
PhysarumSoft - a Software Tool for Programming
Physarum Machines and Simulating Physarum

Games

Andrew Schumann∗ and Krzysztof Pancerz∗ †

∗University of Information Technology and Management in Rzeszów, Poland

Email: andrew.schumann@gmail.com
†University of Management and Administration in Zamość, Poland

Email: kpancerz@wszia.edu.pl

Abstract—In the paper, we describe selected functionality of
the current version of a new software tool, called PhysarumSoft,
developed for programming Physarum machines and simulating
Physarum games. The tool was designed for the Java platform. A
Physarum machine is a biological computing device implemented
in the plasmodium of Physarum polycephalum or Badhamia utric-
ularis that are one-cell organisms able to build programmable
complex networks. The plasmodial stage of such organisms is
a natural transition system that can be used as a medium for
solving different computational tasks as well as creating bio-
inspired strategy games.

I. INTRODUCTION

A
Physarum machine is a programmable amorphous bio-

logical computing device, experimentally implemented

in the plasmodium of Physarum polycephalum, also called

true slime mould [1]. Physarum polycephalum is a single cell

organism belonging to the species of order Physarales. In

the considered case, the term of Physarum machine covers,

in general, a hybrid device implemented in two plasmodia

(cf. [2]), namely the plasmodium of Physarum polycephalum

as well as the plasmodium of Badhamia utricularis. Badhamia

utricularis is also the species of order Physarales. The plas-

modium of Physarum polycephalum or Badhamia utricularis,

spread by networks, can be programmable. In propagating

and foraging behavior of the plasmodium, we can perform

useful computational tasks. This ability was firstly discerned

by T. Nakagaki et al. [3]. The Physarum machine comprises

an amorphous yellowish mass with networks of protoplasmic

veins, programmed by spatial configurations of attracting and

repelling stimuli. When several attractants are scattered in

the plasmodium range, the plasmodium looks for attractants,

propagates protoplasmic veins towards them, feeds on them

and goes on. Repellents play the role of elements blocking

propagation of protoplasmic veins.
Solving computational tasks by means of Physarum ma-

chines is one of the main goals of the Physarum Chip

Project: Growing Computers from Slime Mould [4] funded

by the Seventh Framework Programme (FP7). In this project,

we are going to construct an unconventional computer on

programmable behaviour of Physarum polycephalum.
To program computational tasks for Physarum machines, we

are developing a new object-oriented programming language

[5], [6], [7], called a Physarum language. The Physarum lan-

guage is a prototype-based language [8] consisting of inbuilt

sets of prototypes corresponding to both the high-level models

used for describing behaviour of Physarum polycephalum

(e.g., ladder diagrams, transition systems, timed transition

systems, Petri nets) and the low-level model (distribution of

stimuli). More information is given in Section II.

Another task that can be performed in Physarum machine

environments concerns bio-inspired strategy games. Funda-

mental topics of the research area related to bio-inspired games

on Physarum machines were earlier considered, for example

in [2] and [9]. Simulating Physarum games is considered in

Section III.

To support reserach on programming Physarum machines

and simulating Physarum games, we are developing a spe-

cialized software tool, called the Physarum software system,

shortly PhysarumSoft. The tool was designed for the Java

platform. In the paper, we describe selected functionality of

the current version of PhysarumSoft. A general structure of

this system is shown in Figure 1. We can distinguish three

Fig. 1. A general structure of PhysarumSoft

main parts of PhysarumSoft:

• Physarum language compiler. The Physarum language

is an object-oriented high-level programming language.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 607–614

DOI: 10.15439/2015F199

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 607

For generating the compiler of the language, the Java

Compiler Compiler (JavaCC) tool [10] was used. JavaCC

is the most popular parser generator for use with Java

applications. For the programming purpose, a compiler

embodied in our tool translates the high-level code de-

scribing a model of the Physarum machine into the

spatial distribution (configuration) of stimuli (attractants,

repellents) controlling propagation of protoplasmic veins

of the plasmodium. A grammar of our language was

described in [6].

• Module of programming Physarum machines described

in Section II.

• Module of simulating Physarum games described in

Section III.

The main features of PhysarumSoft are the following:

• Portability. Thanks to the Java technology, the created

tool can be run on various software and hardware plat-

forms. In the future, the tool will be adapted for platforms

available in mobile devices and as a service in the cloud.

• User-friendly interface (see some screenshots shown in

Sections II and III).

• Modularity. The project of PhysarumSoft and its imple-

mentation covers modularity. It makes the tool extend in

the future eaisly.

II. PROGRAMMING PHYSARUM MACHINES

To program Physarum machines (i.e., to set the spatial

distribution (configuration) of stimuli (attractants, repellents)

controlling propagation of protoplasmic veins of the plasmod-

ium), we are developing a new object-oriented programming

language [5], [6], [7], called the Physarum language. Our

language is based on the prototype-based approach (cf. [8])

that is less common than the class-based one, although, it

has a great deal to offer. This approach is also called class-

less or instance-based programming because prototype-based

languages are based upon the idea that objects, representing

individuals, can be created without reference to class-defining.

In this approach, the objects, that are manipulated at runtime,

are prototypes. In our language, there are inbuilt sets of

prototypes corresponding to both the high-level models used

for describing behaviour of Physarum polycephalum (e.g.,

ladder diagrams, transition systems, timed transition systems,

Petri nets) and the low-level model (distribution of stimuli).

According to the prototype-based approach, objects are created

by means of a copy operation, called cloning, which is applied

to a given prototype. Objects can be instantiated (cloned) via

the keyword new using defined constructors. Different methods

are used to manipulate features of the objects and create

relationships between objects.
In our approach, the starting point, in programming the

behaviour of the Physarum machine, is a high-level model

describing propagation of protoplasmic veins of Physarum. We

have proposed several high-level models used in programming

Physarum machines, i.e.:

• ladder diagrams (see [11]),
• transition systems ([5]) and timed transition systems (see

[12]),

• Petri nets (see [13]).

In the remaining part of this section, we recall basic defini-

tions concerning transition systems, timed transition systems

and Petri nets. They are general purpose tools that can be

used to model dynamic systems with distinguished states and

transitions between states. Application of ladder diagrams is

restricted to modelling digital circuits. The recalled definitions

are illustrated with some examples.

Transition systems are a simple and powerful tool for

explaining the operational behaviour of models of concur-

rency. Formally, a transition system is a quadruple TS =
(S,E, T, I), cf. [14], where:

• S is the non-empty set of states,

• E is the set of events,

• T ⊆ S × E × S is the transition relation,

• I is the set of initial states.

Usually transition systems are based on actions which may be

viewed as labelled events. If (s, e, s′) ∈ T , then the idea is that

TS can go from s to s′ as a result of the event e occurring at

s. Any transition system TS = (S,E, T, I) can be presented

in the form of a labelled graph with nodes corresponding to

states from S, edges representing the transition relation T , and

labels of edges corresponding to events from E.

The behaviour of Physarum machines is often dynamically

changed in time. It is assumed, in the transition systems men-

tioned earlier, that all events happen instantaneously. There-

fore, in [12], we proposed to use another high-level model,

based on timed transition systems [15]. In the timed transition

systems, timing constraints restrict the times at which events

may occur. The timing constraints are classified into two

categories: lower-bound and upper-bound requirements.

Let N be a set of nonnegative integers. Formally, a timed

transition system TTS = (S,E, T, I, l, u) consists of:

• an underlying transition system TS = (S,E, T, I),
• a minimal delay function (a lower bound) l : E → N

assigning a nonnegative integer to each event,

• a maximal delay function (an upper bound) u : E →
N ∪∞ assigning a nonnegative integer or infinity to each

event.

In Physarum machines, timing constraints can be imple-

mented through activation and deactivation of stimuli (attrac-

tants and/or repellents). Each state corresponds to either an

original point of the plasmodium or an attractant. Especially,

initial states of transition systems can be presented by original

points, where protoplasmic veins originate from. Edges repre-

sent plasmodium transitions between attractants as well as the

original points of the plasmodium.

In case of transition system and timed transition system

models, the main prototypes defined in the Physarum language

and their selected methods are collected in Table I.

Let us consider an exemplary timed transition system shown

in Figure 2. Formally, we have TTS = (S,E, T, I, l, u),
where:

• S = {s1, s2, s3, s4},

608 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE I
MAIN PROTOTYPES, CORRESPONDING TO TRANSITION SYSTEM AND

TIMED TRANSITION SYSTEM MODELS, DEFINED IN THE PHYSARUM

LANGUAGE, AND THEIR SELECTED METHODS

Prototype Selected methods

TS.State setDescription, setAsInitial

TS.Event setDescription, setTimingConstraints

TS.Transition

• E = {e1, e2, e3},

• T = {(s1, e1, s2), (s2, e2, s3), (s3, e3, s4)},

• I = {s1, s2},

• l(e1) = l(e2) = l(e3) = 0,

• and u(e1) = u(e2) = ∞, u(e3) = 3.

Fig. 2. An exemplary timed transition system TTS

Fig. 3. The code for the model in the form of TTS

The code, for the model in the form of TTS, in the

Physarum language written in the editor of the module of

programming Physarum machines, is shown in Figure 3. The

result of compilation, i.e., the spatial distribution of stimuli (at-

tractants, repellents) controlling propagation of protoplasmic

veins of the plasmodium, is shown in Figure 4.

One can see that:

• Physarum Ph_1 represents initial state s1, attractants

A_1, A_2, A_3 represent states s2, s4, s3, respectively.

• Splitting the plasmodium at A_1 is supported by repellent

R_1.

• Repellent R_2 is placed next to attractant A_2 because

timing constraints are set for event e3.

• For t > 3, R_2 must be activated to annihilate the vein

of the plasmodium between A_1 and A_2.

Fig. 4. The result of compilation

Petri nets introduced by C.A. Petri [16] are a formal tool

used to model discrete event systems. In [13], we proposed to

use Petri nets with inhibitor arcs (cf. [17]) to model behaviour

of Physarum polycephalum. The inhibitor arcs test the absence

of tokens in a place and they can be used to disable transitions.

This fact can model repellents in Physarum machines. A

transition can only fire if all its places connected through

inhibitor arcs are empty (cf. [18]).

Formally, a marked Petri net with inhibitor arcs is a five-

tuple

MPN = (Pl, Tr,Ar, w,m),

where:

• Pl is the finite set of places (marked graphically with

circles),

• Tr is the finite set of transitions (marked graphically with

rectangles),

• Ar = ArO ∪ ArI such that ArO ⊆ (Pl × Tr) ∪ (Tr ×
Pl) is the set of ordinary arcs (marked graphically with

arrows) from places to transitions and from transitions to

places whereas ArI ⊆ Pl×Tr is the set of inhibitor arcs

(marked graphically with lines ended with small circles)

from places to transitions,

• w : Ar → {1, 2, 3, . . . } is the weight function on the

arcs,

• m : Pl → {0, 1, 2, . . . } is the initial marking function on

the places.

In describing the Petri net behaviour, it is convenient to use

for any t ∈ Tr:

• IO(t) = {p ∈ Pl : (p, t) ∈ ArO} - a set of input places

connected through ordinary arcs to the transition t,
• II(t) = {p ∈ Pl : (p, t) ∈ ArI} - a set of input places

connected through inhibitor arcs to the transition t,
• O(t) = {p ∈ Pl : (t, p) ∈ ArO} - a set of output places

connected through ordinary arcs from the transition t.

In the proposed approach, we have additionally assumed the

following limits for the Petri net:

KRZYSZTOF PANCERZ, ANDREW SCHUMANN: PHYSARUMSOFT—A SOFTWARE TOOL 609

TABLE II
THE MEANING OF TOKENS IN PLACES REPRESENTING CONTROL STIMULI

Token Meaning

Present Stimulus activated
Absent Stimulus deactivated

TABLE III
THE MEANING OF TOKENS IN PLACES REPRESENTING OUTPUT STIMULI

Token Meaning

Present Stimulus occupied by plasmodium
of Physarum polycephalum

Absent Stimulus not occupied by plasmodium
of Physarum polycephalum

TABLE IV
MAIN PROTOTYPES, CORRESPONDING TO PETRI NET MODELS, DEFINED

IN THE Physarum LANGUAGE, AND THEIR SELECTED METHODS

Prototype Selected methods

PN.Place setDescription, setRole

PN.Transition setDescription

PN.Arc setAsInhibitor, setAsBidirectional

• w(a) = 1 for each a ∈ Ar,

• m(p) ≤ 1 for each p ∈ Pl (the capacity limit).

If m(p) = 1, then a token (i.e., a black dot) is drawn in

the graphical representation of the place p. Assuming limits

as the ones above, a transition t ∈ Tr is said to be enabled

if and only if m(p) = 1 for all p ∈ IO(t), i.e., the token is

present in all input places p connected with the transition t
through the ordinary arcs, and m(p) = 0 for all p ∈ II(t),
i.e., the token is absent in all input places p connected with

the transition t through the inhibitor arcs, and m(p) = 0 for

all p ∈ O(t), i.e., the token is absent in all output places p
of the transition t. If the transition t is enabled, we say that

it can fire. A new marking function m′ : Pl → {0, 1, 2, . . . }
defines the next state of the Petri net after firing the transition

t:

m′(p) =







m(p)− 1 if p ∈ IO(t) and p /∈ O(t),
m(p) + 1 if p ∈ O(t) and p /∈ IO(t),
m(p) otherwise.

It is worth noting that in all figures including Petri net

models, to simplify them, we have used bidirectional arcs

between input places and transitions instead of arcs from

input places to transitions and from transitions to input places.

A bidirectional arc causes that the token is not consumed

(removed) from the input place after firing a transition. This

fact has a natural justification, i.e., firing a transition does not

cause deactivation of the attractants and disappearance of the

plasmodium from the original point. The plasmodium grows

to build a dendritic network of veins.
In the proposed Petri net models of Physarum machines,

we can distinguish three kinds of places:

• Places representing Physarum polycephalum.

• Places representing control stimuli (repellents).

• Places representing output stimuli (attractants).

In the Physarum language, the kind of a place is determined

by the role played by it.

For each kind of places, we adopt different meaning (in-

terpretation) of tokens. The meaning of tokens in places

representing Physarum polycephalum is natural, i.e., the token

in a given place corresponds to the presence of the plasmodium

of Physarum polycephalum in an original point, where it starts

to grow. The meaning of tokens in places representing control

stimuli is shown in Table II, whereas the meaning of tokens

in places representing output stimuli is shown in Table III.

In case of control stimuli, we are interested in whether a

given stimulus is activated or not. In case of output stimuli

(attractants), we are interested in whether a given attractant

is occupied by the plasmodium of Physarum polycephalum.

Transitions in Petri net models represent the flow (propagation)

of the plasmodium from the original points to attractants as

well as between attractants.

In case of Petri net models, the main prototypes defined

in the Physarum language and their selected methods are

collected in Table IV.

Let us consider an exemplary Petri net shown in Figure 5.

Formally, we have MPN = (Pl, Tr,Ar, w,m), where:
• Pl = {P1, P2, P3, P4},

• Tr = {T1, T2},

• Ar = ArO ∪ArI , such that

– ArO = {(P1, T1), (T1, P2), (P2, T2), (T2, P3),
(T2, P4)},

– and ArI = ∅,

• w(a) = 1 for all a ∈ Ar,

• and m(p) = 0 for each p ∈ Pl,

Fig. 5. An exemplary Petri net MPN

The code, for the model in the form of MPN , in the

Physarum language written in the editor of the module of

programming Physarum machines, is shown in Figure 6.

The result of compilation is shown in Figure 7. One can

see that Physarum Ph_1 represents place P1, attractants A_1,

A_2, A_3 represent places P2, P4, P3, respectively. Splitting

the plasmodium at A_2 is supported by repellent R_1.

In [6], we showed how to use high-level models (transition

systems and Petri nets) to describe four basic forms of

Physarum motions:

610 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 6. The code for the model in the form of MPN

Fig. 7. The code for the model in the form of MPN

• direct - direction, i.e., a movement from one point, where

the plasmodium is located, towards another point, where

there is a neighbouring attractant,

• fuse - fusion of two plasmodia at the point, where they

meet the same attractant,

• split - splitting the plasmodium from one active point

into two active points, where two neighbouring attractants

with a similar power of intensity are located,

• repel - repelling of the plasmodium or inaction.

It is worth noting that four basic forms are fundamental

components used to build or describe more complex systems.

III. SIMULATING PHYSARUM GAMES

In [2], we showed that the slime mould (Physarum poly-

cephalum) is a natural transition system which can be con-

sidered a biological model for strategic games. General as-

sumptions for such games were presented both in [2] and

[9]. They are based on the experiments performed by A.

Adamatsky and M. Grube. If there are only two agents of

the plasmodium game, where the first agent is presented by

a usual Physarum polycephalum plasmodium and the second

agent by its modification, a Badhamia utricularis plasmodium,

then both start to compete with each other.
To simulate games on Physarum machines, we are devel-

oping a special module of PhysarumSoft called the Physarum

game simulator. This module works under the client-server

paradigm. A general structure of the Physarum game simulator

is shown in Figure 8.

Fig. 8. A general structure of the Physarum game simulator

The server-side application of the Physarum game simulator

is called PGServer. The main window of PGServer is shown

in Figure 9. In this window, the user can:

• select the port number on which the server listens for

connections,

• start and stop the server,

• set the game strategy:

– strategy by stimulus placement,

– strategy by stimulus activation,

• shadow information about actions undertaken.

Fig. 9. The main window of PGServer

The client-side application of the Physarum game simulator

is called PGClient. The main window of PGClient is shown

in Figures 10 and 12. In this window, the user can:

• set the server IP address and its port number,

• start the participation in the game,

• manipulate stimuli (place or activate them) during the

game,

• monitor the current result.

In the Physarum game simulator, we have two players:

• the first one plays for the Physarum polycephalum plas-

modia,

KRZYSZTOF PANCERZ, ANDREW SCHUMANN: PHYSARUMSOFT—A SOFTWARE TOOL 611

• the second one plays for the Badhamia utricularis plas-

modia.

Locations of the original points of both plasmodia are

randomly generated. The players can control motions of

plasmodia via attracting or repelling stimuli. There are two

strategies which can be defined for the game:

1) Locations of attractants and repellents are a priori gen-

erated in a random way. During the game, each player

can activate one stimulus (attractant or repellent) at each

step.

2) Locations of attractants and repellents are determined

by the players during the game. At each step, each

player can put one stimulus (attractant or repellent) at

any location and this stimulus becomes automatically

activated.

The client-side main window for the first strategy (locations

of attractants and repellents are a priori generated in a random

way) is shown in Figure 10. At the beginning, the original

points of Physarum polycephalum and Badhamia utricularis,

as well as stimuli, are scattered randomly on the plane. The

window after several player’s movements is shown in Figure

11. A box labelled by P represents an original point of

Fig. 10. The main window of PGClient for the first strategy

Fig. 11. The main window of PGClient for the first strategy after several
player’s movements

Physarum polycephalum. A box labelled by B represents an

original point of Badhamia utricularis. A single circle denotes

an attractant whereas a double circle - repellent. Different

background colors of stimuli differentiate between players.

The client-side main window for the second strategy (loca-

tions of attractants and repellents are determined by the players

during the game) is shown in Figure 12. At the beginning,

the original points of Physarum polycephalum and Badhamia

utricularis are scattered randomly on the plane. During the

game, players can place stimuli. New veins of plasmodia

are created. The window after several player’s movements is

shown in Figure 13.

Fig. 12. The main window of PGClient for the second strategy

Fig. 13. The main window of PGClient for the second strategy after several
player’s movements

Communication between clients and the server is realized

through text messages containing statements of the Physarum

language. The exemplary code responsible for creation of

stimuli has the form:

p1_a1=new Attractant(195,224,1);

p1_a2=new Attractant(541,310,1);

p1_a1=new Attractant(580,92,2);

p2_r1=new Repellent(452,130,2);

p2_r1=new Repellent(659,327,1);

The first two parameters of stimulus constructors determine

the location whereas the last parameter is the player’s ID.
The server sends to clients information about the current

configuration of the Physarum machine (localization of the
original points of Physarum polycephalum and Badhamia
utricularis, localization of stimuli, as well as a list of edges,
corresponding to veins of plasmodia, between active points)
through the XML file. The exemplary XML file has the form:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<network>

<elements>

612 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

<element id="0" player="0" type="0" x="96" y="310"/>

<element id="1" player="0" type="0" x="766" y="178"/>

<element id="2" player="0" type="0" x="566" y="248"/>

<element id="3" player="0" type="3" x="550" y="53"/>

<element id="4" player="0" type="3" x="374" y="534"/>

<element id="5" player="0" type="3" x="746" y="217"/>

<element id="6" player="1" type="1" x="195" y="224"/>

<element id="7" player="1" type="1" x="541" y="310"/>

<element id="8" player="2" type="1" x="580" y="92"/>

<element id="9" player="2" type="2" x="452" y="130"/>

<element id="10" player="1" type="2" x="659" y="327"/>

</elements>

<veins>

<vein createdBy="0" firstNodeID="2" secondNodeID="7"/>

<vein createdBy="3" firstNodeID="3" secondNodeID="8"/>

</veins>

</network>

The attribute "player" equal to 0 means that elements are

created by the system, in this case, the original points of

plasmodia (Physarum polycephalum or Badhamia utricularis).

As payoffs for the created bio-inspired games on Physarum

machines, we may define a variety of tasks, including simple

ones like achieving as many attractants as possible, occupied

by plasmodia of organisms for which we play or constructing

the longest path consisting of attractants occupied by plas-

modia. Determining different payoffs for Physarum games

appears to be an interesting field of research due to a huge

number of different methodologies and paradigms which can

be applied.

The activated attractant A∗ causes that the plasmodia prop-

agate protoplasmic veins towards it and feed on it. It means

that new transitions are created between the current active

points of plasmodia and a new one on the attractant A∗.

Propagating protoplasmic veins is possible if the current active

points are located in the region of influence (ROI) of A∗.

It means that a proper neighborhood of A∗ is taken into

consideration. From that moment, the activated attractant A∗

is occupied by plasmodia. It is worth noting that, as the exper-

iments showed, the attractant occupied by the plasmodium of

Physarum polycephalum cannot be simultaneously occupied

by the plasmodium of Badhamia utricularis and vice versa.

Moreover, the Physarum polycephalum plasmodium grows

faster and could grow into branches of Badhamia utricularis,

while the Badhamia utricularis plasmodium could grow over

Physarum polycephalum veins.

The activated repellent R∗ can change the direction of

plasmodium motions or can avoid propagating plasmodium

protoplasmic veins towards activated attractants. Such influ-

ences are possible if plasmodia are in the region of influence

(ROI) of R∗.

The control capabilities presented above enable the players

to choose, at each step, one of the possible tactics:

1) The attractant or repellent activated by the player

can help propagation of his/her plasmodia (of either

Physarum polycephalum or Badhamia utricularis).

2) The attractant or repellent activated by the player can

disturb propagation of the second player’s plasmodia.

The second possibility is worth considering if we adopt the

payoff approximations based on the rough set model described

in [19]. It will be the main direction of further investigations.
During the game, the players can switch between two possible

tactics according to the current game configuration. At the end

of the game, we determine who wins.

IV. CONCLUSIONS AND FURTHER WORK

In the paper, we have described selected functionality of the

current version of a new software tool called PhysarumSoft.

This tool is intended for programming Physarum machines and

simulating Physarum games. For over the last two years, we

have designed a new object-oriented programming language,

called the Physarum language, that constitutes the basis for

modelling behaviour of Physarum maachines. This language is

used in PhysarumSoft. In the nearest future, we plan to extend

PhysarumSoft to other high-level models, e.g., π-calculus and

cellular automata. Moreover, we are developing a new model,

based on rough sets [20], to approximate payoffs of strategy

games created on Physarum machines.

ACKNOWLEDGMENT

This research is being fulfilled by the support of FP7-ICT-

2011-8.

REFERENCES

[1] A. Adamatzky, Physarum Machines: Computers from Slime Mould.
World Scientific, 2010.

[2] A. Schumann, K. Pancerz, A. Adamatzky, and M. Grube, “Bio-inspired
game theory: The case of Physarum polycephalum,” in Proceedings of

the 8th International Conference on Bio-inspired Information and Com-

munications Technologies (BICT’2014), Boston, Massachusetts, USA,
2014. doi: 10.4108/icst.bict.2014.257869

[3] T. Nakagaki, H. Yamada, and A. Toth, “Maze-solving by an amoeboid
organism,” Nature, vol. 407, pp. 470–470, 2000. doi: 10.1038/35035159

[4] A. Adamatzky, V. Erokhin, M. Grube, T. Schubert, and A. Schumann,
“Physarum Chip Project: Growing computers from slime mould,” In-

ternational Journal of Unconventional Computing, vol. 8, no. 4, pp.
319–323, 2012.

[5] K. Pancerz and A. Schumann, “Principles of an object-oriented program-
ming language for Physarum polycephalum computing,” in Proceedings

of the 10th International Conference on Digital Technologies (DT’2014),
Zilina, Slovak Republic, 2014. doi: 10.1109/DT.2014.6868725 pp. 273–
280.

[6] ——, “Some issues on an object-oriented programming language for
Physarum machines,” in Applications of Computational Intelligence

in Biomedical Technology, ser. Studies in Computational Intelligence,
R. Bris, J. Majernik, K. Pancerz, and E. Zaitseva, Eds. Springer
International Publishing, Switzerland, 2016, vol. 606, pp. 185–199.

[7] A. Schumann and K. Pancerz, “Towards an object-oriented program-
ming language for Physarum polycephalum computing,” in Proceed-

ings of the Workshop on Concurrency, Specification and Programming

(CS&P’2013), M. Szczuka, L. Czaja, and M. Kacprzak, Eds., Warsaw,
Poland, 2013, pp. 389–397.

[8] I. Craig, Object-Oriented Programming Languages: Interpretation.
London: Springer-Verlag, 2007.

[9] A. Schumann and K. Pancerz, “Interfaces in a game-theoretic set-
ting for controlling the plasmodium motions,” in Proceedings of

the 8th International Conference on Bio-inspired Systems and Sig-

nal Processing (BIOSIGNALS’2015), Lisbon, Portugal, 2015. doi:
10.5220/0005285203380343 pp. 338–343.

[10] JavaCC, http://java.net/projects/javacc/.
[11] A. Schumann, K. Pancerz, and J. Jones, “Towards logic circuits based

on physarum polycephalum machines: The ladder diagram approach,”
in Proceedings of the International Conference on Biomedical Elec-

tronics and Devices (BIODEVICES’2014), A. Cliquet Jr., G. Plantier,
T. Schultz, A. Fred, and H. Gamboa, Eds., Angers, France, 2014. doi:
10.5220/0004839301650170 pp. 165–170.

KRZYSZTOF PANCERZ, ANDREW SCHUMANN: PHYSARUMSOFT—A SOFTWARE TOOL 613

[12] A. Schumann and K. Pancerz, “Timed transition system models for
programming Physarum machines: Extended abstract,” in Proceedings

of the Workshop on Concurrency, Specification and Programming

(CS&P’2014), L. Popova-Zeugmann, Ed., Chemnitz, Germany, 2014,
pp. 180–183.

[13] ——, “Towards an object-oriented programming language for Physarum
polycephalum computing: A Petri net model approach,” Fundamenta

Informaticae, vol. 133, no. 2-3, pp. 271–285, 2014. doi: 10.3233/FI-
2014-1076

[14] M. Nielsen, G. Rozenberg, and P. Thiagarajan, “Elementary transition
systems,” Theoretical Computer Science, vol. 96, no. 1, pp. 3–33, 1992.
doi: 10.1016/0304-3975(92)90180-N

[15] T. A. Henzinger, Z. Manna, and A. Pnueli, “Timed transition systems,” in
Real-Time: Theory in Practice, ser. Lecture Notes in Computer Science,
J. de Bakker, C. Huizing, W. de Roever, and G. Rozenberg, Eds. Berlin

Heidelberg: Springer, 1992, vol. 600, pp. 226–251.
[16] C. A. Petri, “Kommunikation mit automaten,” Institut für Instrumentelle

Mathematik, Bonn, Schriften des IIM Nr. 2, 1962.
[17] T. Agerwala and M. Flynn, “Comments on capabilities, limitations and

’correctness’ of Petri nets,” in Proceedings of the 1st Annual Symposium

on Computer Architecture (ISCA’1973), Atlanta, USA, 1973, pp. 81–86.
[18] H. Verbeek, M. Wynn, W. van der Aalst, and A. ter Hofstede, “Reduction

rules for reset/inhibitor nets,” Journal of Computer and System Sciences,
vol. 76, no. 2, pp. 125–143, 2010. doi: 10.1016/j.jcss.2009.06.003

[19] K. Pancerz and A. Schumann, “Rough set models of Physarum ma-
chines,” International Journal of General Systems, vol. 44, no. 3, pp.
314–325, 2015. doi: 10.1080/03081079.2014.997529

[20] Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning about Data.
Dordrecht: Kluwer Academic Publishers, 1991.

614 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

