represents one modifier. On the other hand,
during compile time modifiers are represented as a set of
enumeration types Set<Modifier>. Each element of this
set represents one modifier. This means that for example a
method, which checks whether a field is public or not, would
be different in both runtime and compile time. Implemen-
tation of such a method during runtime is presented in the
algorithm 1. Implementation of the same method in compile
time is presented in the algorithm 2. We have to note that
although both listings use the Modifier type, they are both
different and belong to different packages. Of course, the BTE

implementation works not just with modifiers, but many other
types of metadata (program elements’ names, annotations,
annotations’ parameters, code tree structures, etc.).

In this work we want to share our experience with designing

and implementing a tool that provides a unified API to Java

source code model during runtime and compile time. We
will discuss challenges in the design that we faced, and we

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 965–975

DOI: 10.15439/2015F179
ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 965

will present the designed API (that was also implemented
and can be found at https://github.com/mallynth/UModel). We
conclude with a simple experiment that evaluates the tool’s
performance against standard APIs.

Since there is currently no unified representation in Java,
developers who come across this problem are left with only
a single option, which is to create two versions of the source
code dealing with the same problem in different representa-
tions. In small tasks, this option is not that time consuming.
But with increasing complexity of the processed annotations it
may lead to code difficult to manage, maintain and evolve. In
cases like this, unified representation could reduce the needed
work by half, and apply the Single point of responsibility
principle.

Having two versions of the code accessing annotations goes
against Single point of responsibility principle. This leads to
potential problems during evolution and maintenance (as we
faced with the BTE tool). Suppose we have two programs
that are used for the same purpose, but one of them is used
during compile time, and the other during runtime. Degree of
difference between these programs would not be very high,
because they were developed using the same algorithm, and
they just use different APIs. Now let us suppose that we need
to implement a change of the base algorithm. That means
we need to change both versions of the code separately from
one another in order to implement the desired change. This
increases the risk of a bug, e.g., when a developer forgets
to make a change in one of the versions, or she misses an
important difference in APIs. This leads to overhead in testing,
because again, both versions need to be tested separately.

Cepa [7], [8] deals with similar problem about the represen-
tation of metamodel in programming languages. He recognizes
the need for a generalized representation of the program
by using a graph of metadata nodes that could be used in
compile time, loading time and runtime. He then proposes
a Generalized and Attributed Abstract Syntax Tree (GAAST),
which is a syntax tree of the language enriched by annotations.
The recognition for the need of GAAST support stemmed
from his work on his framework MobCon [9], which is a
framework used to generate mobile applications in Java. His
work in combination with our previous work with BTE was
the main inspiration for this work.

Contributions of this paper are following:

• we analyse options by which unification of both program
model representations in Java can be achieved,

• we discuss and explain the pitfalls that need to be
considered during the design and implementation of the
unified model, and

• we present the designed API for projecting standard
source code models into a unified Java program model
during both compile time and runtime.

II. EXISTING PROGRAM MODELS

Annotations in Java are used as a source code decoration
mechanism. It means that they do not directly influence the
control or data flow of the program that is annotated. A study

Algorithm 3 Declaration of annotation with source code
retention

@Retention(RetentionPolicy.SOURCE)

public @interface SourceAnnotation {}

Algorithm 4 Declaration of annotation with runtime retention

@Retention(RetentionPolicy.RUNTIME)

public @interface RuntimeAnnotation {}

[10] performed on the curated collection of programs Qualitas
Corpus [11] showed that more than 60% of analyzed programs
are using annotations. That includes systems developed before
annotations were introduced to Java. This study provides
evidence that annotations are an important part of Java.

Annotations can be used to express metadata of a program.
They can be accessed by the developer in two different ways:

• during compile time using annotation processing API,
and

• during runtime using Reflection API.

Both of these ways offer metadata to the developer
in a different representation. Both representations are ba-
sically program models that include all metadata avail-
able at the given time. Program model available dur-
ing compile time is represented by classes in a package
javax.lang.model.element [12] and the model avail-
able during runtime is represented by classes in a package
java.lang.reflect [13]. These models are accessed and
queried using different APIs. When their difference is not
important for the sake of discussion, we will refer to them
simply as basic models.

Probably, the main reason of their difference is that they are
used in a different phase of a program life cycle and different
metadata are available during those phases. However, they are
still similar since they represent the same program structure.

To illustrate the difference, we can mention annotations
marked by the @Retention metaannotation. In the code
fragment 5, the SomeClass class is annotated with two anno-
tations SourceAnnotation and RuntimeAnnotation

which are declared in code fragments 3, and 4 respec-
tively. In this example, if we would access the metamodel
during compilation, we would get both annotations. How-
ever, if we would access the metamodel during runtime,
we would find out that the SomeClass class is annotated
only with the RuntimeAnnotation annotation. That is be-
cause SourceAnnotation is marked with meta-annotation
@Retention(RetentionPolicy.SOURCE) to indicate
that it should be discarded after annotation processor finishes,
and therefore it will not be available during runtime.

Another difference is the option for running methods of the
code. In reflection, the developer can invoke methods unknown
during compile time using reflection API. However, in compile
time the API does not support invoking of processed code,
since in that time the classes have not yet been compiled.

966 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Algorithm 5 Usage of annotations

@SourceAnnotation

@RuntimeAnnotation

public class SomeClass {

...

}

The differences do not end with different models. It is very
common that the developer only needs some metadata that are
present in both models, e.g., names of classes that are marked
with a specific annotation. The problem is that the API for
acquiring those metadata are different in both models, in spite
of the fact that they are the same metadata. In some cases, in
addition to the method of acquiring metadata being different,
the representation of the metadata is also different (as in case
of modifiers discussed in the introduction).

Examples of similar elements in both models can include
names of classes, their methods or hierarchy of classes.

A. Annotation Processing Program Model

Annotation processor is executed before compilation of
the program and the execution itself is divided into separate
rounds. Annotation processor can acquire metadata that are
present in source code as well as metadata that were created
in previous rounds of this processor execution.

Main class, that is used to represent entities in the program
model for this API is the Element class. Instances of this
class can represent multiple different entities, such as classes,
interfaces, methods or fields.

1) Accessing Metadata in Annotation Processor: The main
method that every annotation processor must have is the
process method. As its name suggests, this method is
doing the annotation processing. One of the parameters of
this method is an environment of current round represented
by the RoundEnvironment class. From this environment,
the developer can acquire metadata that she needs.

One of the methods for acquiring metadata from round
environment is by using the method getRootElements.
This method returns list of all root elements of the program
that are represented by Element class. The Element class
has a field kind which defines what this element represents
(class, interface, method etc.). By querying these elements, it
is possible to find metadata that are needed.

Different way would be to use the
getElementsAnnotatedWith method which returns a
list of elements that are marked with a specific annotation.
When using this method, there is a useful annotation
@SupportedAnnotationTypes, which can be used to
mark the annotation processor class. It specifies annotation
types which annotations are supposed to be retrieved from
the source codes during annotation processing.

B. Reflection Program Model

Reflection can be used during runtime and it provides a way
for accessing the metadata of the running program.

Fig. 1. Concept of the unified API idea

1) Accessing Metadata in Reflection: To gain access to
metadata provided by reflection in a specific class, one can
use ClassName.class parameter of every class which
returns a Class class that represents a class with the name
”ClassName”. This class can be then used to retrieve metadata
about the class and elements defined inside the class, such
as methods, constructors, fields or annotations, or even inner
classes. It is possible to retrieve lists of those elements or
search for specific ones. For example retrieving the list of
annotations by which the class is marked can be done by
calling a method getDeclaredAnnotations.

By calling methods provided by classes of the reflection
model, developer can acquire any metadata existing during
runtime. One of the big differences in usability of the two
basic models is that in reflection, methods can be executed,
which is impossible in annotation processing.

III. PROGRAM MODEL UNIFICATION

Due to the similarities in these models, we expected that
it should be possible to design a tool that would be able to
provide a unified API to data from both basic models. Simple
overview of the idea is illustrated in Fig. 1. It is enough to
note that input data used in the tool will always come from
only one of the input models at the time. Which model it is
depends on the time when the tool is used.

A. Unified Model Projection Types

In order to create a unified model, first we need to determine
how the unification tool will project basic models into the
unified API.

We will illustrate the problem of unified model types on
program trees. A node in the tree represents a program element
(class, method, etc.) and annotations. The structure models the

PETER PIGULA, MILAN NOSÁL’: UNIFIED COMPILE-TIME AND RUNTIME JAVA ANNOTATION PROCESSING 967

Fig. 2. Model comparison illustration

encapsulation relationships of program elements. The tree’s
root represents Java project (library, application), its children
are Java packages, the packages contain classes, or might
be annotated by annotations, the nodes representing classes
have children nodes representing variables and methods, and
again annotations that belong to the classes, and so on. E.g.,
we might have a root node ’sampleApp’ with a single child
node ’kpi.tuke’ representing package. The ’kpi.tuke’ node
could have a child node representing the ’Main’ class, and
this ’Main’ node could have two child nodes: a node for
the ’InnerClass’ class, and a node for the ’@SourceAnn’
annotation, etc. Program elements and annotations are source
code entities that the unified API should expose.

An illustration of both basic models for the discussed
example is presented in Fig. 2. Nodes that are equal in both
models are represented by ellipses with white color and solid
border. Equal in this context means that both basic models
expose the same metadata about the element in both models.

Node ’@SourceAnn’, which is represented by an ellipsis
with yellow color and dotted border in a model during runtime
shows a situation when element does not exist in runtime
model, but exists in the compile time model. This is a result of
using the @Retention(RetentionPolicy.SOURCE)

meta-annotation that marks the @SourceAnn annotation to
be discarded by the compiler during the compilation.

Projection to the unified model can be designed in different
ways depending on which metadata would be included in it.
There are three main approaches to design of a unified API:

1) equality-based projection,
2) combined model projection, and
3) problem-specific model projection.

First, the equality-based projection for the discussed exam-
ple is shown in Fig. 3. In this type, the unified model includes
only those elements and metadata, that are available in both
basic models. That means node ’@SourceAnn’, which does
not exist in runtime model, will not be projected to the unified
model either (regardless whether created during runtime or
compile time).

Fig. 3. Equality-based projection

Fig. 4. Combined model projection

Second, the combined model projection is shown in Fig. 4.
In this type the unified model exposes all the elements and
their metadata that were included in the basic model. For
example, if the unified model was created during compile
time then the unified model would expose all the metadata
that are available during compile time, including those that
are not available during runtime. This projection type deals
only with different APIs, and does not regard the differences
of information exposed by basic models (the equality-based
projection hides the differences in exposed information about
the source code).

Third, the problem-specific projection covers cases when
the projection is optimized for a given problem (something
like a DSL [14] in languages). Basically it represents ad-hoc
solutions for a family of problems. E.g., it might be a case
of a simplified model, restricted in the tree depth to classes
(therefore the only child nodes of the class nodes would be
nodes for their annotations). We will not discuss this type
of projections further, since its applicability is limited to a
restricted set of problems.

968 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

B. Conclusion

Both equality-based and combined model projection types
can be used in our solution. Both of these types have their
specific uses, but we decided to go with a model that is based
on a combined model projection type. There is also an option
of implementing both types and letting the user decide which
model he needs at the time, but in current implementation
we support only combined model. The reasoning behind the
decision to use combined model over equality-based model is
that it gives the user more information when using our tool,
since the equality-based model hides metadata that are not
available in both basic models.

IV. DESIGNING UNIFIED REPRESENTATION

When designing a unified representation, we faced several
challenges. In this section we discuss some of the most
important of those questions and problems.

A. Ways to Access Metadata

One of the most important questions is how to access
metadata in basic models in order to use them in a unified
model. There are two possibilities how to achieve this:

1) Direct access to metadata with the use of an API that
will unify the access methods in both basic models, and

2) Model creation and accessing metadata from the created
unified model.

In the following sections, both of these ways are described
in detail.

1) Direct Access: The most important thing when using
direct access approach of accessing metadata is the interface
that will be able to unify access to both basic models. In object
oriented programming, this interface can be implemented
using a adapter design pattern [15] [16].

In terms of accessing metadata, this design pattern can
be expressed in such a way that class that needs metadata
can access them by requesting them from the adapter, which
handles acquiring metadata from basic model and transforms
them into the unified model. Simplified example of this can
be seen in Fig. 5, where the class Client calls a method
getMetadata on a class Adapter. This method collects
the requested metadata from one of the basic models which is
available at the time, transforms them into the unified model
that is expected and returns them to Client. The Model in
this figure can represent either annotation processing model
or reflection model. Which of these is currently represented
depends on what part of the program life cycle it is currently
in. Adapter therefore must be able to tell whether it is called
during compile time or during runtime and will then choose
how to retrieve metadata accordingly.

Using this method means that the basic model is accessed

during every single call from the client, because it has to
retrieve the required metadata.

Fig. 5. Adapter Pattern

Fig. 6. Model Factory

2) Model Creation: The most important step when using
model creation approach is the creation of the unified model
itself. Unified model can be provided by a method similar to
a factory method pattern [15].

In terms of model creation, this method will not be exactly
the same as the factory method, because we know which
type of class this method will return, but we do not know
(and do not care) which basic model was used to create the
class. Simplified example can be seen in Fig. 6, where once
again the Client class needs access to metadata. Unlike
the adapter patter, where the Client called a method which
provided metadata, it now calls a method createModel on
the Factory class. This method creates the unified model
from one of the basic models and returns it to the Client.
Same as with direct access, model that is currently represented
by the Model class depends on what part of the program
life cycle it is currently in. Therefore, just as Adapter had to
be able to tell whether it was called during compile time or
runtime, the Factory has to also be able to tell too. This
method can also be compared to reverse engineering [17].

Unlike the direct access method, it is not needed to access

basic model during every single call from the client. Basic
model needs to be only accessed once, when creating the
unified model. Accessing metadata after the creation of unified
model is handled by the unified model itself.

B. Additional Costs of Accessing Metadata

In basic models, which are already part of Java, costs to
access specific metadata can be easily analysed. During each
request to access metadata it is required to search the basic
model and find the metadata that were requested. After they
are found, they simply are returned in the same format as the
basic model defines. If we disregard implementation details of
basic models, this process is the same for reflection model as
well as annotation processing model.

PETER PIGULA, MILAN NOSÁL’: UNIFIED COMPILE-TIME AND RUNTIME JAVA ANNOTATION PROCESSING 969

1) Direct Access: Additional costs when using direct access
method is created mainly because during every request to
access metadata from basic model, it is needed to search
this model, find metadata that are needed and then transform
them into the specified unified metadata representation that
is expected as an output of the request. In comparison to
acquiring metadata from basic model, it has one additional
step, which is transforming metadata to the unified model.
However, this one additional step is executed during every
request, and it increases the time needed to retrieve metadata.

2) Model Creation: Additional cost when using model
creation method is the creation of the unified model itself,
but this process is only executed once. After the unified
model is created, all requests are handled through the unified
model itself and results do not have to be transformed into
the representation that is expected as an output, because they
already are in form of the unified model representation.

Comparison of retrieving metadata from unified model and
from basic models depends on the exact implementation of the
unified model. In ideal circumstances, the access to metadata
through unified model can be faster than accessing them
through basic models (in case the unified model is better suited
for specific requests). It is more likely, however, that accessing
metadata through unified model will be slower than through
basic models.

C. Minimizing Additional Costs

In spite of the fact that reducing additional time costs to
access metadata when using unified model is nearly impossible
and it is not the purpose of this paper, we still have the
possibility to employ some methods in order to minimize the
performance impact of using unified model.

To help minimize additional costs we can use caching of
results in both direct access and model creation methods.

Main idea of this in direct access method is that the results
will be stored for use in another request during every request
to access metadata. In every request after that, those metadata
will already be at hand and it will not be needed to search
the basic model for them again. Building on that method, we
can make it so that it is very close to model creation method.
That can be achieved by storing the cached data in such a way,
that they would resemble the unified model created by model
creation method. Downside of this is that we introduce a new
step into the process of retrieving metadata: a step to check
whether the requested metadata are already stored or not.

In model creation method, data would not be stored during
requests, because even before the first request, the unified
model was already built and put into memory. In this case,
data would be prepared for most common requests during the
model creation itself.

Because of the additional steps, caching of results runs into
problems with small amount of requests and is getting better
and better with more requests.

Different approach to minimizing additional costs is selec-

tive model creation. This method is based on the idea that
user knows which metadata he or she will use and he or she

can specify which parts of the model are required. User would
be able to define which parts of the model will be created and
which parts will be ignored. The disadvantage is that the user
has to learn how to configure the tool in such a way, that it will
provide desired results. If the configuration is too complicated
then this disadvantage can be big enough to overshadow the
biggest advantage of using a unified model, which is to make
it easier for the user to gain access to metadata.

D. Query Methods

As it was mentioned before, both of the basic models
have different way of accessing the same metadata. The
metadata can be queried via methods that help the user
easily navigate through the model. Both basic models and
their APIs provide query methods. They are primarily used
to conveniently query metadata. Both API query methods
and model accessor methods (getters and setter) differ in
Reflection API and Annotation Processor API. Example of
this difference can be the way how to retrieve list of an-
notations that class A is marked with. To retrieve metadata
about these annotations in annotation processing model, de-
veloper has to call a method getAnnotationMirrors

on the instance of the class Elements that represents
class A. On the other hand, in reflection model, devel-
oper has to call a method getDeclaredAnnotations

on the instance of the class Class that also represents
class A. If both of these methods were called in the
same program on the same class, their results can be dif-
ferent (disregarding the fact that they are represented in
a different way), because some of them can be marked
with meta-annotation @RetentionPolicy.SOURCE or
@RetentionPolicy.CLASS, but they represent the

same metadata, which are annotations of class A.
The simplest way how to design query methods is to support

both names of the same methods from basic models. For the
aforementioned example it would mean that there would be
two query methods, one called getAnnotationMirrors

and second one called getDeclaredAnnotations. These
methods would always return the same results.

Better way, which is in the spirit of unification, would be to
use only one method that would not have to be named exactly
the same as the ones in the basic models, but it would be
named name clearly enough that there would be no confusion
what the purpose of that method is.

There is also a way which mimics the principles of XPath
[18] for XML files. It is based on the fact that the unified
model is represented in a tree-like structure that can be
traversed much like XML1. This way is best used as an
addition to the method of using one unified method, because
it would provide the developer with better control over the
search queries.

E. Conclusion

For accessing metadata from basic models we decided to
use the model creation approach. Main reason for this is that

1XML grammar [19] is commonly defined using XML schema [20].

970 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

in the direct access approach, searching through basic model
during every request could be slow. Using the model creation
approach pushes the additional time costs of using the unified
API to a single point of the tool initialization.

On the other hand, the method of model creation can be
designed in such a way, that when it comes to retrieving
metadata from unified model, most common requests could
be optimized so that they will be as fast as possible.

V. PROTOTYPE IMPLEMENTATION

Based on previous analysis, in this section we present a
prototype tool UModel2 that can be used to create a unified
model. The name UModel comes from the term Unified
Model. Because this tool has to be able to create unified
model from both basic models, it has to be able to recognize
which of the models is available during that time. This is
easily done, because both of the basic models have different
context in which they are created and these context can be
easily recognized from one another.

A. Unified Model Creation

The abstract concept of unifying tool was illustrated in
Fig. 1. In that figure, the process of creating unified model
was not specified. Fig. 7 illustrates phases that are needed to
create a unified model.

Model creation during runtime as well as compile time is
divided into four main phases:

1) Initialization phase,
2) Model creation phase,
3) Reference resolving phase, and
4) Finalisation phase.

Initialization phase represents the phase in which the tool
itself is initialized. That includes the initialization of structures
that will be used during model creation as well as initialization
of structures needed for result caching. Besides initialization
of these structures, this phase also creates the basic structure
of the model itself, which will be filled in during the next
phase.

In the model creation phase, the unified model itself is
created. Both runtime and compile time models are created
by advancing through the provided basic model from top
to bottom. Since metamodel can be represented as a tree
structure, the tool starts with the root (topmost) element
and gradually advances through its descendants to the leaves
(bottommost elements). For every node in the basic model that
the algorithm passes through, one node is created in the unified
model. If the algorithm finds a reference to another element
(e.g., method return type is a class included in the model), then
this reference is only saved as a plain text. These references
are resolved after the second phase finishes creating the whole
model.

The model creation phase also saves the results for the
queries encapsulated by the query methods presented in sec-
tion V-D. These common queries, such as finding all the

2https://github.com/mallynth/UModel

Fig. 7. Tool structure

program elements annotated with a given annotation type, are
this way cached and therefore should result in better time
efficiency.

After the second phase finishes, the reference resolving

phase begins. During this phase, the tool resolves all of the
references between the types that can be resolved (e.g., one
class having a field of the type defined by another class).
Reference that can be resolved is a reference to an element that
is a part of the unified model. This kind of references can be
used to easily traverse through the unified model. References
that refer an element that is not a part of the unified model
are not resolved and are left as a plain text. During this phase,
the tool does not use the basic model, it works on the unified
model created by phase two.

During the finalisation phase, the cache and the unified
model (with resolved references from phase three) are joined
together. After they are joined, the unified model is complete
and can be passed to the tool’s client.

B. Unified Model API

This section contains description of the set of most funda-
mental classes representing the unified model API. All classes
start with the letter U which represents their unification from
both models.

The UModelFactory class is a factory class in a singleton
design pattern which is used to instantiate unified model. It
only has one factory method, the createModel method that
returns an object of the UModel class.

PETER PIGULA, MILAN NOSÁL’: UNIFIED COMPILE-TIME AND RUNTIME JAVA ANNOTATION PROCESSING 971

1) UModel: This class represents the unified model that
contains specific packages and classes for a given project (the
’sampleApp’ node from Fig. 2). Main purpose of this class is
to wrap the components of the unified model into a single root
node object and to provide query methods that provide API
with common queries. These query methods will be described
in section V-D.

2) UPackage: The UPackage class represents a package
in the source code.

Selected fields:

• name - full name of the package.
• containingClasses - set of classes implemented in

this package.
• containingEnums - set of enumeration types imple-

mented in this package.

Packages in the unified model are not represented with a

tree structure. Instead of using tree structure that organizes
packages into a tree with one root (as the file system does),
we use a simple structure where every package is represented
on its own (the standard Java model).

3) UClass: The UClass class represents a class, interface
or declaration of new annotation type.

Selected fields:

• classType - enumeration type that defines which lan-
guage element is represented by this class. Possible values
are CLASS for classes, INTERFACE for interfaces and
ANNOTATION_TYPE for declaration of new annotation
type.

• name - name of the element.
• enclosingPackage - reference to an enclosing pack-

age.
• modifiers - modifiers represented by Integer.
• parent - reference to a parent element.
• interfaces - set of interfaces that are implemented by

this class. If the UClass object represents an interface,
then it represents which interfaces are extended and if the
UClass represents declaration of new annotation type
then this set will be empty.

• annotations - set of annotations represented by the
UClassAnnotation class.

• enums - set of declared enumeration types.
• constructors - set of constructors represented by the
UConstructor class.

• fields - set of fields represented by the UField class.
• methods - set of methods represented by the UMethod

class. If UClass represents a declaration of new anno-
tation type then this set contains parameters of declared
annotation.

4) UField: The UField class represents a field (variable,
attribute) of the class.

Selected fields:

• name - field name.
• enclosingClass - reference to a class where this field

is declared in.
• modifiers - modifiers encoded to Integer.

• annotation - set of declared annotations represented
by the UFieldAnnotation class.

• type - type of the field. It can be represented either by
a string or by a reference.

5) UMethod: The UMethod class represents one method
of a class. If it is included in annotation type declaration then
it represents a parameter of the new annotation.

Fields:

• name - method name.
• enclosingClass - reference to a class where this

method is declared in.
• modifiers - modifiers represented by Integer.
• annotation - set of declared annotations represented

by the UMethodAnnotation class.
• parameterTypes - ordered list of arguments. They

are represented either by a string or a reference.
• returnType - type of the return value. It is represented

either by a string or a reference.

The UConstructor class is very similar to the UMethod
class. The only difference is that it does not include a name.

6) UAnnotation: The UAnnotation class is an abstract
class that represents an annotation of any language element.
Classes that extend the UAnnotation are:

• UClassAnnotation which represents a class annota-
tion,

• UConstructorAnnotation which represents a con-
structor annotation,

• UFieldAnnotation which represents a field annota-
tion,

• UMethodAnnotation which represents a method an-
notation.

Selected fields:

• annotationClass - type of the annotation. It is
represented by a full name of the annotation type. If this
annotation type is represented in the unified model, then
it is also represented by a reference to that annotation
type.

• annotatedElement - represents an element which
is annotated by this annotation. Type of this element
depends on the element that is annotated. For example,
in UClassAnnotation this element has a type of
UClass.

• parameters - set of parameters of this
annotation. Each parameter is represented by the
AnnotationParameter class which includes three
String fields: its name, type and value.

C. Representation of specific elements

The fact that unified model is created from two exist-
ing model means that the representation of some language
elements can be problematic, especially when it comes to
elements that are represented differently in both basic models.
One of them is the problem of representing modifiers, which
were explained in the introduction of this paper. Other problem
we had to face was how to represent references.

972 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

1) Representation of References: References, that are cre-
ated during the second phase of unified model creation, are
represented by the AbstractMap.SimpleEntry class.
This class represents a key-value pair, which can for example
be used in hash tables such as HashMap.

Key of this key-value pair is a full name of the element
that is referenced. Key of every reference is filled in during
the model creation phase. If possible, the value of this key-
value pair is filled in during the reference resolving phase. The
value is filled in only when the reference references an element
included in the unified model. If that is the case, then the value
of the key-value pair will be a reference to the element itself.
If the reference references element that is not included in the
unified model, then the value will be left as null. That means
that every reference has a key, which represents the full name
of the referenced class, but not every reference has a valid
value.

2) Representation of Modifiers: As we mentioned before,
one of the differences between annotation processing model
and reflection model is the representation of modifiers. The
difference is that modifiers in annotation processing are repre-
sented as a set of enumeration types Set<Modifier> and
in reflection, they are represented as one integer.

In the unified model, we decided to use the representation
identical to the one in reflection, which means all modifiers
in unified model are represented by bits of an integer. When
the unified model is created from annotation processing model,
then the set of modifiers is converted into one integer by using
bitwise OR.

D. Query Methods

These methods provide API for convenient metadata
queries. Most of these methods are related to annotations, since
annotations are the main point of this model.

Query methods included in the class UModel:

• getClasses - provides all classes that are included in
the unified model. Returns a set of UClass objects.

• findClassByFullName - provides a class specified
by its name. Return type is a UClass class.

• findClass - provides a class specified by a class
Class. Return type is a UClass class.

• getPackages - provides all packages included in the
unified model. Returns a set of UPackage objects.

• findPackageByName - provides a package specified
by its name. Return type is the UPackage class.

• getEnums - provides all enumeration types that are
declared in the unified model. Return type is a set of
UEnum classes.

• getAnnotatedElements - provides all elements
that are annotated by at least one annotation. Return
type is a set of classes that implement the interface
AnnotableElement. This interface is implemented by
all elements that can be annotated.

• getElementsAnnotatedWith - provides all el-
ements annotated by a specific annotation. Return

type is a set of classes that implement the interface
AnnotableElement.

• getMethodsAnnotatedWith - provides all methods
annotated by a specific annotation. Return type is a set
of UMetod classes.

• getFieldsAnnotatedWith - provides all fields an-
notated by a specific annotation. Return type is a set of
UField classes.

• getConstructorsAnnotatedWith - provides all
constructors annotated by a specific annotation. Return
type is a set of UConstructor classes.

• getClassesAnnotatedWith - provides all classes
annotated by a specific annotation. Return type is a set
of UClass classes.

Last five methods, which provide elements annotated by
a specific annotation, have two alternatives. In one of them,
the annotation is specified by a class that extends the
UAnnotation class. In the other, the annotation is specified
by the Class object representing the given annotation type.
This is a convenience alternative that allows using Class

objects in order to enjoy type checking.
Beside query methods that are included in the UModel

class, there are query methods that check whether an ele-
ment is annotated by an annotation of a specific type. This
annotation can either be specified by a class that extends
the UAnnotation class or by the Class class of that
annotation.

VI. EXPERIMENTAL EVALUATION OF PROTOTYPE

Although this paper does not deal with creating a faster way
to access metadata when compared to basic models, it is still
important that the time needed to access metadata by using
unified model is not too demanding in comparison to basic
models, otherwise the unified model would be unusable.

For the purposes of determining whether the created experi-
mental tool is fast enough, we have conducted two experiments
which are explained in this section.

A. Time Needed for Unified Model Creation

In the first experiment, we tested how much time is needed
to create the unified model when using the created tool. This
metric is very important, since this time can be considered as
additional time when compared to basic approach.

For the purposes of this experiment we chose two programs,
one of them consisted of 122 classes and the other consisted
of 1745 classes. Both of these programs have on average
approximately 100 lines of code per one class.

We only tested how much time it would take to create the
unified model. That means the difference between time of
initialization of the tool and the time that unified model was
returned.

1) Results: Times that are presented in the table I are
average times after 100 runs. It is important to note there were
quite big deviations, especially during the compile time.

From the times presented in the table, we can see that the
time it takes to create unified model from a small program

PETER PIGULA, MILAN NOSÁL’: UNIFIED COMPILE-TIME AND RUNTIME JAVA ANNOTATION PROCESSING 973

TABLE I
TIME NEEDED TO CREATE UNIFIED MODEL

122 classes 1745 classes

Compile time 42 ms 670 ms
Runtime 387 ms 2043 ms

is not that high, especially during compile time. Time needed
to create unified model from a bigger project was naturally
higher, because more metadata needed to be processed.

One important thing to note from this experiment is how
the tool is scaling when it comes to bigger programs. Second
program is approximately 14 times bigger then the first one
which means that if the scaling of the tool was linear, it
would take 14 times more time to create unified model from
bigger program than from smaller program. Creation of unified
model from bigger program in compile time took little over 15
times more time than creation of unified model from smaller
program. Similarly, creation of unified model from bigger
program in runtime took approximately 5 times more time
than creation of unified model of smaller program. From these
data we can see that scaling of the tool during runtime is
much better than scaling during compile time. The fact that
the scaling during compile time is worse than linear suggests
it may be a good idea to try to optimize implemented tool for
the use in compile time.

B. Overall Speed of Prototype

The second experiment was designed to test the speed of the
tool when performing a task. For purposes of this experiment,
we used the same two programs as we used for the first
experiment.

During this experiment we measured four ways in which a
given task could be implemented:

• Annotation processor model - using metamodel avail-
able during compile time.

• Reflection model - using metamodel available during
runtime. Helper libraries Scannotation [6] and Google
Reflection API [21] were used for this measurement.

• Unified model during compile time - using the tool to
create unified model during compile time and using this
unified model to complete the task.

• Unified model during runtime - using the tool to create
unified model during runtime and using this unified model
to complete the task.

The task consisted of two parts (to make the test a little less
trivial):

1) Find the names and types of all elements that are marked
with the test annotation.

2) Retrieve all fields of a class that is specified by its full
name.

For the first part of this experiment a simple test annotation
was created and then added to source codes of the programs.
In the program that consisted of 122 classes, 8 elements
were marked with the test annotation and in the program that

TABLE II
OVERALL SPEED OF TASK COMPLETION

122 classes 1745 classes

Annotation processing model 12 ms 484 ms
Reflection model 1154 ms 2822 ms

Unified model during compile time 47 ms 949 ms
Unified model during runtime 472 ms 2245 ms

consisted of 1745 classes, 137 elements were marked with the
test annotation.

1) Results: Results of the experimented are presented in
table II.

Times that are presented in this table are the average times
after 100 runs. Same as in the first experiment, some of the
times that were measured when using the unified model were
often very different when compared to the average, especially
during the tests with the bigger program. During compile
time, the lowest measured value was 477 ms and the highest
measured value was 1189 ms. During runtime, the lowest
measured value was 1823 ms and the highest measured value
was 2480 ms. These fluctuations could have been caused by
the fact that we used unordered sets in the unified model and
the position of requested metadata is always different.

From the data we can see that the time needed to complete
the task in unified model during compile time was more then
double when compared to the time needed to complete the
same task during compile time without the use of the unified
model. This fact reinforces the idea of trying to optimize
unified model creation during compile time.

We can also see that during runtime, the tool was actually
faster in completing the given task. Main reason for this is that
helper libraries Scannotation and Google Reflection API were
used to make the task significantly easier in reflection model.
These libraries made the task easier at the cost of additional
time during execution, which is also the main reason behind
the unified model.

VII. RELATED WORK

As it was mentioned before, main inspiration of our solution
to the problem we faced with the BTE [4] tool was the
idea of Generalized and Attributed Abstract Syntax Trees
(GAAST) proposed by Cepa [7], [8], [22]. In his work [7] he
states that object oriented languages should support an explicit
representation of the program as a graph of meta-objects that
can be then accessed through a well defined API. He also
shows, that usage of meta-model in a GAAST structure helps
support model-driven development.

Noguera has a similar approach to Cepa in his tool AVal
[23], [24], which is used to validate frameworks that are using
annotations. Purpose of this validation is checking, whether
the framework uses specific annotations in a correct way.
Specification of how annotation is used correctly is designed
through meta-annotations, which define constraints on the
usage of those annotations. He uses two models for this
validation. One of them is annotation model, which is a model

974 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

derived from annotation types and second one is code model.
Code model is very similar to an abstract syntax tree.

We used a similar approach to the unification of two
models which was discussed in this paper in the tool Bridge
To Equalia [4]. This tool is able to create a unified model
of annotation-based and XML-based configurations using by
extensible metamodel.

There are libraries that help querying metadata during
runtime, such as Scannotation [6] and Google Reflections
[21]. These libraries provide convenient APIs for annotations
processing, however, they do not address the problem of
runtime and compile time model unification.

VIII. CONCLUSION

In this paper we explored differences between compile
time and runtime models, explained the problem of their
diversity and analyzed the approaches how to unify these
models by providing their advantages and disadvantages.
The discussion should provide a basis for consideration of
providing a standard unified API for accessing metadata in
programming languages. We presented the API we designed
and implemented in our tool for unified model creation, which
was used to support the analysis. The tool was evaluated by
experiments to verify the usability of the proposed tool. They
and showed that both the creation of unified model and its
querying are reasonably fast. The paper can be considered a
technical report that should be helpful for developers dealing
with the same problem, or developers that are interested in
either of the two existing approaches to annotation processing
(reflection and annotation processing API).

REFERENCES

[1] S. Chodarev, D. Lakatoš, J. Porubän, and J. Kollár, “Abstract
syntax driven approach for language composition,” Central European

Journal of Computer Science, vol. 4, no. 3, pp. 107–117, 2014.
http://dx.doi.org/10.2478/s13537-014-0211-8

[2] D. Lakatoš, J. Porubän, and M. Bačíková, “Declarative specification
of references in DSLs,” in 2013 Federated Conference on Computer

Science and Information Systems, ser. FedCSIS 2013, Sept 2013, pp.
1527–1534.

[3] Z. Havlice, “Auto-Reflexive Software Architecture with Layer of Knowl-
edge Based on UML Models,” International Review on Computers &

Software, vol. 8, no. 8, 2013.
[4] M. Nosál’ and J. Porubän, “Supporting multiple configuration sources

using abstraction,” Central European Journal of Computer Science,
vol. 2, no. 3, pp. 283–299, Oct. 2012. http://dx.doi.org/10.2478/
s13537-012-0015-7

[5] M. Nosál’ and J. Porubän, “XML to Annotations Mapping Definition
with Patterns,” Computer Science and Information Systems, vol. 11,
no. 4, pp. 1455–1477, 2014. http://dx.doi.org/10.2298/CSIS130920049N

[6] Scannotation, “Scannotation project homepage,” 2015. [Online].
Available: http://scannotation.sourceforge.net/

[7] V. Cepa and M. Mezini, “Language support for model-driven software
development,” Science of Computer Programming, vol. 73, no. 1, pp.
13–25, 2008, special Issue on Foundations and Applications of Model
Driven Architecture (MDA). http://dx.doi.org/10.1016/j.scico.2008.05.
003

[8] V. Cepa, Attribute enabled software development: illustrated with mobile
software applications. Saarbrücken, Germany: VDM Verlag, 2007.

[9] V. Cepa and M. Mezini, “Mobcon: A generative middleware framework
for java mobile applications,” in Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, 2005. HICSS ’05., Jan
2005, pp. 283b–283b. http://dx.doi.org/10.1109/HICSS.2005.431

[10] H. Rocha and M. T. Valente, “How Annotations are Used in Java: An
Empirical Study,” in SEKE, 2011, pp. 426–431.

[11] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The Qualitas Corpus: A Curated Collection
of Java Code for Empirical Studies,” in Proceedings of the 2010

Asia Pacific Software Engineering Conference, ser. APSEC ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 336–345.
http://dx.doi.org/10.1109/APSEC.2010.46

[12] Oracle, “javax.lang.model.element documentation,” 2015. [On-
line]. Available: http://docs.oracle.com/javase/7/docs/api/javax/lang/
model/element/package-summary.html

[13] ——, “java.lang.reflect documentation,” 2015. [Online].
Available: http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/
package-summary.html

[14] S. Zawoad, M. Mernik, and R. Hasan, “FAL: A forensics aware language
for secure logging,” in 2013 Federated Conference on Computer Science

and Information Systems, ser. FedCSIS 2013, Sept 2013, pp. 1579–1586.
[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[16] B. Benatallah, M. Dumas, M.-C. Fauvet, F. A. Rabhi, and Q. Z. Sheng,
“Overview of Some Patterns for Architecting and Managing Composite
Web Services,” SIGecom Exch., vol. 3, no. 3, pp. 9–16, Jun. 2002.
http://dx.doi.org/10.1145/844339.844346

[17] E. J. Chikofsky and J. H. Cross II, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, Jan.
1990. http://dx.doi.org/10.1109/52.43044

[18] T. Grigalis and A. Čenys, “Using XPaths of inbound links
to cluster template-generated web pages,” Computer Science and
Information Systems, vol. 11, no. 1, pp. 111–131, 2014. http:
//dx.doi.org/10.2298/CSIS130416020G

[19] J. Kollár, I. Halupka, S. Chodarev, and E. Pietriková, “pLERO: Language
for grammar refactoring patterns,” in 2013 Federated Conference on

Computer Science and Information Systems, ser. FedCSIS 2013, Sept
2013, pp. 1503–1510.

[20] M. Pušnik, M. Heričko, Z. Budimac, and B. Šumak, “XML
Schema metrics for quality evaluation,” Computer Science and

Information Systems, vol. 11, no. 4, pp. 1271–1289, 2014. http:
//dx.doi.org/10.2298/CSIS140815077P

[21] Google, “Google reflection api project homepage,” 2015. [Online].
Available: https://github.com/ronmamo/reflections

[22] V. Cepa and M. Mezini, “Declaring and Enforcing Dependencies
Between .NET Custom Attributes,” in Generative Programming and
Component Engineering, ser. Lecture Notes in Computer Science,
G. Karsai and E. Visser, Eds. Springer Berlin Heidelberg, 2004, vol.
3286, pp. 283–297. http://dx.doi.org/10.1007/978-3-540-30175-2_15

[23] C. Noguera and L. Duchien, “Annotation Framework Validation Using
Domain Models,” in Proceedings of the 4th European Conference

on Model Driven Architecture: Foundations and Applications, ser.
ECMDA-FA ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
48–62. http://dx.doi.org/10.1007/978-3-540-69100-6_4

[24] C. Noguera and R. Pawlak, “AVal: an extensible attribute-oriented
programming validator for Java: Research Articles,” Journal of Software

Maintenance and Evolution, vol. 19, no. 4, pp. 253–275, Jul. 2007.
http://dx.doi.org/10.1002/smr.349

PETER PIGULA, MILAN NOSÁL’: UNIFIED COMPILE-TIME AND RUNTIME JAVA ANNOTATION PROCESSING 975

