

฀

Abstract—The increasing diversity of end-devices used by

users to access their applications and systems strengthens the

need for device-independent methods for implementing these

applications. The Device-Independent Architecture (DIA) is one

of the available approaches to this problem, but it does not

directly address the issue of user interface (UI) device-

independency. This issue can be addressed by real-time UI

adaptation, but it is not clear whether the DIA architecture

requires new UI adaptation methods or may use existing ones.

This paper presents results of our analysis of this issue.

Through theoretical model-based analysis of UI adaptation in

various application architectures and through case studies of

practical UI adaptation solutions we came up with a conclusion

that the DIA-based systems may use existing real-time UI

adaptation methods. Although, they have to be used with a

different set of optimization criteria.

I. INTRODUCTION

HE development of software applications that use end-

devices to communicate and interact with users becomes

a complex and time-consuming issue. The increasing

diversity of Internet-connected end-devices (especially

mobile devices) forces application developers to implement

multiple variants of each application. Each software platform

(Windows, Android, iOS, etc.) and each device type

(smartphone, tablet, laptop, watch, glasses, smart TV, etc.)

has its own requirements and constraints, which makes it

difficult to address all of them with a single uniform

implementation. Device-independency of the application

logic and data is hindered by different programming

languages and disparate APIs provided by different software

platforms. Device-independency of the application user

interface (UI) is even harder to address because of the

number and diversity of possible input and output user

communication channels – starting with screen sizes and

resolutions and ending with non-standard symbolic interfaces

popular in Internet of Things solutions.

To cope with this problem we have proposed the Device-

Independent Architecture (DIA) [1] which solves the logic

and data device-independence issues. However the DIA does

฀ This work was supported by the Poznan University of Economics

not directly address the UI device-independence aspect,

which is supposed to be solved with proper UI design [2],

[3] and UI adaptation [4], [5].

To make sure the DIA does not hinder the ability to use

UI adaptation to provide UI device-independence in the

reported research we have sought to answer the following

question: Does DIA-based software may use existing real-

time UI adaptation methods?

To be able to properly analyze the problem we have

defined a model of the run-time UI adaptation and

generation process. We have used this model to theoretically

examine the run-time UI adaptation and generation process

in various software architectures similar to the DIA.

Additionally we have performed a series of case studies of

real implementations of UI adaptation methods to check if

these practical solutions confirm our theoretical conclusions.

Our main findings are the following. Through our research

we have shown that DIA-based software may use existing

real-time UI adaptation methods designed for client-server

systems. Moreover, we have learned that the main limiting

factor for DIA-based implementations of these UI adaptation

methods is not the performance of an end-device, but

network latency and throughput. Therefore, to provide

properly optimized UIs for DIA-based solutions, existing

real-time UI-adaptation methods have to be used with a

different set of key metrics and guidelines.

The paper is composed of five sections. Section I is the

introduction. Sections II and III provide background

information on the topics of UI adaptation and Device-

Independent Architecture. Section IV contains the main

discussion and overview of case studies. Finally, the paper is

briefly concluded in Section V.

II. UI ADAPTATION

UI adaptation activities can be split into two phases:

design-time UI adaptation and run-time UI adaptation. These

two UI adaptation phases focus on different aspects that may

influence the UI adaptation process. The whole process, with

its various aspects, is best described by the CAMELEON

Reference Framework [6], which provides designers and

developers with generic principles for structuring and

T

Run-time UI Adaptation in the Context of

the Device-Independent Architecture

 Jacek Chmielewski
Poznan University of Economics

Department of Information Technology,

Al. Niepodległości 10,
61-875 Poznan, Poland

Email: chmielewski@kti.ue.poznan.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1157–1162

DOI: 10.15439/2015F259

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1157

understanding a model-based UI development process.

Model-based approaches [7], which rely on high-level

specifications, provide the foundations for code generation

and code abstraction. The framework fuses together different

models that influence the overall UI adaptation. As shown in

Figure 1, the framework covers the inference process from

high-level abstract descriptions to run-time code, using a

four-step reification process: from Concepts-and-Tasks

Model (CTM), to Abstract User Interface (AUI), to Concrete

User Interface (CUI), to Final User Interface (FUI). The

CTM brings together concepts and tasks descriptions

produced by designers for a particular interactive system and

a particular target. The AUI is a universal description of the

domain concepts and functions in a way that is independent

of the UI implementation (in terms of UI widgets). At the

CUI level the look and feel of a UI is defined, but the

description is still device-independent. Finally, the FUI is

expressed in a format suitable for a specific end-device and

is tailored for this device. At each step the reification is

influenced by the "context of use", defined as a set of

parameters describing a user, a platform and the

environment. Most of this process belongs to the design-time

phase. The run-time phase includes the last reification from

the CUI (device-independent) to the FUI (device-specific)

and translations between FUI variants.

Both UI adaptation phases are different in nature. In our

research on device-independent systems we do not address

general UI design issues and we focus on the run-time UI

adaptation phase, assuming that the design-time phase

produces a device-independent UI description, which is used

as a starting point for the run-time UI adaptation.

III. DEVICE-INDEPENDENT ARCHITECTURE

The Device-Independent Architecture (DIA) has been

proposed to facilitate analysis and development of

applications that can be made available to users via any

capable device from the large, diverse and fast growing pool

of Internet-enabled end-devices – i.e., devices that are used

directly by users to interact with an application, but not

sensors that passively record a state of an environment. As

presented in [8], the idea of DIA originates from the Service-

Oriented Architecture, where systems are decomposed into

atomic services, and processes use such services without

knowing much about their implementation. A similar

approach can be used to decompose an end-device. Each

end-device, be it a laptop or a smartphone, provides:

resources, services, and user interaction channels. Resources

encompass processing power, memory and storage. Services

are providers of context information, such as location,

temperature, light intensity, and data from other types of

sensors. User interaction channels (both incoming and

outgoing) are the means to communicate with a user and

include: screen, vibration, keyboard, microphone, camera,

etc. The key concept is to use external resources, instead of

what is provided by an end-device, and to generalize the way

services and user interaction channels are accessed.

Therefore, in DIA, the separation of application from end-

Fig. 1 CAMELEON Reference Framework

1158 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

devices, which enables the device independence, is achieved

by:

- executing an application outside of end-devices,

- accessing sensor data provided by a device via a

standardized API,

- using universal UI descriptions, and

- communicating with a user via a set of well-defined user

interaction channels.

The execution of the application on external resources

ensures that the application logic does not depend on the

hardware or software platform of an end-device. The

interesting consequence is that, in this architecture, end-

devices could be deprived of their general purpose resources,

as these resources are not needed. Services publish data in

service-specific formats (e.g., location coordinates for a

geolocation service, numerical data for a temperature sensor,

and so on) independently of their implementation on a

particular end-device. Therefore, it is feasible to build a

middleware providing a device-independent API, such as the

one proposed in Wolfram Language [9], to access such

services. The usage of a universal UI description is a key

requirement for making the UI of an application independent

of parameters of user communication channels available on a

given end-device (e.g. screen size and pixel density).

However, to enable a UI presentation tailored to

parameters of a specific end-device, the generic UI

description has to be properly adapted before reaching the

user. That is why we have decided to research whether DIA-

based software may use existing real-time UI adaptation

methods.

IV. MODEL AND ANALYSIS

Run-time UI adaptation is a process that transforms a

high-level, device-independent UI description (often model-

based) prepared at design-time into a final UI presentation.

In ideal situations, the high-level UI description may be

presented in different ways depending on the UI modality of

available user communication channels. For example,

presentation of the same UI could be done on screen

(Graphical User Interface (GUI)) or via speakers (e.g. Voice

User Interface (VUI)). In general, the execution of a run-

time UI adaptation process requires three parameters: the UI

description, the content and a context of use. The content is

used to fill-in the UI. The context of use influences the UI

adaptation process and allows tailoring the final UI to the

user, her end-devices and situation (location, time, etc.).

A. Run-time UI adaptation model

To be able to analyze the UI adaptation in different

application architectures we have defined a simplified model

of the UI adaptation and generation process. We call it the

GARP model. The GARP model, presented in Figure 3, is

composed of four main steps:

Step 1: input gathering (G). At the beginning of the

process it is necessary to gather all input required for UI

adaptation. The result of this step is a triplet of: UI

Fig. 2 Device-Independent Architecture diagram

Fig. 3 Model of the UI adaptation and generation process

JACEK CHMIELEWSKI: RUN-TIME UI ADAPTATION IN THE CONTEXT OF THE DEVICE-INDEPENDENT ARCHITECTURE 1159

description, content and context.

Step 2: adaptation (A). In this step the content is used to

fill-in the UI and the context is used to guide the

transformation of the UI description into a final UI tailored

for the user, her end-devices and situation. The result of this

step is a device-specific UI description encoded with a

specialized UI language such as HTML, QML, etc.

Step 3: rendering (R). The device-specific UI description

provided by step 2 is interpreted here, in step 3 and the final

UI presentation form is calculated. The final UI presentation

form is data prepared for a specific user communication

channel, e.g. pixels for screen or audio bits for speakers.

Step 4: presentation (P). The last step of the process is

about presenting the UI to the user using a specific user

communication channel of a specific end-device, e.g.

showing images on screen or playing audio through

speakers.

To make the analysis easier to follow, the model

represents only the way towards a user and ignores the

process of recording and interpreting user actions.

Nevertheless, the path from a user can be modelled in a

similar way, so our claims are valid for the whole user

interaction loop.

For the analysis we have identified three classes of

systems:

Client-side adaptation systems (CSA). Systems of this

class include applications that are executed entirely on an

end-device (a.k.a. local applications) and client-server

applications with UI adaptation done on the client side.

Server-side adaptation systems (SSA). This class includes

client-server applications with UI adaptation performed on

the server side.

DIA-based systems (DIA), which include applications

based on the Device-Independent Architecture.

Our goal is to see how the UI adaptation process differs

among these classes of systems and how these differences

influence the applicability of known UI adaptation methods.

We acknowledge existence of in-between solutions.

However, these three classes were selected to clearly show

differences in the UI adaptation process.

B. UI adaptation in CSA systems

The UI adaptation and generation process in CSA systems

is done either entirely on an end-device (client side) or the G

step is supported by the server side, which provides for

example the content, UI description or user preferences.

However, the fragment of the context gathering related to the

end-device is local, so the G step can be seen as a task

performed jointly by the server side and the client side. The

way the G step is performed (locally or split between server

and client sides) does not influence the actual UI adaptation,

because from the point of view of the A step the results of

the G step are always provided in the same way – locally.

Fig. 4 GARP model in CSA systems

In CSA systems the A step may be implemented using

existing UI adaptation methods designed for the use on an

end-device. These methods are optimized for potentially

limited processing capabilities of end-devices and are closely

related to end-device characteristics and usage scenarios.

The local UI adaptation methods include solutions built-in

into iOS and Android mobile operating systems and used by

multiple mobile applications that run on various smartphones

and tablets. On these mobile platforms the main issue is the

diversity of screen sizes and pixel densities, so it is assumed

that each application provides multiple variants of graphical

assets (tailored to different screen densities) and some kind

of a flexible layout that can be recalculated for any screen

size. The drawback of these UI adaptation methods is that

they are designed to cope with hardware parameters of a

‘standard device’ (in most cases a device with a

touchscreen). Any UI adaptation that is supposed to take into

account for example user preferences or non-standard

devices, is not supported by the platform and has to be

implemented manually.

The use of the server side for the G step usually does not

change the fact that the adaptation implemented on the client

side is somehow bound to the characteristic of an end-

device. In our previous research [10] - [12] we have

analyzed solutions that go beyond this local-only approach

and use the server side to provide UI adaptation hints

embedded in the high-level UI description provided by the G

step, but even such extensions do not change the fact that the

UI adaptation itself is device-specific, which makes it hard to

reuse on other types of devices (devices with different

hardware components, e.g. with two screens).

C. UI adaptation in SSA systems

In SSA systems the two initial steps: G and A, are

performed on the server side, and the two other steps: R and

P, are performed on the client side. The server gathers all

input data, runs the UI adaptation and sends the device-

specific UI description to the client. The client then

interprets the UI description and presents it to a user.

1160 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 5 GARP model in SSA systems

The SSA systems approach the issue of portability of the

UI adaptation, shown for CSA systems, by implementing the

A step on the server side. Such approach means that the UI

adaptation is not bound by the performance of an end-device

and can use external services to support the UI adaptation

task (e.g. multimedia converters). Results of our previous

research on UI adaptation in SSA systems [12] - [15]

confirm that the A step in SSA systems may accommodate

end-devices with disparate hardware configurations by using

multiple or dynamic UI adaptation scenarios. However, the

result of the A step is still interpreted on an end-device.

Therefore is susceptible to differences in the final rendering

and presentation on different end-devices. So full control of

the resulting UI is not possible.

D. UI adaptation in DIA systems

The Device-Independent Architecture is based on an

assumption that the whole processing is done outside of an

end-device (the client side) and the end-device receives a

pre-rendered UI ready for presentation, without the need for

any interpretation. So in the case of DIA systems all three

initial steps of the GARP model are done on the server side

and only the P step is performed on the client side. The data

transferred between the server and the client is usually a

stream (e.g. a video or audio stream) or a static UI state (e.g.

an image of the UI to be presented on screen or audio file to

be played through speakers) ready to be presented on an end-

device.

Fig. 6 GARP model in DIA systems

The DIA approach enables full control over the final UI

presented to a user by implementing also the R step on the

server side. UI adaptation methods used in DIA systems can

be still the same as for SSA systems, but the fact that the

end-device handles only the P step ensures that devices will

not show a UI in a way that deviates from the designer

intentions. The consequence of moving the R step to the

server side is a different kind of data being transferred

between the server side and the client side. In SSA systems,

the client side receives a device-specific UI description

encoded in a specialized UI language. In DIA systems, the

server side has to send either a continuous stream of data

tailored for specific user communication channels (e.g. video

stream for a screen or an audio stream for speakers) or a

static UI state composed of multiple files that are targeted at

different user communication channels (e.g. image files to be

shown on a screen or audio files to be played through

speakers). The main difference here is the increased size of

data that has to be transferred. More data to transfer could

mean longer response times, but our previous research [16]

showed that in analyzed scenarios DIA-based systems can

still maintain proper response times to UI interactions

initiated by a user, despite the increased size of transferred

data.

V. CONCLUSION

The Device-Independent Architecture can be treated as a

special case of a client-server architecture, in which the

client side is assumed to be an extremely thin client and in

which all the processing is done on the server side. The DIA

takes it even further and defines the client side as a set of

user communication channels, which makes it possible to

model multiple end-devices as a complex client device, but

this distinction does not necessarily change the way the UI

adaptation is performed. Therefore, DIA systems may use

the same existing UI adaptation methods that were designed

for SSA systems, or for client-server systems in general.

The main difference is related to the fact that in DIA

systems the data transferred between the server side and the

client side tends to be larger than in the case of SSA systems.

Therefore, network usage optimization is crucial. Especially

that the transmission delay will directly influence the UI

responsiveness. Moreover, used communication protocols

and formats of presentation data sent to an end-device have

to be negotiated beforehand, to make sure that the end-

device is able to receive and present it properly.

Summarizing, despite using a different implementation of

the GARP model, the DIA systems may use existing real-

time UI adaptation methods. The difference in the

implementation of GARP model influences only the

optimization of the UI adaptation and generation process. In

CSA systems the key optimization aspect is end-device

performance. In SSA systems the key optimization aspect is

uniform interpretation of the device-specific UI description.

While, in DIA systems the key optimization aspects are

network-related. First, it is necessary to use data formats that

minimize the amount of bits that have to be transmitted.

Second, it is crucial to use the best possible data transfer

protocols. The best are the ones with low overhead, low

latency and support for QoS. Both points should be taken

into account by the run-time UI adaptation task, because the

nature of a UI (state-based or continuous) may influence the

set of suitable transmission protocols.

JACEK CHMIELEWSKI: RUN-TIME UI ADAPTATION IN THE CONTEXT OF THE DEVICE-INDEPENDENT ARCHITECTURE 1161

We expect that different protocols will be best suited for

different user interaction scenarios. Our next research goal in

this area is be to identify user interaction patterns and UI

design patterns, which could be used to define rules for

selecting the best protocol and data formats for a given user

interaction scenario.

REFERENCES

[1] Chmielewski, J., Towards an Architecture for Future Internet

Applications, in: The Future Internet, vol. Lecture Notes in Computer

Science 7858 , Springer Berlin Heidelberg, 2013, pp. 214-219, ISBN

978-3-642-38081-5, DOI 10.1007/978-3-642-38082-2_18

[2] Meixner, G., Calvary, G., Coutaz, J., Introduction to Model-Based

User Interfaces, W3C Working Group Note, December 2013,

http://www.w3.org/2011/mbui/drafts/mbui-intro/

[3] Sottet, J. S., Calvary, G., Favre, J. M., & Coutaz, J., Megamodeling

and metamodel-driven engineering for plastic user interfaces: MEGA-

UI. In Human-Centered Software Engineering, pp. 173-200. Springer

London. 2009, DOI 10.1007/978-1-84800-907-3_8

[4] Jaouadi, I., Ben Djemaa, R., & Ben Abdallah, H., Interactive Systems

Adaptation Approaches: A survey. In ACHI 2014, The Seventh

International Conference on Advances in Computer-Human

Interactions, pp. 127-131. March 2014, ISSN: 2308-4138, ISBN: 978-

1-61208-325-4

[5] Ye, J. H., & Herbert, J., Framework for user interface adaptation. In

User-Centered Interaction Paradigms for Universal Access in the

Information Society, pp. 167-174. Springer Berlin Heidelberg. 2004

DOI 10.1007/978-3-540-30111-0_14

[6] Calvary, G., Coutaz, J., Bouillon, L., Florins, M., Limbourg, Q.,

Marucci, L., Paternò, F., Santoro, C., Souchon, N., Thevenin, D.,

Vanderdonckt, J., The CAMELEON Reference Framework,

Deliverable 1.1, CAMELEON Project, 2000

[7] Szekely, P., Retrospective and challenges for model-based interface

development, in Design, Specification and Verification of Interactive

Systems ’96, Eurographics 1996, pp. 1-27. Springer Vienna. 1996

DOI 10.1007/978-3-7091-7491-3_1

[8] Chmielewski, J., and K. Walczak, Application Architectures for

Smart Multi-device Applications, in: Proceedings of the Workshop on

Multi-device App Middleware 2012, Workshop on Multi-device App

Middleware 2012, Montreal (Canada), December 3 – 7, 2012, ACM,

New York, 2012, pp. 5:1 - 5:5, ISBN 978-1-4503-1617-0, DOI

10.1145/2405172.2405177

[9] Wolfram Language for Knowledge-Based Programming,

https://www.wolfram.com/language/, 2015

[10] Chmielewski, J., K. Walczak, and W. Wiza, Mobile Interfaces for

Building Control Surveyors, in: Software Services for e-World, IFIP

Advances in Information and Communication Technology, Vol. 341,

ed. Cellary, W., and E. Estevez, The 10th IFIP WG.6.11 Conference

on e-Business, e-Services and e-Society I3E 2010, Buenos Aires,

Argentina, November 3-5, 2010, Springer, 2010, pp. 29-39, ISBN

978-3-642-16282-4 DOI 10.1007/978-3-642-16283-1_7

[11] Rykowski, J., and J. Chmielewski, Automatyczna generacja

zintegrowanego interfejsu człowiek-maszyna na potrzeby

inteligentnego budynku , in: Inteligentne budynki - teoria i praktyka,

ed. Mikulik, J. , Oficyna Wydawnicza Text, Kraków, 2010, pp. 166-

188, ISBN 978-83-60560-54-9

[12] Chmielewski, J., K. Walczak, W. Wiza, and A. Wójtowicz, Adaptable

User Interfaces for SOA Applications in the Construction Sector, in:

SOA Infrastructure Tools - Concepts and Methods, ed.

Ambroszkiewicz, S., J. Brzeziński, W. Cellary, A. Grzech, and K.

Zieliński, Wydawnictwa Uniwersytetu Ekonomicznego w Poznaniu,

Poznań, 2010, pp. 493-469, ISBN 978-83-7417-544-9

[13] Jansen, A., Bronmark, J., & Chmielewski, J. (2013). Method of

adapting a user interface in industrial process monitoring and control

applications. The Swedish Patent and Registration Office. SE

1300702-6

[14] Walczak, K., W. Wiza, D. Rumiński, J. Chmielewski, and A.
Wójtowicz, Adaptable User Interfaces for Web 2.0 Educational

Resources, in: IT Tools in Management and Education - Selected

Problems, ed. Kiełtyka, L., Wydawnictwo Politechniki

Częstochowskiej, Częstochowa, 2011, pp. 104-124, ISBN 978-83-

7193-508-4

[15] Walczak, K., J. Chmielewski, W. Wiza, D. Rumiński, and G.
Skibiński, Adaptable Mobile User Interfaces for e-Learning

Repositories, IADIS International Conference on Mobile Learning,

Avila (Spain), Marc 10-12, 2011, IADIS, 2011, pp. 52-60, ISBN 978-

972-8939-45-8

[16] Chmielewski, J., Device-Independent Architecture for Ubiquitous

Applications, in: Personal and Ubiquitous Computing, Volume 18,

Issue 2, pp 481-488, Springer London, 2014, DOI 10.1007/s00779-

013-0666-y

1162 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

