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Abstract—This paper deals with a method of faults detection
and identification based on the clusterization of the multiple
diagnostic signals. Various types of faults and character of
their occurrence were simulated using DAMADICS Benchmark
Process Control System. A great advantage of the applied
approach based on self-organizing (Kohonen) maps is that even
the smallest differences in signals allow for detection, isolation
and identification of type of occurred faults with respect to
the healthy condition of the investigated system based on the
unsupervised learning. It was shown that in some cases the faults,
which are undetectable during monitoring of simple heuristic and
statistical parameters and other previously applied methods, are
recognizable when the approach based on self-organizing maps
is applied. The case studies presented in this paper show the
faults detection procedure as well as clusterization of types and
successful classification of almost all the unique faulty states of
the investigated system.

I. INTRODUCTION

A
N increasing usage of control and automation systems

in industrial applications influences on development of

novel methods of fault diagnosis, particularly their detection,

isolation and identification. Moreover, the industrial require-

ments for such procedures are to be sensitive even for the

early stage of development of faults and should ensure the

implementation of them in on-line monitoring systems. The

specificity of the physical nature of some faults requires the

application of new methods in order to detect and classify

them with the lowest possible false alarms.

Recent studies in the area of the fault diagnosis are based on

many different approaches. They can be classified, in general,

into the quantitative and qualitative approaches. The most

simple quantitative approach is an application of statistical

measures to the diagnostic signals, observation and inference

about a fault presence basing on these measures [1]. However,

there is a large amount of research done with application

of qualitative fault diagnosis, primarily using soft computing

methods. Several authors used such methods in the fault

diagnosis, in particular in [2], [3] the genetic programming

for observer-based fault diagnosis and evolutionary learning of

fuzzy models were used, while the authors of [4] used a fuzzy

qualitative reasoning approach for the fault detection problem.

A lot of studies are concerned with artificial neural networks
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(ANN) application to such a class of problems. In [5] the

authors applied the group method of data handling (GMDH)

neural networks, while in [6], [7] the authors used a neuro-

fuzzy approach and ANN with decision trees, in [8] the hidden

Markov model for the fault diagnosis was applied.

One of the novel and promising diagnostic tools is the

group of approaches based on Kohonen self-organizing maps

(SOM). SOM are very often used in problems of the analysis

of large data structures e.g. in the problems of clustering or

classification [9], [10], [11], [12], image processing [13], [14],

[15], robotics [16], [17], time series forecasting [18], [19], [20]

and faults detection and identification [21], [22], [23].

In the presented paper the authors analyzed and discussed

the overall analysis of all faults using SOM-based approach,

which diagnostic signals are able to be generated using the

DAMADICS benchmark. The only previous study [24], which

was carried out on DAMADICS data using the SOM-based

approach, presented a possibility of application of SOM to the

faults clusterization, but the results are limited to the analysis

of three selected faults. In the present study the process signals

were simulated basing on real measurements of diagnostic sig-

nals on the actuator system during the evaporisation process in

the Lublin sugar factory (Poland) [25], [26]. In order to detect,

isolate and identify the faults simulated using DAMADICS

benchmark actuator system the SOM-based approach was

applied.

II. DESCRIPTION OF THE PROBLEM AND THE

METHODOLOGY

A. The DAMADICS benchmark

The investigated problem of the faults detection and iden-

tification was based on sets of diagnostic signals, generated

using the DAMADICS benchmark actuator system, which

simulated various types of possible faults. The scheme of the

investigated system is presented in Fig. 1 [27]. The actuator

system consists of the pneumatic servo-motor S, a control

valve V and a positioner P . These three parts of a system are

composed by a set of measured diagnostic signals: external

controller output CV , flow sensor measurement F , input P1
and output P2 valve pressure, medium temperature T and the

rod displacement X .

Using the DABLib Simulink R©-Matlab R© library 19 fault

types with a variable number of fault intensities (three stages
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TABLE I: Types of faults simulated in the DAMADICS

benchmark

Symbol Fault

f1 Valve clogging
f2 Valve sedimentation
f3 Valve erosion
f4 Increased of valve or bushing friction
f5 External leakage
f6 Internal leakage
f7 Medium evaporation or critical flow
f8 Twisted servo-motor’s piston rod
f9 Servo-motor’s housing or terminals tightness
f10 Servo-motor’s diaphragm perforation
f11 Servo-motor’s spring fault
f12 Electro-pneumatic transducer fault
f13 Rod displacement sensor fault
f14 Pressure sensor fault
f15 Positioner supply pressure drop
f16 Increase of pressure on valve inlet
f17 Pressure drop on valve inlet
f18 Fully or partly opened bypass valves
f19 Flow rate sensor fault

of abrupt faults and the incipient fault) can be modelled,

which gives total of 45 cases including the case with no

faults occurrence. One should consider that not every fault

simulation has physical foundation of existence, thus for some

types of faults a limited number of intensity subcases existed.

The complimentary list of faults that can be modelled and

which were used in further analyses was presented with a

description in Table I and Table II [27].

TABLE II: Faults able for simulation in

the DAMADICS benchmark

No. Small* Medium* Large* Incipient

f1 X X X
f2 X X
f3 X
f4 X
f5 X
f6 X
f7 X X X
f8 X X X
f9 X
f10 X X X
f11 X X
f12 X X X
f13 X X X X
f14 X X X
f15 X
f16 X X X
f17 X X
f18 X X X X
f19 X X X
* Abrupt faults

B. Previous studies related to diagnosis using DAMADICS

benchmark

The problem of faults identification based on DAMADICS

benchmark has been investigated by several scientific teams.

The first studies were performed by the authors of the bench-

mark using various methods of faults detection, isolation

Fig. 1: The scheme of actuator system

and identification. One can notice the general tendency in

these papers where the authors take into consideration only

selected cases of faults. The authors of [28] performed the

study on faults detection and isolation based on the analysis

of residua using binary diagnostic matrices for single sets

of signals for a given faults case as well as the pairs and

triplets of such cases. The authors of [29] used timed au-

tomata approach and considered three selected faults in their

identification procedure. The authors of [30] focused on the

abrupt large faults available in the DAMADICS benchmark for

faults detection using a spectral estimation approach. Other

approaches were to consider GMDH neural networks [5],

interval observers [31] fuzzy classifiers for fault detection and

isolation [32], structural analysis [33] in order to evaluate fault

isolability, etc. The only study, which considered the whole set

of faults possible to simulate in the DAMADICS benchmark,

was performed by the authors of [34]. They used an approach

of qualitative reasoning coupled with fuzzy neural networks

and basing on their results only two cases were not detected

and isolated.

The main goal of the studies on the DAMADICS benchmark

was to find an appropriate methodology, which allows for

detection, isolation and identification of all types of faults

available in the benchmark and relations between them, which

can be carried out within a single analysis procedure using all

signals of all available faulty cases.

C. Data preparation

The authors of [35] stated that the faults f8 and f12 have

theoretical behaviour, i.e. the methods applied by the authors

were not able to distinguish these faults from the healthy

state. Results obtained by the authors of [34] show that the

small type fault f16 and incipient type fault f18 are not

detectable, while the authors of [33] stated that using their

method the faults f9 and f16 are not detectable. The authors

of [5] did not detected some types of faults: f5, f8, f9, f12
and f14 using the GMDH neural network-based approach. In
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the presented study all of the faulty cases were considered in

the analysis. Considering initial analysis of signals generated

from the DAMADICS benchmark, the signal P2 was removed

from every set of tested cases due to the fact that this signal

remained insensitive to the faults of a system. Moreover,

following the previous studies in the fault detection problem

on the DAMADICS benchmark data [4], [35], it is difficult

to detect some of the faults due to their weak intensities (i.e.

very small changes in the diagnostic signals) and/or very slow

development. However, these faults cases were considered in

further studies in order to investigate their detectability using

the proposed methodology.

The sets of signals of each case listed in Table II were

generated using the DABLib library. In each case the fault

occurred after the 900th second of the simulation. Following

this, the duration of the most of the generated sets of signals

was limited to 2000 seconds. In some cases of slowly propa-

gating incipient faults the duration of simulation was extended

to 4600 seconds (f17) and to 86000 seconds (f2, f3, f5, f6,

f9, f11 and f18) in order to achieve the full propagation

history of a given fault until the fault index reaches the unity

value.

During the performed researches four classes of faults:

small, medium and large of abrupt and incipient faults, were

considered. For the clarity of results presentation the numbers

from 1 to 4 were assigned to the classes as the subscripts

in the form: faultclass, e.g. the notation (f2, f14)4 denotes

that the faults f2 and f14 of incipient type, whereas f32,3
denotes that the fault f3 of medium and large abrupt types is

considered.

D. Simple statistics-based direct diagnostics

In the diagnostics of processes, the often applied approach

for detection and isolation of faults is the direct diagnostics,

which is based on simple signal processing and control of

constraints. For this purpose the current values of the features

of process variables such as mean value, root mean square,

maximal and minimal values, variance and others, are de-

termined. In the case of diagnosing of a system basing on

the alarm thresholds the analysis is performed on the basis

of a comparison of current signal value of a process with

the assumed minimal and maximal values, between which

the signal can change in the case of non-faulty condition. In

the case of statistical features the estimators in the specified

window are calculated and then compared with the appropriate

values determined for the non-faulty condition.

In the investigated problem both approaches were applied.

In the case of control of constraints the evaluation was

performed basing on comparison of current values of signals

of processes with maximal and minimal values of the signals

representing non-faulty condition of a system. In the case

of the analysis of statistical features the mean value and a

variance were calculated for comparative procedures. For the

comparison purpose of current signals with the signals for the

non-fault condition the threshold of 5% of variability range

was assumed. When the values of signals exceed the threshold

the change is recognized as significant one, which indicates

the damage. The results of damage detection using the above-

described approaches were stored in Tables III, IV, V and VI.

Each table refers to the intensity of a damage and the presented

values denote the ability of detection of a given fault using the

described approaches: 0 for the case of undetectable fault and

1 for the case of detectable fault.

Obtained results show that the detection of the following

faults was not possible: small faults (f10, f14, f16, f8)1,

medium faults (f10, f14, f16, f8)3, large faults (f14, f8)3
and incipient faults (f11, f2, f3, f4, f5, f6, f9)4. As can be

noticed, the application of the described approaches for faults

detection is possible only for a limited group of cases. The

isolation of faults using these approaches is not possible in

direct manner, but could be possible only after application of

the algorithm, which allows for distinguish the faults. One of

such extensions, which allows for distinguishing the faults,

is the binary diagnostic matrix, however in numerous cases

distinguishing of the faults was not possible. Therefore, it

is necessary to develop appropriate approaches that would

be sensitive to changes in the diagnostic signals and allow

for their distinguishing and diagnostic inference about faults

occurrence.

E. Motivation

Considering the results of faults detection presented above

it can be noticed that the simple statistical methods often

remain insensitive to changes in signals and thus the faults

could not be detected. In order to detect and identify the

faults occurred during the investigated industrial process the

more advanced techniques should be applied. The SOM seems

to be an effective tool both for the faults detection and

identification and has an adequate sensitivity to recognize

even the tiny changes in the analysed signals. Moreover, the

application of SOM allows for the analysis and comparison of

sets of multiple signals, i.e. it is not necessary to preprocess

the measurement data in order to find the signal containing

information about the occurred fault.

III. SOM AND METHODOLOGY

A. Fundamentals on the self-organizing maps

The Kohonen SOM are a type of ANN with unsupervised

learning. Two layers, input and output, can be distinguished

in the structure of this network (see Fig. 2). The input

layer is a vector of neurons, while the output layer is a

multidimensional representation of neurons, commonly the

two-dimensional (2D) or three-dimensional (3D) one. In the

case of 2D representation a rectangular or hexagonal map can

be used. A toroidal or cylindrical maps could be used in case of

3D representation. The number of neurons in the input layer is

equal to the number of attributes that describe each input data.

In case of output layer 5
√
N neurons, where N is the number

of input samples, was usually used [36]. But the practical

size of this layer depends on nature of input samples. For

diversified cases of input data bigger maps should be applied.

Each neuron from input layer is connected with each neuron
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TABLE III: Results of statistics-based diagnostics for abrupt small faults

type f101 f121 f131 f141 f161 f181 f191 f11 f71 f81

min 0 0 0 0 0 0 0 0 0 0
max 0 0 0 0 0 0 0 0 1 0
mean 0 0 1 0 0 1 1 0 1 0
var 0 1 1 0 0 1 1 1 1 0

TABLE IV: Results of statistics-based diagnostics for abrupt medium faults

type f102 f122 f132 f142 f162 f182 f192 f12 f72 f82

min 0 0 0 0 0 0 0 0 0 0
max 0 0 0 0 0 0 0 0 1 0
mean 0 0 1 0 0 1 1 1 1 0
var 0 1 1 0 0 1 1 1 1 0

TABLE V: Results of statistics-based diagnostics for abrupt large faults

type f103 f113 f123 f133 f143 f153 f163
f173 f183 f193 f13 f23 f73 f83

min 0 0 0 0 0 1 0
0 0 0 0 1 0 0

max 0 0 0 0 0 1 0
0 0 0 0 0 1 0

mean 1 0 0 1 0 1 1
1 1 1 1 1 1 0

var 1 1 1 1 0 1 1
1 1 1 1 1 1 0

TABLE VI: Results of statistics-based diagnostics for incipient faults

type f114 f134 f174 f184 f24 f34 f44 f54 f64 f94

min 0 0 0 0 0 0 0 0 0 0
max 0 0 0 0 0 0 0 0 0 0
mean 0 1 1 0 0 0 0 0 0 0
var 0 1 1 1 0 0 0 0 0 0

Vector of neurons of input layer

Output layer

Fig. 2: The structure of the self-organizing map

of output layer [37]. For an arbitrary neuron ni from output

layer it is possible to define some neighbourhood. For this

purpose the radius r is used. Based on this radius some area

(called a neighbourhood) around considered neuron can be

selected. The neighbourhood of the neuron ni is described by

a function hci[•] ∈ [0; 1]R called a neighbourhood’s function.

The values of this function are distributed from neuron ni

along the radius r.

During the learning process of SOM for particular input data

the best neuron from output layer is selected. In the literature

this neuron is called a winner neuron or best matching unit

(BMU). For the purpose of such selection some of the distance

metrics e.g. Euclidean, Chebyshev, Manhattan, etc. can be

used. In a learning process the weights of chosen neurons

are updated according to the formula:

wi(k + 1) = wi(k) + η(k)hci[x(k)− wi(k)], (1)

where k is the number of iterations of the learning process,

η(k) is the learning coefficient, hci is the value of the

neighbourhood function of the neuron ni with respect to the

neighbourhood of the winner neuron nc and x(k) is the input

vector inputted to the network during k-th iteration. Generally

the learning process consists of two stages. The first of them

is called Winner Takes Most (WTM). During this stage the

weights of a winner neuron and its neighbours neurons are

updated. Second stage is called Winner Takes All (WTA). In

this case the radius r = 0, therefore the value of coefficient

hci = 1, and only the weights of the winner neuron are

updated.

B. The methodology

For the purpose of carrying out the research described in

this paper, the SOM Toolbox for Matlab R© environment [38]

was used. The input data was prepared basing on values of

particular signals measures during occurrence of some faults.

From each of considered signals (five signals without "P2, see

the list in Sec. II-A) N consecutive values were considered

(e.g. from 100 s to (100 + N) s). Based on these values the

vectors of 5N elements that describe particular faults were

created. Finally, the input matrix has a size of M×5N , where
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M is a number of considered fault cases plus one non-faulty

exemplary case. During the conducted study different numbers

of considered cases were being taken into consideration. The

main settings of the SOM algorithm were as follows:

• type of output layer – 2D hexagonal maps of neurons,

• size of maps – from 10× 10 for the simplest example to

100× 100 for the most complicated examples,

• data normalization – variance was normalized to one,

• training algorithm – batch algorithm,

• number of training (WTM,WTA) iterations – from

(10, 10) to (100, 80), depending on complexity of data,

• neighbourhood function – Gaussian function,

• distance measure – Euclidean metric.

For particular cases of input data the U -matrix maps were de-

termined. An inspection of the obtained maps and quantization

error were used for verification and evaluation of the quality

of obtained results. For selected neurons of these maps the

labels of considered faults or non-faulty case were assigned.

Based on determined in this way maps the relevant conclusions

about the possibility of detection, isolation and identification

of particular faults were formulated.
In accordance with [39] the fault is detected when the

difference in the set of signals with respect to an initial

(healthy) state can be observed. As isolation stage we assume

that the faults can be distinguished from each other and the

identification stage allows us to identify a class and a type of a

given fault. In this context we assume that basing on obtained

SOM maps the fault is detected, isolated and identified when

is located in separate cluster of map according to clusters

related to the adequate non-faulty state or other fault cases.

According to this assumption in Fig. 3 (subscript s and b

in labels of faults denotes the small and big cases of fault,

respectively) one can see that all faults are detectable. Faults

f2s and f2b are detectable, but because they are located in

the same cluster there are not isolated. Faults f8b and f11s
are detectable and isolable as well since they are located

in separate clusters. Finally, faults f1b and f1s are both

detectable, isolable and identifiable. Additionally, based on

obtained maps it is possible to conclude that some faults e.g.

f3b could be weakly detectable.
In the most cases 1100 samples of each signal, starting

from 901-th second (the onset of fault), were taken into

account during the study. For several cases the number of

considered samples was enlarged due to slow propagation of

some of incipient faults. The analysis was realized following

the standard two-step approach used during application of

ANN. Firstly, the SOM was trained on standard data obtained

from the generator following the description above. Then,

three additional sets of data with modified character of noise

distribution in signals were generated in order to validate the

proposed approach during the testing stage.

IV. RESULTS

A. Diagnosing process

At the beginning, all of the cases of faults were con-

sidered in order to evaluate their distinguishability. The re-

f6
s

f12
s

f8
b

f2
s

f3
b

f2
b

ok

f11
s

f1
b

f1
s

Fig. 3: Exemplary maps with associated faults for selected

clusters

sulted exemplary maps for this study are shown in Fig. 4.

Two groups of faults: weakly and very well detected

can be distinguished. The set of weakly detectable faults

(the same cluster on the obtained map) contains the fol-

lowing faults: (f8, f14, f16)1, (f8, f14, f16)2, (f8, f14)3,

(f2, f3, f5, f6, f9, f11, f18)4. On the other hand, the subset

of very well detected faults contains the subsequent items:

f71, (f1, f7)2, (f1, f2, f7, f15, f16)3, (f13, f17)4.

In the next stage of the analysis the faults in the context of

their particular classes (three types of abrupt and one type of

incipient faults) were considered. Examples of obtained maps

are shown in Fig. 5. Based on the obtained results two groups

of faults can be distinguished. In the first of them the weakly

detectable faults such as (f8, f14)1, (f8, f14)2, (f8, f14)3,

(f5, f6, f18)4 are assigned. A special case of assignment was

obtained for f14, for which the same neuron as for non-

faulty condition was assigned. Further analysis (search for the

differences between the non-faulty and f14 signals) allows to

conclude that the process signals of f14 were identical to the

signals from the non-faulty condition of a system. The second

group of faults contains the faults which are well detectable

while taking into account the individual classes. The faults

(f1, f7, f13, f18)1, (f1, f7, f13, f18)2, (f2, f7, f15)3 and

(f4, f13, 17)4 can be assigned to this subset. Furthermore, it

can be seen that some faults are very similar to each other,

e.g. f132 and f182 as well as f133 and f183.

The consideration of the weakly detectable faults only, such

as

(f2, f3, f5, f6, f9, f11, f18)4, f81,2,3, (the faults f141,2,3
are not further considered), which were excluded during the

previous analysis, allows to conclude that all of them are very

well isolated with respect to the non-faulty case (see Fig. 6).

Only the fault f54 is located in the same cluster as non-faulty

case, thus this fault is very similar to this state.
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Fig. 4: Results obtained for all considered faults: (a) map size: 20× 20, learning steps (WTM, WTA): (10, 10); (b) map size:

45× 45, learning steps (WTM, WTA): (50, 30)
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Fig. 5: Maps obtained for single classes of faults, map size: 15x15, learning steps (WTM, WTA): (30, 10): (a) large abrupt

faults; (b) incipient faults

Further studies were concentrated on the sensitivity analy-

sis with taking into consideration the shorter realizations of

signals for the particular groups of faults. Two main groups:

weakly detectable (listed above) and the remaining faults were

considered. Exemplary maps are shown in Fig. 7. Based on the

obtained results for these analyses, it is possible to conclude

that the reduction of a length of signals influences on the

quality of the results. The minimal period of time that makes

possible the detection of selected faults equals 1 s. A vector

of five elements (five signals were considered) describes each

fault in these cases. Selected groups of faults (usually the

intensities of particular faults) became indistinguishable from

each other, e.g. f71,2,3, f102,3, f181,2,3.
Final summary of faults detection with division to the

possible types is presented in Table VII.

B. Validation of a methodology

Obtained SOM maps can be considered as a diagnostic pat-

tern, based on which it is possible to conclude about technical
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20× 20, learning steps (WTM, WTA): (20, 15)

TABLE VII: Results assigned to the possible classes of faults

Type Faults 1100 s

undetectable f141,2,3
weakly detectable (inside the
classes of faults)

f81,2,3 (f5, f6, f18)4

weakly detectable (overall) f54
pair of not distinguishable faults (f13, f18)2 (f13, f18)3
very well detectable f1, f7, f13, f18)1,2

(f2, f7, f15)3
(f4, f13, f17)4

condition of the considered system. In order to validate this

approach the new three sets of data for considered 44 faults

were prepared (small modification of standard DAMADICS

benchmark simulator was made). Obtained data was divided

into five groups. The faults, according to the classes: small,

medium and large abrupt and incipient, are included in the

first four of them. The fifth class includes faults, which

were obtained during previous analysis and assigned as the

weakly detectable (see Figure 6). From the collection of

numerous maps, which were generated previously, five maps

were selected according to the particular groups of faults.

Basing on these maps, for subsequent cases of new data the

best neuron (BMU) from suitable map was determined. The

considered fault was assigned as recognizable if the assigned

neuron coincided with a neuron corresponding to the same

fault from the basic map, or the neuron was located in the

same cluster of a map. An example of assigned labels of large

abrupt faults is shown in Figure 8, while a full summary of the

results is posted in Table VIII. In the last three columns, the

numbers of recognized cases of faults for individual groups are

presented. It can be observed that the faults f81,2,3 i f141,2,3
are weakly recognizable. The best results are achieved for large

abrupt faults, where for the most cases of considered faults the

same neurons are assigned similarly as in the basic map.

TABLE VIII: Results of validation of methodology

Groups of faults Faults 1st set 2nd set 3rd set

Small abrupt 10 8 8 8
Medium abrupt 10 8 8 8

Large abrupt 14 12 12 12
Incipient 10 2 2 3

Weakly detected 10 4 5 7

V. CONCLUSIONS

In the presented paper the novel approach to the process di-

agnosis problem based on self-organizing maps was presented.

The authors used the DAMADICS benchmark for simulation

of faults of various types and intensities, which was the basis

of the investigated fault diagnosis problem. Using SOM-based

approach and the simulation data it was shown that the faults

can be not only precisely detected, but also isolated and

identified basing on resulted BMU maps. As it was noticed,

applied approach is very sensitive to changes between the

signals, which allow to detect, isolate and identify almost all

unique cases of faults and provides better results of faults

detection and isolation than the previously applied methods for

the DAMADICS benchmark problem. Moreover, using SOM

it is possible to compare multiple to multiple signals, which

improves much the methodology of fault diagnosis due to the

lack of necessity to carry out preprocessing procedures of the

process signals. In order to validate the presented approach

additional datasets were generated from the DAMADICS

benchmark simulator, which were slightly different than those

generated for the main analysis. The validation procedures

show that in the most cases the faults were appropriately

classified to the particular clusters.

Presented studies is a part of on-going research. Several

open problems, which were planned to solve in future, should

be highlighted. The improvement of the distinguishability of

faults is expected during the additional preprocessing of input

diagnostic signals, e.g. their normalization. Additionally, the

qualitative measure (e.g. a threshold), based on which the value

of a neuron on the BMU map can be used for the identification

of a fault, should be developed.

The application of SOM-based algorithm in process diag-

nostic systems has a great potential due to the very high

sensitivity to the differences in signals and datasets and

could be automated and successfully adapted for the industrial

installations. Since the presented algorithm is time-consuming,

it cannot be applied for real-time diagnosis, however further

attempts will be made to optimize the SOM-based fault

diagnosis algorithm in order to increase its effectiveness.
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Staroświecki, “Structural Analysis of Fault Isolability in the
DAMADICS Benchmark”, Control Eng. Pract., vol. 14, 2006, pp. 597-
608, http://dx.doi.org/10.1016/j.conengprac.2005.04.008.

[34] J.M.F. Calado, J.M.G. Sá de Costa, M. Bartyś and J. Korbicz, “FDI
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