
Enhanced simulation performance through
parallelization using a synthetic and a real-world

simulation model

Tommy Baumann∗¶, Bernd Pfitzinger‡§ , Dragan Macos†, Thomas Jestädt‡
∗Andato GmbH & Co. KG, Ehrenbergstraße 11, 98693 Ilmenau, Germany. tommy.baumann@andato.com

¶Hochschule Aalen – Technik und Wirtschaft, Beethovenstraße 1, D73430 Aalen.
‡Toll Collect GmbH, Linkstraße 4, 10785 Berlin, Germany. {bernd.pfitzinger|thomas.jestaedt}@toll-collect.de

§FOM Hochschule für Oekonomie & Management, Zeltnerstraße 19, 90443 Nürnberg, Germany.
†Beuth Hochschule für Technik Berlin, Luxemburger Str. 10, 13353 Berlin, Germany. dmacos@beuth-hochschule.de

Abstract—Taking an existing large-scale simulation model of
the German toll system we identify possibilities for parallelization
in order to enhance simulation performance. We transform
parts of the model from its current serial implementation to
a parallel implementation. Afterwards we evaluate the achieved
performance enhancement and compare the results to a synthetic
benchmark model.

I. INTRODUCTION

A
S technology advances in electronics, systems and pro-

cesses with higher complexity, interconnectedness and

heterogeneity can be developed. Simultaneously, user re-

quirements are constantly increasing. Unfortunately “more

is different” [1] as it is summarized in the definition of

a “distributed system” as “one in which the failure of a

computer you didn’t even know existed can render your own

computer unusable” [2]. Modeling and simulation techniques

are applied to design, analyze, evaluate, validate, and optimize

such complex systems. Especially in specification and design

stage executable models deliver tremendous value by lowering

the system design uncertainty – even expert advice is known to

be over-confident [3], a well-known cognitive bias that needs

to be mitigated by the system design process. Yet in many

parts of everyday life people depend [4] on software-intensive

systems.

The use of simulation models is one way to increase the

specification speed and quality [5]. Hence, current system

design approaches like Simulation Driven Design [6] are

characterized by applying executable models to a large extend.

A prerequisite to apply executable models is a so called

execution domain: In our context Discrete Event Simulation

(DES) [7] has gained significance. DES is used in many indus-

tries, e.g. energy, telecommunications, production, logistics,

avionics, automotive, business processes, and system design.

Inter alia DES is applied for dimensioning of resources, to

answer questions about topology (e.g. [8]), scalability and

performance regarding operational scenarios, to predict system

behavior, and to estimate risks. Increasingly the performance

in defining and executing models becomes vital due to the

increased complexity of systems and processes as well as

the customer requirement to create holistic, integrated, high

accuracy models up to real world scale. Several use cases of

simulations are only possible once the simulation performance

is ‘good enough’: simulating the long-term dynamic behavior,

iterative optimization loops, automatic test batteries, real-time

models (higher reactivity to market demands and changes), and

automated specification and modeling processes (including

model transformation/generation) [9]. In this context Parallel

Discrete Event Simulation (PDES) [10] helps to provide the

necessary simulation performance. In the article we identify

possibilities for parallelization of a large-scale simulation

model of the German toll system implemented in MSArchitect

[11]. We transform parts of the model from the current serial,

nonparallel implementation to a parallel implementation. Af-

terwards we evaluate the achieved performance enhancement.

The outline of the article is as follows: Section II gives

an overview of the automatic German toll system and the

corresponding simulation model. Typical use cases involve

simulations at a scale of 1:1 spanning time periods of up

to one year – necessitating a high-performance simulation

model. The aim of this article is to investigate parallelized

simulation models. To that end section III introduces the

simulation framework architecture followed in section IV by

a synthetic benchmark model for the use in PDES simulation.

Section V describes the parallelized simulation model of the

German automatic toll system and evaluates the simulation

performance achieved. Section VI summarizes the results

and describes future work and applications of our simulation

model.

II. SIMULATION MODEL OF THE GERMAN TOLL SYSTEM

The German automatic toll system is a typical example

of a state-of-the-art tolling system [12, 13] based on global

navigational satellite systems (GNSS). At present it is the

largest system of its kind in operations – collecting more than

4.3 bne annually [14–16]. It was the first large-scale GNSS-

based tolling system with more than 800 000 on-board-units

(OBUs) deployed at present. More than 90% of the tolls are

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1335–1341

DOI: 10.15439/2015F226

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1335

HGV

(OBU)

Mobile

Data

Network

Central

System

Enforcement

Driving Patterns

Fig. 1. High-level system design of a GNSS-based electronic tolling system
and its dependency on the user interaction (driving patterns).

collected automatically the remainder using a manual process

via internet or one of around 3 500 toll-station terminals.

The generic architecture of a GNSS-based tolling system is

given in figure 1: The tolls are collected via OBUs installed in

the heavy goods vehicles (HGVs) and transmitted via mobile

data networks to the central system for processing. A separate

part of the toll system is responsible for the enforcement and

in the case of the German toll system an additional manual

mode of tolling is implemented (not shown in the figure).

The simulation model implements those technical systems

and processes relevant for collecting tolls and for deploying

updates to the OBUs: The vehicle fleet with its OBUs, the

central systems required – i.e. a typical DMZ and the servers

to receive toll data or provide updates – and the IP-based

communication via mobile data networks.

Modeling the toll system we aimed to include all relevant

processes at time scales of one second or longer, the technical

systems in turn generate events with a higher temporal reso-

lution in the model. However, the model of the tolling system

needs to be accompanied by a model of the user behavior

(“driving patterns” in figure 1) – the points in time when a

given HGV is powered on or off, creates a toll event, looses

or recovers its connection to the mobile data network.

The simulation model is applied in forecasting the dynamic

behavior of the real-world tolling system – either the opera-

tions of the existing system (see section II-C) or for anticipated

changes to the system (see sections II-A and II-B). Each appli-

cation requires the simulation to predict the system behavior

over several months – where the typical work-flow expects

the simulation results to be available on the next business

day. The existing simulation model is implemented to utilize

a single CPU core and considerable effort has been expended

to achieve an adequate performance [17–19]. However, over

time the level of detail included in the simulation model and

the number of OBUs in the real-world system increased. In

addition simulation runs should deliver medium- and long-

term predictions encompassing six months to one year.

A. Simulations in the Analyze and Design Phase

In the analysis phase we use the simulation model to

validate the system requirements. Addressing the large amount

of requirements in typical software-intensive systems, require-

ments are defined at different levels of abstraction: The top

level defines why the system is built and what the owning or-

ganization hopes to achieve. This type is termed as business or

stakeholder requirements. Already at this level-of-abstraction

the requirements need to be validated as soon as possible –

is the requirement really necessary at the documented level?

Seemingly inconsequential numerical targets can have pro-

found effects on the technical solutions, e.g. by necessitating

a high-availability architecture.

The translation of the requirements into an executable

specification (or simulation model) allows exploring the effects

of the requirements on the solution space early on and vice

versa: The virtual prototype transports operational properties

of the real-world system back to the solution space potentially

modifying or restricting the requirements. An example of our

approach is the comparison of a thin-client and a thick-client

solution in the domain of electronic tolling [20].

Our focus in this phase is to avoid system operation faults

based on wrong assumptions or conjectures of the new re-

quirements. The most important aspects checked by us are:

• Excessing the capacity limits of the key subsystems

• Appearance of non-valid system states

• The worst case scenarios in case of eventual system

failures.

The aspects we want to simulate are designed manually.

The most frequent checks are based on the system behavior

checking concerning various system parameter values.

In the design phase the system architecture becomes more

detailed: The analysis model is linked with the used frame-

works, libraries and other third party software components

such as database or GUI. The executable specification helps in

drafting accurate requirements and the simulation runs yield

the resulting dynamic behavior prior to the implementation of

the system. At the same time, the simulation model becomes

in itself more specific by adding the necessary behavior and

parameters to allow measuring its performance. Depending on

the complexity and runtime the optimization can be delegated

to an automatic optimization algorithm.

In the design phase we can validate the system behavior

with improved functional granularity. During this phase the

software development process invests in design documents –

consistent, fine-grained and formal models start to show up in

the documentation. In our approach we can take these models

as a starting point and use model transformations to transform

the architecture models into the appropriate simulation model.

B. Simulations in the Develop and Test Phase

The implementation phases shift the focus to the system

under construction. Here the requirements are supposed to

remain fixed and only minor adjustments need to be returned

to the requirements repository. The simulation model is an

executable representation of the state-of-knowledge and is

technically able to integrate a given component into the overall

system – especially as long as the whole system is not yet

available.

In that way simulations are part of the decision making

process: Implementation variants can be explored and com-

1336 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Analyze Design

DevelopTest

Operate

abstract

model

realistic

model

Fig. 2. The system development process (left) can be accompanied by a
simulation model (right)

pared through simulations. The developed components are

functionally integrated (transformed) and evaluated in the

simulation environment. For an example one could look at

the avionics industry [5, 8, 21].

In the test phase, the high-level requirements are used for

acceptance tests of the whole system. Usually the development

of the virtual prototype is considerably ahead of the real sys-

tem. Therefore the soft- and hardware components are initially

integrated into a whole working simulated system rather than

the real world components: So called Software-in-the-Loop

(SiL) and Hardware-in-the-Loop (HiL) tests. The simulation

model provides the still missing components and allows to

test dynamic coupling effects even when not all components

of the real system are available. In other words we use the

simulation environment as a stimulus for testing the individual

software components – the simulation environment is a test

driver for the developed software components. The test drivers

are currently generated manually. Our goal is to generate

them fully automatically via UML-enhancements to define the

simulation test drivers during the software components design.

C. Simulations supporting System Operations

In the case of the German toll system the main objective of

the simulation model is to support and to safeguard the day-

to-day operations of the automatic toll system. To that extent

the simulation model includes the most important processes

(receiving toll data from the OBUs and sending updates to

the OBUs) in a realistic way at a scale of 1:1. The dynamic

behavior – with a strong daily and weekly rhythm – the

predictions of the simulation model can and must be verified

against data from the real-world system [22, 23] and typically

show a good correlation [24].

Simulation models of the kind discussed here address the

operator of a software-intensive system-of-systems. Typically

the operator faces two challenges simultaneously: The day-to-

day operations and the necessary changes and updates within

the technical systems. Of course, the handling of technical

details can and typically will be outsourced to specialized

providers. The one challenge that remains for the system

operator to handle is the integration of all technical and

organizational parts into a working whole [25].

As in the test-driven-development (TDD) case, testing is not

the aim of simulation-driven-development (SDD) rather the

“driven [...] focuses on how TDD leads analysis, design, and

programming decisions” [26]. In that sense, SDD tries to put

the design to the ultimate test-case – the real-world operational

context. The simulation model – an executable specification of

the existing real-world system – is the starting point to focus

any software development on the operational consequences.

These consequences might be of a purely technical nature,

e.g. the system architecture and performance, or include non-

functional requirements and business or financial aspects. In

particular these challenges dominate environments that are rich

in legacy systems. The on-going development of theses sys-

tems is largely faced with integration issues between systems

[27]. SDD addresses integration of systems as a cross-cutting

concern by providing the software developer (or requirements

engineer) with an executable copy of the real-world system.

III. SIMULATOR ARCHITECTURE AND BENCHMARK MODEL

To transition from a sequential DES simulation model to

a parallel one we first look at the possibilities offered by the

simulation and modeling tool in use (see section III-A) and

different ways of parallelizing existing models as discussed in

literature (section III-B). The section ends with brief remarks

on the PDES performance in general – the next section

introduces and discusses a particular benchmark model.

A. Simulation and modeling tool, DES and PDES perfor-

mance considerations

To model and simulate the structural and behavioral prop-

erties of the German toll system we selected and applied a

system design tool for modeling and executing DES models

[11]. The tool is specialized in integrated design of com-

plex distributed systems and processes across different design

levels. It offers a unique blend of performance [28] and

customizability to manage extremely complex models within

diverse usage environments. The simulation tool consists of

several separated, mostly platform independent components,

as a graphical user interface including a multi model editor,

a simulation kernel, a library of standard model components,

and a mission controller to run multiple simulations in parallel.

The simulation kernel used supports the execution of se-

quential DES and parallel DES (PDES) models. With DES

and PDES the operation of a system is expressed as a discrete

sequence of events in time. Each event occurs at a particular

instant in time and marks a change of state in the system.

Between consecutive events, no change in the system is

assumed to occur. Thus the simulation can directly jump in

time from one event to the next. All events are managed by a

so called future event list (FEL).

B. How to approach parallelizing DES models

PDES can substantially improve the performance and capac-

ity of simulation, allowing the study of larger, more detailed

BERND PFITZINGER ET AL.: ENHANCED SIMULATION PERFORMANCE THROUGH PARALLELIZATION USING A SYNTHETIC 1337

Fig. 3. Block diagram with a synthetic benchmark model using 8x8 network
nodes.

models, in less time, and to be able to scale a problem if

necessary. Thereby the performance and scalability is limited

by communication latencies between the participating cores

and nodes. Unfortunately, a prerequisite of parallelization is

the decomposition of the model for processing on multiple

processors or processor cores – it might become necessary

to refactor existing serial mode models. This can be done in

several ways [29]:

• Through the use of parallelizing compilers,

• In the form of replicated trials (run multiple serial simu-

lations in parallel) or

• Distributed functions or

• Distributed events (with centralized FEL).

• Especially for optimizations a simple approach is the

time-parallel domain decomposition (run multiple serial

simulation in sequence) whereas

• the space-parallel domain decomposition (run multiple

model parts in parallel) is used to accelerate a single

simulation run.

The last enumerated decomposition approach, the space-

parallel decomposition, is used by our simulation tool. Here,

the simulation model is decomposed into sub-models or com-

ponents. Each component is assigned to a process, where sev-

eral processes may run on the same processor. This approach

is applicable to any model and shows the greatest potential in

offering scalable performance for complex models [30, 31].

Since the FEL is also decomposed into individual local FELs,

it would never become the bottleneck. A higher degree of

parallelism is expected because concurrent processing is en-

couraged.

In general, PDES approaches can be divided into two

categories — conservative and optimistic — according to

the way they handle the causality constraint of local FELs.

Violating the causality constraint means that the future can

affect the past leading to incorrect simulation results. In our

case the simulation tool supports an optimistic synchronization

mechanism, also known as time warp [32]. Causality errors are

detected and fixed using rollback algorithms at the additional

cost of necessitating rollback functions within the model.

C. PDES performance

Optimistic synchronization mechanisms have inherently

more overhead than conservative synchronization mechanisms.

The overhead includes e.g. state saving, global virtual time

calculation and rollback steps. The degree to which they may

affect the simulation performance depends among other things

on the granularity of the model to be simulated and the sup-

port from the hardware. Both approaches – conservative and

optimistic – have their advantages depending on the specific

application case. In terms of general purpose simulation the

optimistic approach appears to be slightly in advantage [33].

IV. PDES BENCHMARK MODEL

In this section we introduce a synthetic network model

consisting of a grid of simple networking units (section IV-A)

and give the sequential and parallel simulation performance

for different model sizes in section IV-B.

A. Description of the synthetic model

To evaluate the potential of parallelization we developed a

synthetic benchmark model using our modeling and simulation

tool. The model consists of several communication network

nodes. When a network node receives an event, it consumes

this event, handles some synthetic workload and sends a

new event to a randomly selected neighbor network node

with random delay. The synthetic workload on every event is

approximately 10 000 floating point operations and the random

delay is exponentially distributed with a mean of 5. Initially

TABLE I
COMPUTATION TIME IN MSEC

Threads 64 Nodes 128 Nodes 256 Nodes
Serial 1 8922 8953 8953

Parallel 2 5344 5109 4953
3 3953 3719 3500
4 3218 2985 2734
5 2828 2532 2313
6 2531 2235 2015
7 2313 2016 1782
8 2172 1875 1641

TABLE II
SPEEDUP FACTOR

Threads 64 Nodes 128 Nodes 256 Nodes
Serial 1 1 1 1

Parallel 2 1,67 1,75 1,81
3 2,26 2,41 2,56
4 2,77 3 3,27
5 3,15 3,54 3,87
6 3,53 4,01 4,44
7 3,86 4,44 5,02
8 4,11 4,77 5,46

1338 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 4. Component responsible for generation of driving patterns

every second network node sends an event, which results in

an event density of 50 percent. During a simulation run the

total number of events in the system remains constant, due

to the similar parametrization and behavior of all network

nodes. Figure 3 shows the block diagram of the model with

8x8 network nodes.

B. Parallel and serial performance of synthetic model

In order to evaluate the simulation performance we sim-

ulated three sizes of the network model (8x8, 8x16 and

16x16 network nodes) using 1 to 8 threads. The clustering

of the model and the assignment of these clusters to threads

was done automatically by the simulation kernel. All simula-

tions were executed on a PC using a i7-3635QM CPU with

2.40GHz, 4 cores and 8 threads and the simulation kernel of

MSArchitect R© Enterprise in version 2.3 with 64Bit.

The results are summarized in tables I and II. The first table

gives the computation time needed for the simulation runs

and the second table lists the relative speedup factor for each

parallel simulation compared to the serial simulation. In theory

the optimal speedup factor could be equal to the number of

threads resp. cores used. Practically this is not possible due

to the communication and synchronization overhead between

the threads and the fact that the CPU does not offer 8

threads of equal computational power. All in all a substantial

performance increase of up to 5.46 with 8 threads can be

observed – higher than the 4 CPU cores offered and lower

than the 8 parallel threads offered by the CPU.

V. PARALLELIZATION OF THE SIMULATION MODEL

The synthetic benchmark model presented in the previous

section allowed a sizable speed-up through the use of a PDES

simulation kernel. In this section we look at the challenges

when an existing simulation model is the starting point of

the parallelization effort (section V-A). In particular, some

parts of the model are intrinsically serial – as required from

the particular application domain. Section V-B discusses the

process of selecting appropriate parts of the simulation model

for parallelization.

A. Partial transformation as proof of concept

After successfully evaluating the parallel simulation ap-

proach using a synthetic model and the promising performance

potential we decided to shift from serial to parallel simulation

for the model of the toll system. Since the parallelization is

a time-consuming process, we pursue an incremental model

transformation, starting with the performance critical parts. In

a first step we looked to the application-level performance of

our model of the German toll system to locate appropriate

model components for parallelization. This was done using

both the kernel logging capabilities of our simulation tool

and an external profiling application [17, 18]. Kernel logging

allows to count the number of calls of atomic models as

well as the total number of samples (corresponding to a

processor cycle). The external profiler allows measuring the

space complexity (memory), the time complexity (duration,

BERND PFITZINGER ET AL.: ENHANCED SIMULATION PERFORMANCE THROUGH PARALLELIZATION USING A SYNTHETIC 1339

Fig. 5. Partial parallelization of the simulation model: Using 8 threads in
generating the driving patterns.

CPU time), and the usage of particular instructions of a target

program by collecting information on their execution.

To implement a partial parallelization we choose a setup

using a similar hardware and software constellation as the

synthetic model. The fleet size used in the simulation runs was

set to 800 000 OBUs and a time frame of 20 weeks was con-

sidered. In the simulation runs the component responsible for

generation of driving patterns was identified as performance

critical (figure 4). This component consumes about 9.7% of

the overall computation time in serial mode.

B. Selecting parts of the model for parallelization

To allow the execution of a given simulation model in

parallel simulation mode the underlying PDES kernel calls

a different set of atomic interface functions than in the serial

mode: Instead of the function run(), which is called every

time an event is received, the functions runForward(),

runReverse() and runCommit() need to be imple-

mented. This is necessary in the case of optimistic synchro-

nization since this mechanism allows the speculative execution

of events that might require a rollback to ensure causality. In

addition the model architecture needs to be adapted following

three rules:

• Reduce the dependencies between model components to

simplify clustering,

• Transfer external states to internal states or to port based

communication,

• Restructure the internal architecture of model components

to enable functional parallelization, while leaving the

interfaces stable.

In our case the selected model component is responsible for

the generation of driving patterns for the whole vehicle fleet.

We refactored this component so that the internal structures

were multiplied according the number of parallel simulation

threads (in our case 8) – the driving patterns of different heavy-

goods-vehicles are inherently independent in our model. In that

way each internal structure is responsible for one-eighth of the

vehicle fleet, each executed as a separate thread (see figure 5).

Executing the driving patterns component separately from the

overall model in parallel mode let to a computation time of

3 min 30 sec compared to 8 min 28 sec in serial mode. This

means a speedup of factor 2.4, which is quite good compared

to the theoretical speedup factor of the synthetic model of

factor 5.46.

C. Complete parallelization and backward compatibility

To parallelize the model of the German toll system com-

pletely the architecture of about 60% of the model components

(composite blocks) need to be reworked according to the three

architectural rules mentioned above. The remainder (mostly

atomic blocks) need at least to be transferred to the set of

parallel atomic interface functions. Both interfaces – for serial

and parallel execution – can coexist in the simulation tool

chosen for this work. This allows for an incremental porting of

complex simulation models towards a fully parallelized model.

VI. SUMMARY

Simulation models offer the ability to transform the software

development process by placing each step into the realistic

operational context. One important pre-condition is that the

simulation model is sufficiently fast to generate realistic behav-

ior at a scale of 1:1. Staying with a realistic level-of-abstraction

the application of some models is limited by the execution

time. In our example the large number of objects at run-time

– models of on-board-units – and the necessity to predict the

dynamic behavior of the system for a considerable length of

time limit the use of simulation runs in the day-to-day decision

making process.

In this paper we looked into increasing the simulation

performance through parallelization either automatically or at

the level of the simulation model. To further the discussion we

implemented a synthetic network model with a configurable

grid of identical components as a benchmark for the automatic

parallelization achieved by the simulation kernel. In this case

the speed-up compared favorably with the performance offered

by the CPU chosen to run the benchmark.

In the real-world example the speed-up is more difficult

to achieve – large parts of the model are either difficult to

parallelize or contribute negligibly to the overall computation

time. Profiling the simulation model we identified one part –

the model of the user behavior – as both particularly time

consuming and compact (as expressed by the size of this

particular part of the model). Parallelizing only a part of the

model limits the speed-up: The remaining model parts run in

serial mode and we achieve only a speed-up of 2.4 using 8

threads. However, this speed-up is the result of re-factoring

only 5% of the simulation model.

Future work is needed to automate the parallelization of

existing models and to steer the modeling engineer to the most

promising parts of a given simulation model.

1340 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

REFERENCES

[1] Philip W. Anderson. More is different. Science, 177(4047):393–396,
1972. doi: 10.1142/9789812385123 others01.

[2] L. Lamport. Distribution, May 1987. URL http://research.microsoft.
com/en-us/um/people/lamport/pubs/distributed-system.txt. [accessed
19-Mar-2015].

[3] Dale Griffin and Amos Tversky. The weighing of evidence and the
determinants of confidence. Cognitive psychology, 24(3):411–435, 1992.
doi: 00l0-0285/92$9.00.

[4] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing, pages 11–33, 2004.
doi: 10.1109/TDSC.2004.2.

[5] Tommy Baumann. Automatisierung der frühen Entwurfsphasen

verteilter Systeme. Südwestdeutscher Verlag für Hochschulschriften,
Saarbrücken, Germany, 2009. ISBN 978-3-8381-1266-4.

[6] Tommy Baumann. Simulation-driven design of distributed systems. SAE

Technical Paper, 2011. doi: 10.4271/2011-01-0458.
[7] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous

data flow programs for digital signal processing. IEEE Transactions on

Computers, C-36(1):24–35, 1987. doi: 10.1109/TC.1987.5009446.
[8] N. Fischer and H. Salzwedel. Validating avionics conceptual architec-

tures with executable specifications. Journal of Systemics, Cybernetics

& Informatics, 10(4), 2012.
[9] Bernd Pfitzinger, Tommy Baumann, and Thomas Jestädt. Network

resource usage of the German toll system: Lessons from a realistic simu-
lation model. 46th Hawaii International Conference on System Sciences

(HICSS), pages 5115–5122, 2013. doi: 10.1109/HICSS.2013.415.
[10] Richard M. Fujimoto. Parallel and distributed simulation systems, vol-

ume 300. Wiley-Interscience New York, 2000. ISBN 978-0471183839.
[11] Msarchitect. URL http://www.andato.com/. [accessed 10-Dec-2012].
[12] Julia Numrich, Sascha Ruja, and Stefan Voß. Global navigation

satellite system based tolling: state-of-the-art. NETNOMICS: Eco-

nomic Research and Electronic Networking, 13(2):93–123, 2012. doi:
10.1007/s11066-013-9073-9.

[13] Andrew T. W. Pickford and Philip T. Blythe. Road user charging and

electronic toll collection. Artech House London, 2006. ISBN 978-1-
58053-858-9.

[14] Bundesministerium der Finanzen. Haushaltsabschluss 2011, Feb.
2012. ISSN 1618-291X. URL www.bundesfinanzministerium.
de/Content/DE/Monatsberichte/Publikationen Migration/2012/02/
inhalt/Monatsbericht-Februar-2012.pdf? blob=publicationFile&v=3.
[accessed 09-May-2012].

[15] Bundesministerium der Finanzen. Sollbericht 2013. Monatsbericht

des BMF, (2):6–22, Feb. 2013. ISSN 1618-291X. URL
http://www.bundesfinanzministerium.de/Content/DE/Monatsberichte/
2013/02/Downloads/monatsbericht 2013 02 deutsch.pdf? blob=
publicationFile&v=4. [accessed 20-Mar-2013].

[16] Bundesministerium der Finanzen. Haushaltsabschluss 2013, Jan.
2014. ISSN 1618-291X. URL http://www.bundesfinanzministerium.de/
Content/DE/Monatsberichte/2014/01/Downloads/monatsbericht 2014
01 deutsch.pdf? blob=publicationFile&v=6. [accessed 26-Nov-2014].

[17] Tommy Baumann, Bernd Pfitzinger, and Thomas Jestädt. Simulation
driven design of the German toll system – evaluation and enhancement
of simulation performance. In 2012 Federated Conference on Computer

Science and Information Systems (FedCSIS), pages 901–909. IEEE,
2012. ISBN 978-1-4673-0708-6.

[18] Tommy Baumann, Bernd Pfitzinger, and Thomas Jestädt. Simulation
driven design of the German toll system – profiling simulation per-
formance. In 2013 Federated Conference on Computer Science and

Information Systems (FedCSIS), pages 923–926. IEEE, 2013. ISBN
978-1-4673-4471-5.

[19] Tommy Baumann, Bernd Pfitzinger, and Thomas Jestädt. Simulation
driven development of the German toll system – simulation performance
at the kernel and application level. In Advances in Business ICT, volume
257, pages 1–25. Springer International Publishing, 2014. doi: 10.1007/
978-3-319-03677-9.

[20] Bernd Pfitzinger, Tommy Baumann, Dragan Macos, and Thomas Jestädt.
Using simulations to study the efficiency of update control protocols.
47th Hawaii International Conference on System Sciences (HICSS),
pages 5154–5161, 2014. doi: 10.1109/HICSS.2014.634.

[21] Pascal Traverse, Isabelle Lacaze, and Jean Souyris. Airbus fly-by-wire:
A total approach to dependability. In Renè Jacquart, editor, Building
the Information Society, volume 156 of IFIP International Federation

for Information Processing, pages 191–212. Springer US, 2004. ISBN
978-1-4020-8156-9. doi: 10.1007/978-1-4020-8157-6 18.

[22] Robert G. Sargent. Verification and validation of simulation models. In
Proceedings of the 37th conference on Winter simulation, pages 130–
143. Winter Simulation Conference, 2005.

[23] R.G. Sargent. Verification and validation of simulation models. In
Proceedings of the 2010 Winter Simulation Conference (WSC), pages
166–183, Dec 2010. doi: 10.1109/WSC.2010.5679166.

[24] Bernd Pfitzinger, Dragan Macos, and Thomas Jestädt. Exploring the
heavy goods vehicle fleet behaviour through simulations: Notes from
the German toll system. IET Intelligent Transport Systems, Aug 2014.
ISSN 1751-956X. doi: 10.1049/iet-its.2013.0175.

[25] Michael Hobday, Andrew Davies, and Andrea Prencipe. Systems
integration: a core capability of the modern corporation. Industrial and

corporate change, 14(6):1109–1143, 2005. doi: 10.1093/icc/dth080.
[26] David Janzen and Hossein Saiedian. Test-driven development: Concepts,

taxonomy, and future direction. Computer, 38:43–50, Sep 2005. ISSN
0018-9162. doi: 10.1109/MC.2005.314.

[27] Azad M. Madni and Michael Sievers. Systems integration: Key perspec-
tives, experiences, and challenges. Systems Engineering, 17(1):37–51,
2014. ISSN 1520-6858. doi: 10.1002/sys.21249.

[28] A. Pacholik, T. Baumann, W. Fengler, and D. Grüner. Discrete event
simulation performance – benchmarking simulators. In International

Simulation Multi-Conference (SummerSim), Genoa, Italy, 2012.
[29] Voon-Yee Vee and Wen-Jing Hsu. Parallel discrete event simulation: A

survey.
[30] R. Righter and J.C. Walrand. Distributed simulation of discrete event

systems. Proceedings of the IEEE, 77(1):99–113, Jan 1989. ISSN 0018-
9219. doi: 10.1109/5.21073.

[31] A. J. Wing. Advances in parallel algorithms. chapter Discrete Event
Simulation in Parallel, pages 179–226. John Wiley & Sons, Inc., New
York, NY, USA, 1992. ISBN 0-470-21907-6.

[32] David Jefferson and Henry A Sowizral. Fast concurrent simulation using
the time warp mechanism. 1982.

[33] Richard M. Fujimoto. Parallel discrete event simulation. Commun.

ACM, 33(10):30–53, October 1990. ISSN 0001-0782. doi: 10.1145/
84537.84545.

BERND PFITZINGER ET AL.: ENHANCED SIMULATION PERFORMANCE THROUGH PARALLELIZATION USING A SYNTHETIC 1341

