
Genetic Algorithms for Balanced Spanning

Tree Problem

Riham Moharam, Ehab Morsy

Department of Mathematics, Suez Canal

University, Ismailia 41522, Egypt.

Email: {riham.moharam, ehabmorsy}@science.suez.edu.eg

Ismail A. Ismail

Department of Computer Sciences,

6 October University, Egypt.

Email: amr442-2@hotmail.com

Abstract—Given an undirected weighted connected

graph G = (V,E) with vertex set V and edge set E and

a designated vertex r ∈ V , we consider the problem of

constructing a spanning tree in G that balances both the

minimum spanning tree and the shortest paths tree rooted

at r. Formally, for any two constants α, β ≥ 1, we consider

the problem of computing an (α, β)-balanced spanning tree

T in G, in the sense that, (i) for every vertex v ∈ V , the

distance between r and v in T is at most α times the

shortest distance between the two vertices in G, and (ii) the

total weight of T is at most β times that of the minimum

tree weight in G. It is well known that, for any α, β ≥ 1,

the problem of deciding whether G contains an (α, β)-
balanced spanning tree is NP-complete [15]. Consequently,

given any α ≥ 1 (resp., β ≥ 1), the problem of finding an

(α, β)-balanced spanning tree that minimizes β (resp., α)

is NP-complete. In this paper, we present efficient genetic

algorithms for these problems. Our experimental results

show that the proposed algorithm returns high quality

balanced spanning trees.

Index Terms—Minimum Spanning Tree, Shortest Paths

Tree, Balanced Spanning Tree, Genetic Algorithms, Graph

Algorithms

I. INTRODUCTION

L
ET G = (V,E) be an undirected edge-weighted

connected graph with vertex set V and edge set E

such that |V | = n and |E| = m.

For any vertex r in G, a spanning tree T rooted at r is

a shortest paths tree if, for every vertex v ∈ V , the dis-

tance between r and v in Ts equals the shortest distance

between the two vertices in G. Dijkstra’s algorithm is

one of the well known polynomial time algorithms for

computing shortest path tree in weighted graphs [22].

This work is partially supported by Alexander von Humboldt foun-

dation

Note that, there exist weighted graphs in which the

total weight of a shortest path tree may be much more

than that of a minimum spanning tree, and vertices

that are close to the designated root can be far away

from the root in a minimum spanning tree (see [15]

for an illustrative example). In this paper, we aim to

find a spanning tree in weighted graphs that balances a

minimum spanning tree and a shortest path tree, that is,

a rooted tree of total weight at most a constant times the

minimum tree weight, and the distance between the root

and any vertex in the tree is at most a constant times the

shortest distance between the two vertices in the graph.

A formal definition of the problem can be described as

follows.

Definition 1: [15] For any α, β ≥ 1, a rooted spanning

tree T of G is called (α, β)-balanced spanning tree if it

satisfies the following two conditions:

1) For every vertex v, the distance between the root

and v in T is at most α times the shortest distance

between the two vertices in G.

2) The total weight of T is at most β times the

minimum tree weight in G.

The shortest paths tree and minimum spanning tree are

widely used in network routing. In particular, the shortest

paths tree minimizes the delay from the source to every

destination through a routing tree, and the minimum

spanning tree minimizes the total routing cost along a

tree. See [7], [14], [17], [21] and the references therein.

Thus, balanced spanning tree is an appropriate routing

tree for networks with the above two objectives.

Given any α ≥ 1, Awerbuch et al. [4] proposed

an algorithm that approximates a minimum spanning

tree and a shortest paths tree in edge-weighted graphs.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 537–545

DOI: 10.15439/2015F249

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 537

Namely, they modified the algorithm described in [3],

[9] to compute an (α, 1 + 4
α−1)-balanced spanning tree

in O(m+ n log n) time. Afterwards, Khullar et al. [15]

improved the above result and presented a constructive

linear time algorithm that outputs an (α, 1 + 2
α−1)-

balanced spanning tree. In other words, for any γ > 0,

the algorithm of Khullar et al. [15] outputs an (1 +√
2γ, 1 +

√
2

γ
)-balanced spanning tree in linear time.

For any α, β ≥ 1, the problem of deciding whether

G contains an (α, β)-balanced spanning tree is NP-

complete [15]. Consequently, given any α ≥ 1, the

problem of finding an (α, β)-balanced spanning tree

that minimizes β is NP-complete. Analogously, given

any β ≥ 1, the problem of finding an (α, β)-balanced

spanning tree that minimizes α is also NP-complete. In

this paper, we present efficient genetic algorithms for

these two problems. Our experimental results show that

the proposed algorithm returns high quality balanced

spanning trees.

The rest of this paper is organized as follows. Sec-

tion II reviews some results on related problems. Sec-

tion III presents the proposed genetic algorithm. Sec-

tion IV evaluates our algorithm by applying it to ran-

domly generated instances of the balanced spanning tree

problem. Section V makes some concluding remarks.

II. RELATED WORK

In this section, we present results on related problems.

Bharath-Kumar and Jaffe [5] studied the problem of

finding a rooted tree in the underlying graph such that

the total distances from the root to all vertices is at most

a constant times the minimum total distances from the

root to all vertices.

For each graph G, the greatest distance between any

two vertices in G is called the diameter of G. A tree in

a graph G is called shallow-light tree if its diameter is

at most a constant (greater than or equal 1) times the

diameter of G and with total weight at most a constant

times the minimum tree weight. Awerbuch et al. [3]

proved that each graph has a shallow-light tree.

Cong et al. [9] proposed a model of timing-driven

global routing for cell-based design to improve the

construction of a shallow-light tree based on the idea of

finding minimum spanning trees with bounded radius.

They designed an algorithm to find, for any constant

ǫ > 0, a spanning tree with radius (1 + ǫ) · R (using

an analog of the classical Prim’s minimum spanning

tree structure), where R is the minimum possible tree

radius. They find a smooth trade-off between the radius

and the cost of the tree. Afterwards, they proposed a

new method [10] to improve their previous algorithm

based on a provably good algorithm that simultaneously

minimizes both total weight and longest interconnection

path length of the tree. More specifically, their algorithm

produced a tree with radius at most (1 + ǫ) · R and of

total weight at most (1 + 2
ǫ
) times the minimum tree

weight.

III. GENETIC ALGORITHM

In this section, we propose genetic algorithms to the

two variants of the balanced spanning tree problem

described in Section I. To avoid duplication, we present

an algorithm for only one of these problems; the other

variant of the problem can be described analogously.

Namely, throughout this section, we focus on the prob-

lem in which we are given a constant α ≥ 1 and the

objective is to compute an (α, β)- balanced spanning

tree that minimizes β.

We first introduce some terminologies that will be

used throughout this section. Let G′ be a subgraph of G.

The sets V (G′) and E(G′) denote the set of vertices and

edges of G′, respectively. The shortest distance between

two vertices u and v in G′ is denoted by dG′(u, v). We

use w(G′) to denote the sum
∑

e∈E(G′) w(e) of weights

of all edges in G′. For two subgraphs G1 and G2 of

G, let G1 ∪ G2, G1 ∩ G2, and G1 − G2 denote the

subgraph induced by E(G1)∪E(G2), E(G1)∩E(G2),

and E(G1)−E(G2), respectively. For any edge e in G,

let Adj(e) denote the set of all adjacent edges to e in G,

where two edges of G are called adjacent if they share

a common vertex.

A. Algorithm Overview

The Genetic Algorithm (GA) is an iterative optimiza-

tion approach based on the principles of genetics and

natural selection [2]. The first step of genetic algorithms

is to determine a suitable data structure to represent

individual solutions (chromosomes), and then construct

an initial population (first generation) of prescribed car-

dinality pop − size. A typical intermediate iteration of

genetic algorithms can be outlined as follows. Starting

with the current generation, we use a predefined selection

technique to repeatedly choose a pair of individuals

2

538 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

(parents) in the current generation to reproduce, with

probability pc, a new set of individuals (offsprings) by

applying crossover operation to the selected pair. To keep

an appropriate diversity among different generations, we

apply mutation operation with specific probability pm to

genes of individuals of the current generation to get more

offsprings. A new generation is then selected from both

the offspring and the current generation based on their

fitness values (the more suitable solutions have more

chances to reproduce). The algorithm terminates when

it meets prescribed stopping criteria.

A formal description of the proposed genetic algo-

rithm is given in Algorithm 1.

In genetic algorithms, determining representation

method, population size, selection technique, crossover

and mutation probabilities, and stopping criteria are

crucial since they mainly affect the convergence of the

algorithm (see [1], [13], [18], [19], [20]).

The rest of this section is devoted to describe steps of

Algorithm 1 in details.

B. Representation

Let G = (V,E) be a given undirected graph such that

V = {1, 2, . . . , n}. Note that, each edge e ∈ E with end

points i and j can be defined by an unordered pair {i, j},
and consequently, any subgraph G′ of G is uniquely

defined by the set of unordered pairs of all its edges.

In particular, any spanning tree T in G is induced by a

set of exactly n−1 pairs corresponding to its edges since

T is a subgraph of G that spans all vertices in V and

has no cycles. Therefore, each chromosome (spanning

tree) can be represented as a sequence of ordered pairs

of integers each of which represent a gene (edge) in the

chromosome.

C. Initial Population

Before initializing the first generation of the genetic

algorithm, we have to first decide its size pop−size. As

mentioned before, this decision on population size affect

the convergence of the algorithm. In particular, small

population size may lead to weak solutions, while, large

population size increases the space and time complexity

of the algorithm. Many literatures studied the influence

of the population size to the performance of genetic

algorithms (see [19] and the references therein). In this

paper, we discuss the effect of the population size on the

convergence time of the algorithm (cf. Section IV).

Algorithm 1 Genetic Algorithm for the Balanced Span-

ning Tree Problem

Input: An edge-weighted graph G, a population size

pop − size, a maximum number of generations

maxgen, a crossover probability pc, a mutation prob-

ability pm, a shortest paths tree Ts, a minimum

spanning tree Tm, and a real number α ≥ 1.

Output: An (α, β)-balanced spanning tree that mini-

mizes β.

1. Compute an initial population I0 (cf. Section III-C).

2. gen← 1.

3. While (gen ≤ maxgen) do

4. For i = 1 to pop− size do

5. Select a pair of chromosomes from Igen−1 (cf.

Section III-D).

6. Apply crossover operator with probability pc
to the selected pair of chromosomes to get

two offsprings (cf. Section III-E).

7. Endfor

8. For each chromosome in Igen−1, apply mutation

operator with probability pm to get an offspring

(cf. Section III-F).

9. Extend Igen−1 with valid offsprings output from

lines 6 and 8.

10. Find the minimum total weight chromosome

Tgen−1 in Igen−1.

11. If gen ≥ 2 and w(Tgen−2) = w(Tgen−1) =

w(Tgen), then break.

12. Select pop− size chromosomes from Igen−1 to

form Igen (cf. Section III-D).

13. gen← gen+ 1.

14. Endwhile

15. Output Tgen.

We apply random initialization to generate an initial

population. Namely, we compute each chromosome in

the initial population by repeatedly applying the fol-

lowing simple procedure as long as the length of the

chromosome (number of edges) is less than n − 1. Let

T denote the tree constructed so far by the procedure

(initially, T consists of a random vertex from V (G)).

We first select a random vertex v /∈ V (T) from the set

of the neighbors of all vertices in T , and then add the

the edge e = (u, v) to T , where u is the neighbor of v

in T . It is easy to verify that the above procedure returns

3

RIHAM MOHARAM ET AL.: GENETIC ALGORITHMS FOR BALANCED SPANNING TREE PROBLEM 539

a tree after exactly n − 1 iterations. The generated tree

T is added to the initial population only if it is valid,

where a tree T is said to be a valid chromosome if, for

every vertex v in T , it holds that dT (r, v) ≤ α ·dG(r, v).
The above algorithm is repeated as long as the number

of constructed population is less than pop− size.

D. Selection Process

In this paper, we apply four common selection

techniques: random selection, roulette wheel selection,

stochastic universal sampling selection, and tournament

selection. All these techniques, except the random selec-

tion, are called fitness-proportionate selection techniques

since they are based on a predefined fitness function

used to evaluate the quality of individual chromosomes.

Here, the objective function of the underlying balanced

spanning tree problem (i.e., the ratio of the the minimum

weight tree to the total weight of the chromosome)

is used as the fitness function of each chromosome.

We assume that the same selection technique is used

throughout the execution of the algorithm. The rest of

this section is devoted to briefly describe these selection

techniques.

Random Selection (RS): [2] It is the simplest se-

lection operator, where each chromosome has the same

probability to be selected. That is, from a population of

size q, each chromosome has the chance to be chosen

with probability 1/q.

Roulette Wheel Selection (RWS): [2], [8] In the

roulette wheel technique, the probability of selecting a

chromosome is based on its fitness value. More precisely,

each chromosome is selected with the probability that

equals to its normalized fitness value, i.e., the ratio

of its fitness value to the total fitness values of all

chromosomes in the set from which it will be selected.

Stochastic Universal Sampling Selection (SUS): [6],

[8] It is a single phase sampling; instead of a single

selection pointer used in roulette wheel approach, SUS

uses h equally spaced pointers, where h is the number

of chromosomes to be selected from the underlying

population. All chromosomes are represented in number

line randomly and a single pointer ptr ∈ (0, 1
h
] is

generated to indicate the first chromosome to be selected.

The remaining h−1 individuals whose fitness spans the

positions of the pointers ptr + i/h, i = 1, 2, . . . , h − 1

are then chosen.

Tournament Selection (TRWS): [2], [6] In this

approach, we first select a set of k < pop − size

chromosomes randomly from the current population.

From the selected set, we choose the required number

of chromosomes by applying the roulette wheel selection

approach.

E. Crossover Process

In each iteration of the algorithm we repeatedly select

a pair of chromosomes (parents) from the current gener-

ation and then apply crossover operator with probability

pc to the selected chromosomes to get new chromosomes

(offsprings). Simulations and experimental results of

the literatures show that a typical crossover probability

lies between 0.75 and 0.95. There are two common

crossover techniques: single-point crossover and multi-

point crossover. Many researchers studied the influence

of crossover approach and crossover probability to the

efficiency of the whole genetic algorithm, see for exam-

ple [17], [20] and the references therein. In this paper,

we use a multi-point crossover approach by exchanging a

randomly selected set of edges between the two parents.

In particular, for each selected pair of chromosomes T1

and T2, we generate a random number s ∈ (0, 1]. If

s < pc holds, we apply crossover operator to T1 and T2

as follows.

Define the two sets E1 = E(T1) − E(T2) and E2 =

E(T2) − E(T1) (|E1| = |E2| holds). Let t = |E1| =
|E2|, and generate a random number k from [1, t]. We

first choose a random subset E′
1 of cardinality k from

E1, and then add E′
1 to T2 to get a subgraph T ′ (i.e.,

T ′ = T2 ∪ E′
1). Clearly, T ′ contains k cycles each of

which contains a distinct edge from E′
1. For every edge

e = (u, v) in E′
1, we apply the following procedure to

fix a cycle containing e. Let T̃ be the current subgraph

(initially, T̃ = T ′). We first find a path P
T̃
(u, v) between

u and v in T̃−{e}. We then choose an edge ẽ in P
T̃
(u, v)

by applying the selection technique used in the algorithm

to the set of all edges in P
T̃
(u, v), assuming that the

weight of each edge is its fitness value. Finally, we delete

ẽ from subgraph T̃ . Note that, edges of large weights in

P
T̃
(u, v) have more chances to be deleted, and hence it

is more likely that the current subgraph T̃ attains total

weight less than that of T ′ − {e}. In general, it is more

likely that offsprings output from the crossover operation

attains total weights less than that of its parents.

4

540 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Similarly, we apply the above crossover technique by

interchanging the roles of T1 and T2 one more offspring.

Finally, we add each of the resulting spanning trees to

the set of generated offsprings if it is valid.

F. Mutation Process

Mutation is a genetic operator that intends to main-

tain the diversity among different generations of the

population by altering some random genes (edges) in a

chromosome. This may allow the algorithm to get better

solutions by avoiding local minimum. Many results ana-

lyzed the role of mutation operator in genetic algorithms

[1], [13], [17].

For a chromosome T in the current population, we

apply mutation operator such that each edge in T is

mutated with probability pm. The standard range of

pm lies between 1/ℓ and 0.5, where ℓ is the length

(number of edges) of the chromosome. With pm = 1/ℓ,

at least one gene (edge) on average should mutate. On

the other hand, with pm = 0.5, half of the edges should

mutate on average, and consequently a random offspring

is generated. In particular, for each edge e in T , we

generate a random number s ∈ (0, 1], and then mutate

e if s < pm holds by replacing e with a random

edge from Adj(e)− E(T). Let T ′ denote the subgraph

obtained after applying mutation operator to T . If T ′

is disconnected, then we discard it. Otherwise, T ′ is a

spanning tree.

Finally, we add the resulting spanning tree to the set

of generated offsprings only if it is valid.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed genetic

algorithms by applying it to several random instances

of both variants of the balanced spanning tree problem.

In particular, we generate a random graph G of n nodes

by applying Erdos and Renyi [11] approach in which

an edge is independently included between each pair of

nodes of G with probability p. Here, we generate random

graphs with sizes 6, 10, 15, and 20, and a randomly

chosen probability p. Moreover, all edge weights of the

generated graphs are set to random integers from the

range [1, 100].

For each of the generated graphs, we apply the pro-

posed algorithm with different selection techniques and

different values of α (resp., β). We set the population

size pop−size = 30, the maximum number of iterations

the genetic algorithm executes maxgen = 300, the

crossover probability pc = 0.9, and the mutation proba-

bility pm = 0.01. The algorithm terminates if either the

number of iterations exceeds maxgen or the solution

does not change for three consecutive iterations. All

obtained solutions are compared with the corresponding

optimal solutions obtained by considering all possibil-

ities of valid spanning trees in the underlying graphs.

There are many algorithms for finding all spanning trees

in undirected graphs, see for example [12].

We discuss the effect of the values of α (resp., β)

on the convergence of the algorithm. It is seen that the

running time of the algorithm decreases as the the value

of α (resp., β) increases, see Figures 1-2 (resp. Figures 5-

6).

We also study the effect of the population size pop−
size to the convergence of the algorithm. From the

experimental results, we observe that a constant fraction

of the number of nodes n is an appropriate value for the

population size, see Figures 3-4 and Figures 7-8.

All results presented in this section were performed

in MATLAB R2014b on a computer powered by a core

i7 processor and 16 GB RAM.

A. Minimizing β

In this section, we present our experimental results

for the problem in which α is given and the objective

is to minimize β. We apply our algorithm with different

values of α from the range [1, 2]. The results of applying

our genetic algorithm to random graphs with sizes n = 6,

n = 10, n = 15, and n = 20, are shown in Table I, Table

II, Table III, and Table IV, respectively. In particular,

Tables I-IV compare the values of β returned by the

algorithm with the corresponding optimal value of β.

It is seen that the proposed algorithm outputs optimal

balanced spanning tree for all the instances the algorithm

applies to.

TABLE I

VALUES OF β CORRESPONDING TO A RANDOM GRAPH WITH n = 6.

❍
❍
❍
❍

α

β
β-Optimal β-RS β-RWS β-SUS β-TRWS

1.1 1.142 1.142 1.142 1.142 1.142

1.2 1.047 1.142 1.142 1.047 1.142

1.3 1.047 1.047 1.047 1.047 1.047

1.4 1 1 1 1 1

5

RIHAM MOHARAM ET AL.: GENETIC ALGORITHMS FOR BALANCED SPANNING TREE PROBLEM 541

TABLE II

VALUES OF β CORRESPONDING TO A RANDOM GRAPH WITH

n = 10.

❍
❍

❍
❍

α

β
β-Optimal β-RS β-RWS β-SUS β-TRWS

1.1 1.021 1.021 1.021 1.021 1.021

1.2 1.010 1.021 1.010 1.010 1.010

1.3 1 1 1 1 1

TABLE III

VALUES OF β CORRESPONDING TO A RANDOM GRAPH WITH

n = 15.

❍
❍

❍
❍

α

β
β-Optimal β-RS β-RWS β-SUS β-TRWS

1.1 1.025 1.074 1.074 1.025 1.025

1.2 1.025 1.074 1.062 1.025 1.025

1.3 1.025 1.074 1.062 1.025 1.025

1.4 1.012 1.049 1.049 1.012 1.012

1.5 1 1.049 1.049 1 1

TABLE IV

VALUES OF β CORRESPONDING TO A RANDOM GRAPH WITH

n = 20.

❍
❍

❍
❍

α

β
β-Optimal β-RS β-RWS β-SUS β-TRWS

1.1 1.161 1.161 1.161 1.161 1.161

1.2 1.104 1.106 1.104 1.104 1.104

1.3 1.104 1.104 1.104 1.104 1.104

1.4 1.104 1.104 1.104 1.104 1.104

1.5 1.078 1.078 1.078 1.078 1.078

1.6 1.078 1.078 1.078 1.078 1.078

1.7 1.054 1.063 1.054 1.054 1.054

1.8 1.054 1.063 1.054 1.054 1.054

1.9 1.054 1.063 1.054 1.054 1.054

2 1.009 1.054 1.009 1.009 1.009

Figures 1-2 show the influence of the value of α

and the used selection technique on the execution time

of the algorithm for graphs of n = 15 and n = 20,

respectively. It is expected that the number of valid off-

springs obtained in each iteration increases by relaxing

the value of α, and consequently it is more likely that the

execution time of the algorithm decreases as the value

of α increases.

We also evaluate the influence of the population size

on the convergence of the proposed genetic algorithm.

For a graph of n nodes, we apply the algorithm with

population sizes n/3, 2n/3, n, 4n/3, and 2n. Figures

3-4 illustrate the running time of the algorithm applied

to graphs of sizes n = 15, and n = 20, respectively,

Fig. 1. The influence of α on the running time of the algorithm

(n = 15)

Fig. 2. The influence of α on the running time of the algorithm

(n = 20)

for fixed value α = 1.3. We observe that the execution

time of the algorithm increases as the population size

increases, and the algorithm attains the least running time

when the population size is set to a constant fraction of

the graph size n.

B. Minimizing α

In this section, we present our experimental results for

the problem in which β is given and the objective is to

6

542 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 3. The influence of pop − size on the running time of the

algorithm (n = 15)

Fig. 4. The influence of pop − size on the running time of the

algorithm (n = 20)

minimize α. We apply our algorithm with different val-

ues of β. The results of applying our genetic algorithm

to random graphs with sizes n = 6, n = 10, n = 15,

and n = 20, are shown in Table V, Table VI, Table VII,

and Table VIII, respectively. Also, for this problem, the

proposed algorithm outputs optimal balanced spanning

tree for all instances the algorithm applies to.

Figures 5-6 show the influence of the value of β and

the used selection technique to the execution time of the

TABLE V

VALUES OF α CORRESPONDING TO A RANDOM GRAPH WITH n = 6.

❍
❍
❍
❍

β

α
α-Optimal α-RS α-RWS α-SUS α-TRWS

1.1 1.3571 1.3571 1.3571 1.3571 1.3571

1.2 1.285 1.285 1.285 1.285 1.285

1.3 1.285 1.285 1.285 1.285 1.285

1.4 1 1 1 1 1

TABLE VI

VALUES OF α CORRESPONDING TO A RANDOM GRAPH WITH

n = 10.

❍
❍
❍
❍

β

α
α-Optimal α-RS α-RWS α-SUS α-TRWS

1.1 1.238 1.238 1.238 1.238 1.238

1.2 1.096 1.096 1.096 1.096 1.096

1.3 1 1 1 1 1

TABLE VII

VALUES OF α CORRESPONDING TO A RANDOM GRAPH WITH

n = 15.

❍
❍
❍
❍

β

α
α-Optimal α-RS α-RWS α-SUS α-TRWS

1.1 1.173 1.208 1.173 1.173 1.173

1.2 1.157 1.157 1.157 1.157 1.157

1.3 1 1 1 1 1

TABLE VIII

VALUES OF α CORRESPONDING TO A RANDOM GRAPH WITH

n = 20.

❍
❍
❍
❍

β

α
α-Optimal α-RS α-RWS α-SUS α-TRWS

1.1 1.444 1.444 1.444 1.444 1.444

1.2 1.112 1.444 1.112 1.112 1.112

1.3 1.112 1.444 1.112 1.112 1.112

1.4 1.048 1.112 1.048 1.048 1.048

1.5 1.048 1.048 1.048 1.048 1.048

1.6 1.048 1.048 1.048 1.048 1.048

1.7 1 1 1 1 1

algorithm for graphs of n = 15 and n = 20, respectively.

Most probably, the number of valid offsprings obtained

in each iteration increases by relaxing the value of β, and

consequently it is more likely that the execution time of

the algorithm decreases as the value of β increases.

We evaluate the influence of the population size on

the convergence of the proposed genetic algorithm. For

a graph of n nodes, we apply the algorithm with pop-

ulation sizes n/3, 2n/3, n, 4n/3, and 2n. Figures 7-

8 illustrate the running time of the algorithm applied

7

RIHAM MOHARAM ET AL.: GENETIC ALGORITHMS FOR BALANCED SPANNING TREE PROBLEM 543

Fig. 5. The influence of β on the running time of the algorithm

(n = 15)

Fig. 6. The influence of β on the running time of the algorithm

(n = 20)

to graphs of sizes n = 15, and n = 20, respectively,

for fixed value β = 1.3. We observe that the algorithm

attains the least running time when the population size

is set to a constant fraction of the graph size n.

V. CONCLUSION

In this paper, we have studied the problem of finding

a tree that balances a shortest path tree and a minimum

spanning tree in undirected edge-weighted graphs. In

Fig. 7. The influence of pop − size on the running time of the

algorithm (n = 15)

Fig. 8. The influence of pop − size on the running time of the

algorithm (n = 20)

particular, we have focused on two NP-complete variants

of the problem in which we are given a bound on how

far the required tree is from the shortest path tree (resp.,

minimum spanning tree), and the objective is to find the

closest tree to the minimum spanning tree (resp., shortest

path tree) under this bound. We have designed genetic

algorithms for these problems. We have evaluated our

algorithm by applying it to random graph instances. The

algorithm outputs optimal balanced spanning tree for all

8

544 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

instances it has been applied to. It will be interesting

to relax our model to balanced subgraphs instead of

balanced trees, that is, the problem of finding a minimum

weight subgraph such that the distance between any two

vertices u and v in the subgraph is at most a given

constant times the shortest distance between the two

vertices in the underlying graph (this problem is known

as t-spanner problem in the literatures). See [23], [24],

[25], [26] and the references therein.

REFERENCES

[1] O. Abdoun, J. Abouchabaka, and C. Tajani, Analyzing the Perfor-

mance of Mutation Operators to Solve the Travelling Salesman

Problem, CoRR abs/1203.3099, 2012.

[2] Andris P. Engelbrecht, Computational Intelligence: an introduc-

tion, John Wiley & Sons, 2007.

[3] B. Awerbuch, A. Baratz, and D. Peleg, Cost-sensetive analysis

of communication protocols, Proc. on Principles of Distributed

Computing, pp. 177-187, 1990.

[4] B. Awerbuch, A. Baratz, and D. Peleg, Efficient broadcast and

light-weight spanners, Manuscript, 1991.

[5] K. Bharath-Kumar and J. M. Jaffe, Routing to multiple destina-

tions in computer networks, IEEE Transactions on Communica-

tions 31 (3), pp. 343-351, 1983.

[6] T. Blickle and L. Thiele, A comparison of Selection Schemes

Used in Genetic Algorithms (Technical Report No. 11), Swiss

Federal Institute of Technology (ETH) Zurich, Computer Engi-

neering and Communications Networks Lab (TIK), 1995.

[7] R Campos and M Ricardo, A fast algorithm for computing

minimum routing cost spanning trees, Computer Networks 52

(17), pp. 3229-3247, 2008.

[8] A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fonseca, The

Matlab Genetic Algorithm User’s Guide, UK SERC, 1994.

[9] J. Cong, A. Kahng, G. Robins, M.Sarrafzadeh, and C. K. Wong,

Performance-driven global routing for cell based IC’s, Proc. IEEE

Intl. Conference on Computer Design, pp. 170-173, 1991.

[10] J. Cong, A. Kahng, G. Robins, M.Sarrafzadeh, and C. K. Wong,

Provably good performance-driven global routing, IEEE Trans-

action on CAD, pp. 739-752, 1992.

[11] P. Erdos and A. Renyi, On Random Graphs, Publ. Math, 290,

1959.

[12] H. N. Gabow and E. W. Myers, Finding all spanning trees of

directed and undirected graphs, SIAM Journal on Computing, 7,

pp. 280-287, 1978.

[13] J. Hesser and R. Männer, Towards an Optimal Mutation Prob-

ability for Genetic Algorithms, Proceedings of 1st workshop in

Parallel problem solving from nature, pp. 23-32, 1991.

[14] G. Huang, X. Li, and J. He, Dynamic Minimal Spanning Tree

Routing Protocol for Large Wireless Sensor Networks. In Pro-

ceedings of the 1st IEEE Conference on Industrial Electronics

and Applications, Singapore, pp. 1-5, 2006.

[15] S. Khullar, B. Raghavachari, and N. Young, Balancing minimum

spanning trees and shortest-path trees, Algorithmica 14, pp. 305-

322, 1995.

[16] E. Kreyszig, Advanced Engineering Mathematics, John Wiley &

Sons, 2011.
[17] C. Li, H. Zhang, B. Hao, and J. Li, A Survey on Routing

Protocols for Large-Scale Wireless Sensor Networks. Sensors 11,

pp. 3498-3526, 2011.

[18] W-Y. LIN, W-Y. LEE, and T-P. Hong, Adapting Crossover and

Mutation Rates in Genetic Algorithms, the Sixth Conference

on Artificial Intelligence and Applications, Kaohsiung, Taiwan,

2001.

[19] O. Roeva, S. Fidanova, and M. Paprzycki, Influence of the

Population Size on the Genetic Algorithm Performance in Case

of Cultivation Process Modelling. In the Proceedings of the

Federated Conference on Computer Science and Information

Systems pp. 371-376, 2013.

[20] K. Vekaria and C. Clack, Selective Crossover in Genetic Algo-

rithms: An Empirical Study, volume 1498 of Lecture Notes in

Computer Science, pp. 438-447, 1998.

[21] B. Xiao, Q. ZhuGe, and E. H.-M. Sha, Minimum Dynamic

Update for Shortest Path Tree Construction, Global Telecommu-

nications Conference, San Antonio, TX, pp. 126-130, 2001.

[22] B. Ye We and K. Chao, Spanning Trees and Optimization

Problems, Chapman & Hall, 2004.

[23] M. Sigurd and M. Zachariasen, Construction of Minimum-Weight

Spanners, Springer, Verlag Berlin Heidelberg, pp. 797-808, 2004.

[24] A. M. Farley, D. Zappala A. Proskurowski and K. Windisch,

Spanners and Message Distribution in Networks, Dicrete Applied

Mathematics, pp. 159-171, 2004.

[25] J. Gudmundsson, C. Levcopoulos and G. Narasimhan, Fast

Greedy Algorithms for Constructing Sparse Geometric Spanners,

SIAM Journal on Computing, pp. 1479-1500, 2002.

[26] G. Navarro, R. Paredes, and E. Chavez, t-Spanners as a Data

Structure for Metric Space Searching, International Symposium

on String Processing and Information Retrieval, SPIRE, LNCS

2476, pp. 298-309, 2002.

9

RIHAM MOHARAM ET AL.: GENETIC ALGORITHMS FOR BALANCED SPANNING TREE PROBLEM 545

