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Abstract—Let H = (V, E) be a 3-uniform linear hypergraph
with one hypercycle C3. We consider a blow-up hypergraph B[H].

We are interested in the following problem. We have to
decide whether there exists a blow-up hypergraph B[H] of
the hypergraph H, with hyperedge densities satisfying special
conditions, such that the hypergraph H appears in a blow-up
hypergraph as a transversal. We present an efficient algorithm
to decide whether a given set of hyperedge densities ensures the
existence of a 3-uniform linear hypergraph H with hypercycle
C3 in the blow-up hypergraph B[H].

Moreover, we state some relations between roots of the mul-
tivariate matching polynomial and the inhomogeneous density
Turán problem.

Index Terms—blow-up hypergraph; density; Turán density
problem; unicyclic hypergraph.

I. INTRODUCTION

LET H = (V, E) be a simple, connected and finite
hypergraph with the vertex set V and hyperedge set

E (see [2]). Turán [13] stated the first results in extremal
graph theory. Then many authors extended this subject and
formulated similar and new Turán density problems. Many
interesting results for some families of simple graphs were
published in [1], [6], [7], [9], [11], [12] and [14] obtained.

In this paper we present some algorithm for testing whether
a hypergraph with a given set of hyperedge densities is a factor
(a transversal) of a blow-up hypergraph for some unihyper-
cyclic hypergraphs. Our algorithm has the time complexity
at most O(n2), where n is the number of hyperedges of the
hypergraph.

Ealier Csikvári and Nagy [8] discovered an interesting
algorithm for testing whether a tree with a given set of edge
densities is a factor of a blow-up graph. Some generalization
of their algorithm is presented in [4]. In this paper we
extend this ideas to create a respective algorithm for the
family of 3-uniform linear unihypercyclic hypergraphs with
a hypercycle C3.

First we define some notions and notations. Other defini-
tions one can find in [2], [5] and [10].

A hypergraph H is called linear if any two hyperedges
intersect in at most one vertex. A hypergraph H is called r-

uniform if each hyperedge consists of r vertices.
A subhypergraph Pt of H is called a linear hyperpath of

length t if the hyperedges of Pt can be labelled by ei, 0 ≤
i ≤ t− 1 such that the sequence (e0, e1, .., et−1) satisfies the
condition: |ei∩ej | = 1 if and only if |i−j| = 1 and ei∩ej = ∅
if and only if |i− j| > 1, where ei ∈ E(H) (see Fig. 1(a)).

A subhypergraph Ct of H, t ≥ 3, is called a linear

hypercycle of length t if the hyperedges of Ct can be labelled
by ei, 0 ≤ i ≤ t − 1 such that the sequence (e0, e1, .., et−1)
satisfies the condition: |ei ∩ ej | = 1 if and only if |i− j| = 1
or i = 0 and j = t− 1 and ei ∩ ej = ∅, i 6= j, in the opposite
case, where ei ∈ E(H) (see Fig. 2).

A 3-uniform linear unihypercyclic hypergraph H is a con-
nected linear 3-uniform hypergraph with one hypercycle C3
(see Fig. 3).

The degree of the vertex v in the hypergraph H is the
number of hyperedges containing this vertex. Each vertex of
degree 1 in a hypergraph H is called the leaf. We say that
the hypergraph H is r-regular if each vertex of H has degree
r. A hyperedge e ∈ E(H) is called a pendant hyperedge if it
contains exactly one vertex of degree > 1.

A set S ⊂ V (H) is called the independent vertex set

if the subhypergraph of H induced by S has empty set of
hyperedges. The set M ⊆ E(H) is called the matching

(or independent hyperedge set) in the hypergraph H if the
subhypergraph of H induced by M is 1-regular.

Let H be a 3-uniform linear hypergraph. For each vertex i ∈
V (H) we associate a cluster Ai, as a set of new, independent
vertices.

For a hypergraph H we define a blow-up hypergraph B[H]
of the hypergraph H as follows. First we replace each vertex
i ∈ V (H) by a cluster Ai and next we create some hyperedges
between the clusters Ai, Aj and Ak if {i, j, k} is a hyperedge
in H, i, j, k ∈ V (H). Equivalently each hyperedge in B[H]
has exactly one vertex from the clusters.
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For any three clusters we define a density between them by
the following formula

d(Ai, Aj , Ak) =
e(Ai, Aj , Ak)

|Ai||Aj ||Ak|
, (1)

where e(Ai, Aj , Ak) denotes the number of hyperedges with
one element of each of the clusters Ai, Aj and Ak.

The hypergraph H is a transversal of B[H] if H is a
subhypergraph of B[H] such that we have a homomorphism

φ : V (H) → V (B[H])

for which φ(i) ∈ Ai for all i ∈ V (H). Other terminology: H
is a factor of B[H] (see Fig. 1(b)).

A hyperedge e = {i, j, k} of the hypergraph H we denote
shortly by e = ijk.

The homogeneous density Turán problem for 3-uniform

linear hypergraphs can be defined as follows. Let us determine
the critical hyperedge density, denoted by dcrit(H), which
ensures the existence of the subhypergraph H of B[H] as a
transversal. Precisely, assume that all hyperedges e = {i, j, k}
in the hypergraph H satisfy the condition

d(Ai, Aj , Ak) > dcrit(H),

where i, j, k ∈ V (H). Then, no matter how we construct the
blow-up hypergraph B[H], it contains the hypergraph H as a
transversal. On the other words, for any value d < dcrit(H)
there exists a blow-up hypergraph B[H] such that

d(Ai, Aj , Ak) > d

for all hyperedges ijk ∈ E(H) which does not contain H as
a transversal.

Moreover, we define the inhomogeneous density Turán

problem for 3-uniform linear hypergraphs as follows. Let us
assume that for every hyperedge e ∈ E(H) a density γe
is given. Now our task is to decide if the set of densities
{γe}e∈E(H) ensure the existence of the hypergraph H as a
transversal or we can construct a blow-up hypergraph B[H]
such that

d(Ai, Aj , Ak) ≥ γijk,

{i, j, k} ∈ E(H), but it does not induce the hypergraph H as
a transversal.

This two problems has been studied in [8], [12] for simple
graphs which are 2-uniform linear hypergraphs. We extend
some of those results to 3-uniform linear hypergraphs with
the hypercycle C3.

Let us recall the definition of the multivariate matching

polynomial of the hypergraph.
Let H be a hypergraph and let xe be the vector of variables

xe, for e ∈ E(H). We define the multivariate matching

polynomial FH(xe, t) of the hypergraph H as follows

FH(xe, t) =
∑

M∈M

(

∏

e∈M

xe

)

(−t)|M|, (2)

where the summation goes over all matchings of the hyper-
graph H, including the empty matching (see Example 1 ).

Fig. 1. A 3-uniform linear hyperpath on 5 hyperedges and a blow-up hyper-
graph B[P5] without the factor P5. Let |Ai| = 1 for i ∈ {1, 2, 4, 6, 8, 11}
and |Ai| = 2 for i ∈ {3, 5, 7, 9, 10}. We obtain the following densities
between the clusters in B[P5]: d(A1, A2, A3) = d(A3, A4, A5) = 1

2
,

d(A5, A6, A7) = d(A7, A8, A9) = d(A9, A10, A11) = 1

4
and 0 for

others. If we add the new hyperedge between clusters A7, A8, A9, we get
d(A7, A8, A9) =

1

2
and P5 as a factor.

Fig. 2. A 3-uniform linear hypercycles C5 and C3.

The polynomial is the useful tool for the proofs of our
results. In particular, we state some relations between roots of
the multivariate matching polynomial and the inhomogeneous
density Turán problem for 3-uniform linear hypergraphs with
the hypercycle C3 which are presented in Theorem 4.

Example 1. Let us consider the 3-uniform linear hypergraph

H with 7 hyperedges as in Fig. 3. Assume that variables xe

are given for hyperedges e ∈ E(H) as follows

x1 = x4 = x7 = 2, x2 = x6 = 1 and x3 = x5 = 3.

Then the multivariate matching polynomial of the hypertree H
is presented below

FH(xe, t) = 1− t(x1 + x2 + x3 + x4 + x5 + x6 + x7)

+ t2(x1x5 + x1x6 + x1x7 + x2x4 + x2x5

+ x2x6 + x2x7 + x3x5 + x3x6 + x3x7+

x4x6 + x4x7 + x6x7)− t3(x1x6x7 + x2x4x6

+ x2x4x7 + x2x6x7 + x3x6x7 + x4x6x7)

+ t4x2x4x6x7 = 1− 14t+ 44t2 − 22t3 + 4t4.
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Fig. 3. A 3-uniform linear hypergraph H with hypercycle C3, where
|V (H)| = 14 and |E(H)| = 7, with variables xe assigned to hyperedges
e ∈ E(H).

II. THE INHOMOGENEOUS DENSITY TURÁN PROBLEM FOR

3-UNIFORM LINEAR UNIHYPERCYCLIC HYPERGRAPHS

WITH HYPERCYCLE C3

In this section we study the inhomogeneous density Turán
problem for 3-uniform linear hypergraphs H with one hyper-
cycle C3, where a hyperedge density γe is given for each
hyperedge e ∈ E(H). We extend some results presented in
[8], where authors studied the inhomogeneous problem for
trees and proved the following theorem.

Theorem 1. (Csikvári, Nagy [8]) Let T be a tree of order n

and let v be a leaf of T . Assume that for each edge of T a

density γe = 1−re is given. Let T
′

be a tree obtained from T

by deleting the leaf v and the edge uv, where u is the unique

neighbour of v. Let the edge densities γ
′

e in T
′

be defined as

follows

γ
′

e =

{

γe = 1− re, if e is not incident to u in T ′,

1− re
1−ruv

, if e is incident to u in T ′.

Then the set of densities {γe}e∈E(T ) ensures the existence of

the factor T if and only if all γ
′

e ∈ (0, 1] and the set of densities

{γ
′

e}e∈E(T ′ ) ensures the existence of the factor T
′

.

Theorem 1 provides authors of [8] with an efficient algo-
rithm (Algorithm T ) to decide whether a given set of edge
densities in a tree ensures the existence of a transversal or
does not ensure. Their algorithm is cited on the next page.

We show that their algorithm can be extended for 3-uniform
linear hypergraphs with hypercycle C3. This extension is
presented in Algorithm HC3, which is presented in the second
half of this paragraph.

Proposition 1. The Algorithm HC3 stops in at most O(n2)
steps, where n is the number of hyperedges of the input

hypergraph.

Proof. Execution time for checking of the property described
in Step 0 is at most O(n), where n is the number of hyperedges
of the input hypergraph. Similarly, execution time for checking
the first property described in Step 2 is at most O(n). In the
worst case Step 1 is executed at most O(n), similarly, Step 2,
so the time complexity of our algorithm is at most O(n2).

The correctness of the Algorithm HC3 follows from the
following theorem.

Theorem 2. Let H be a 3-uniform linear hypergraph with the

hypercycle C3. If |E(H)| > 3 let u, v ∈ V (H) be two leaves

from a pendant hyperedge e = {u, v, w} ∈ E(H) for some

w ∈ V (H). Assume that for each hyperedge of H the density

γe = 1 − re is given. Let H
′

be a hypergraph obtained from

H by deleting vertices u and v with the hyperedge uvw. Let

the hyperedge densities γ
′

e in H
′

be defined as follows

γ
′

e =

{

γe = 1− re, if e is not incident to w in H
′

,

1− re
1−ruvw

, if e is incident to w in H
′

.

If |E(H)| = 3 (with hyperedge set E = {ayb, axc, bzc}), then

let H
′

be a hypertree obtained from H by deleting a vertex of

degree 2, say vertex a, with incident hyperedges ayb and axc.

H
′

is a hyperpath Pbzc. Let the density γ
′

czb in H
′

be defined

as follows

γ
′

bzc = 1−
rbzc

(1− rayb)(1− raxc)
.

Then the set of densities {γe}e∈E(H) ensures the existence of

a factor H if and only if all γ
′

e ∈ (0, 1] and the set of densities

{γ
′

e}e∈E(H′) ensures the existence of a factor H
′

.

Proof. Let H be a 3-uniform linear hypergraph with one
hypercycle C3 and let a density γe = 1 − re be given for
each e ∈ E(H).

(⇒) First we prove the following statement: if all γ
′

e are
indeed densities and they ensure the existence of a factor H

′

,
then the original densities γe ensure the existence of a factor
H.

Let B[H] be a blow-up hypergraph of the hypergraph H
such that the density between clusters Ai, Aj and Ak is at
least γijk , where Ai, Aj , Ak are clusters of the vertices and
i, j, k ∈ V (H). We show that B[H] contains a factor H.

Assume that |E(H)| > 3. Let u, v, w ∈ V (H) and
{u, v, w} ∈ E(H), where u, v are leaves. Define Ru,v,w as
the subset of Aw in the following way (see Fig. 4)

Ru,v,w = {x ∈ Aw |∃u′∈Au,v
′∈Av

{u
′

, v
′

, x} ∈ E(B[H])}.

Note that by (1)

|Ru,v,w| · |Au| · |Av| ≥ e(Ru,v,w, Au, Av) = e(Au, Av, Aw)

= γuvw |Au| · |Av| · |Aw|.

Hence
|Ru,v,w| ≥ γuvw |Aw|.

Now we show the lower bound for the number of hyperedges
incident to Ru,v,w. Let k, z ∈ V (H) such that {k, z, w} ∈
E(H). By the inclusion - exclusion formula we count the lower
bound for the number of hyperedges between Ru,v,w, Ak and
Az as follows

e(Ru,v,w, Ak, Az) ≥

e(Aw, Ak, Az)− (|Aw| − |Ru,v,w|) · |Ak| · |Az | =
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Algorithm T

Step 0.

Let there be given a tree T 0 and edge densities γ0
e . Set T := T 0 and re = 1− γ0

e .

Step 1.

Consider (T, re).

• if |V (T )| = 2 and 0 ≤ re < 1 then

STOP: the densities γ0
e ensure the existence of a factor T 0.

• if |V (T )| ≥ 2 and there exists an edge for which re ≥ 1 then

STOP: the densities γ0
e do not ensure the existence of a factor T 0.

Step 2.

if |V (T )| ≥ 3 and 0 ≤ re < 1 for all edges e ∈ E(T ) then

DO pick a vertex v of degree 1 and let u be its unique neighbour. Let T
′

:= T − v and

r
′

e =











re, if e is not incident to u,

re
1−ruv

, if e is incident to u.

Jump to Step 1 with (T, re) := (T
′

, r
′

e).

Fig. 4. Clusters Au, Av and Aw (bold line) with some hyperedge (broken
line) and the set Ru,v,w

|Ru,v,w| · |Ak| · |Az|+ (γwkz − 1) · |Aw| · |Ak| · |Az | ≥

|Ru,v,w| · |Ak| · |Az|+
1

γuvw
(γwkz−1) · |Ru,v,w| · |Ak| · |Az| =

(

1−
rwkz

1− ruvw

)

· |Ru,v,w| · |Ak| · |Az| =

γ
′

wkz · |Ru,v,w| · |Ak| · |Az |.

Now, by deleting the vertex sets Au, Av and Aw\Ru,v,w

from B[H], we obtain a hypergraph which is a blow-up

hypergraph of H
′

with the hyperedge densities ensuring the
existence of the factor H

′

.
Moreover, by the definition of Ru,v,w the factor H

′

can be
extended to a factor H.

Now let us assume that |E(H)| = 3, i.e. a hypergraph H is
isomorphic to the hypercycle C3. Let E(H) = {ayb, axc, bzc},
where vertices a, b, c have degree equal to 2 and vertices x, y, z
have degree equal to 1. Let Aa be a cluster of the vertex a.
Define sets Ra,y,b and Ra,x,c in the following way (see Fig.
5 )

Ra,y,b = {v ∈ Ab |∃a′∈Aa,y
′∈Ay

{a
′

, y
′

, v} ∈ E(B[H])},

Ra,x,c = {v ∈ Ac |∃a′∈Aa,x
′∈Ax

{a
′

, x
′

, v} ∈ E(B[H])}.

Note that by (1)

|Ra,y,b| · |Aa| · |Ay| ≥ e(Ra,y,b, Aa, Ay) =

e(Ab, Aa, Ay) = γayb|Aa| · |Ay| · |Ab|

and
|Ra,x,c| · |Aa| · |Ax| ≥ e(Ra,x,c, Aa, Ax) =

e(Ac, Aa, Ax) = γaxc|Aa| · |Ax| · |Ac|.

Hence we have the following lower bounds for the cardinalities
of Ra,y,b and Ra,x,c

|Ra,y,b| ≥ γayb|Ab|
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Algorithm HC3 (for 3-uniform linear hypergraph with a hypercycle C3)

Input: a 3-uniform linear hypergraph H with one hypercycle C3 with the set of hyperedge densities {γe}e∈E(H).
Output: a boolean value

D =

{

TRUE, the densities γe ensure the existence of a factor H,

FALSE, the densities γe does not ensure the existence of a factor H.

Consider a weighted hypergraph (H, re), where re = 1− γe.

Step 0.

if |E(H)| ≥ 1 and there exists a hyperedge e ∈ E(H) for which re ≥ 1 then
D := FALSE; STOP;

Step 1.

if |E(H)| = 1 (means H is a hyperpath P1) and 0 ≤ re < 1 then
D := TRUE; STOP;

Step 2.

if |E(H)| > 3 then
pick two leaves u, v from a pendant hyperedge f = {u, v, w} ∈ E(H). Let
H′ = (V (H)− {u, v}, E(H)− {{u, v, w}}) and for each hyperedge e ∈ E(H′) set

r′e =

{

re, if e ∩ f = ∅,
re

1−ruvw

, if e ∩ f = {w};

if |E(H)| = 3 (E(H) = {ayb, axc, bzc}) then
pick vertex of degree equal to 2, say vertex a, and let H′ = (V (H)− {a, y, x}, E(H)− {ayb, axc}). For hyperedge
e = bzc ∈ E(H′) set

r′e = r
′

bzc =
rbzc

(1 − rayb)(1 − raxc)
;

if r′e ≥ 1 for some hyperedge e ∈ E(H′) then
D := FALSE; STOP;

Go to Step 1 with (H, re) := (H
′

, r′e).

and
|Ra,x,c| ≥ γaxc|Ac|.

Next let us show how many hyperedges are incident to the sets
Ra,y,b and Ra,x,c. By the inclusion - exclusion formula we
count the lower bound for the number of hyperedges between
Ra,y,b and Ra,x,c

e(Ra,y,b, Ra,x,c, Az) ≥ e(Ab, Ac, Az)−

(|Ab| − |Ra,y,b|) · |Ac| · |Az | − (|Ac| − |Ra,x,c|) · |Ab| · |Az |+

(|Ab|−|Ra,y,b|)(|Ac|−|Ra,x,c|)·|Az | = |Ra,y,b|·|Ra,x,c|·|Az |+

(γbcz − 1) · |Ab| · |Ac| · |Az| ≥ |Ra,y,b| · |Ra,x,c| · |Az|+

(γbcz − 1)
1

γayb

1

γaxc
· |Ra,y,b| · |Ra,x,c| · |Az| =

(

1−
rbzc

(1− rayb)(1− raxc)

)

· |Ra,y,b| · |Ra,x,c| · |Az | =

γ
′

bzc|Ra,y,b| · |Ra,x,c| · |Az |.

Now, by deleting the vertex sets Aa, Ab\Ra,y,b and
Ac\Ra,x,c from B[H], we obtain a hypergraph which is a
blow-up hypergraph of C

′

= P1, where V (P1) = {b, z, c},
with the hyperedge density ensuring the existence of the factor
P2.

Moreover, by the definition of Ra,y,b and Ra,x,c the factor
P1 can be extended to a factor C3.
(⇐) Note that if γ

′

wkz < 0 then γwkz + γuvw < 1. So there
exists a construction of blow-up hypergraph which does not
induce the linear hyperpath P2 with the consecutive vertices
u, v, w, k, z and hyperedges {u, v, w}, {w, k, z}, where i ∈ Ai
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Fig. 5. Clusters Aa, Ax, Ay , Ab and Ac (bold line) with some hyperedges
(broken line) and the sets Ra,y,b and Ra,x,c.

Fig. 6. We assume that B
′

[H
′

] is without a factor H′. The construction of
the blow-up hypergraph B[H] without factor H for the case where vertices
u, v are leaves in H and H′ = (V (H) − {u, v}, E(H) − {uvw}). The
cluster A′

w is in B
′

[H
′

]. Let Aw = {w∗}∪A
′

w, Au = {u} and Av = {v}
be clusters in B[H]. Bold line - cluster, broken line - hyperedge.

for i ∈ {u, v, w, k, z} in this case. Therefore, if some γ
′

wkz <

0 then there exists a construction for a blow-up hypergraph of
the hypertree H without a factor H.

Next assume that all the γ
′

e are proper densities, but there
is a construction of a blow-up hypergraph, say B

′

[H
′

], with
hyperedge densities at least γ

′

e, but which does not induce
a factor H

′

. Thus we construct a blow-up hypergraph B[H]
of the hypertree H not inducing H. We consider two cases.
First, let |E(H)| > 3 and v, u be two leaves of H such that
uvw ∈ E(H) for some vertex w ∈ V (H). Let H′ = (V (H)−
{u, v}, E(H) − {uvw}). Set Aw = {w∗} ∪ A

′

w, Au = {u}
and Av = {v}. We create hyperedges uvw for all w ∈ A

′

w

but do not create uvw∗ without changing densities in B
′

[H
′

]
and with an appropriate density γuvw (see Fig. 6 ).

Now assume that H = C3 with hyperedge set E(H) =
{ayb, axc, bzc}. Let H′ = (V (H) − {a, y, c}, E(H) −
{ayb, axc}), where a is a vertex of C3 of degree 2. Set
Ab = {b∗} ∪ A′

b, Ac = {c∗} ∪ A′
c, Aa = {a}, Ax = {x}

and Ay = {y}. We create hyperedges ayb for all b ∈ A
′

b and
axc for all c ∈ A

′

c but do not create hyperedges ayb∗ and axc∗

without changing densities in B
′

[H
′

] and with an appropriate

Fig. 7. We assume that B
′

[H
′

] is without a factor H′. The construction of the
blow-up hypergraph B[H] without factor H = C3 for the case where vertex a
has degree 2 in H and H′ = (V (H)−{a, x, y}, E(H)−{ayb, axc}). The
clusters A′

b
and A′

c are in B
′

[H
′

]. Let Ab = {b∗} ∪A
′

b
, Ac = {c∗} ∪A

′

c,
Aa = {a}, Ax = {x} and Ay = {y} be clusters in B[H]. Bold lines -
clusters, broken lines - hyperedges.

densities γayb and γaxc (see Fig. 7).

Example 2. Let us consider a 3-uniform linear hypergraph H
with one hypercycle C3, such that |E(H)| = 5 and |V (H)| =
10 , presented in Fig. 8 with two different sets of parameters

{re}e∈E(H) (in round brackets are given parameters re from

the second set of hyperedge densities). In Table I are presented

two different sets of densities {γe}e∈E(H), γe = 1 − re,

and changes of parameters re during the execution of the

Algorithm HC3.

We are interested in whether these sets of hyperedge den-

sities ensure an existence of the hypergraph H as a factor.

To solve this problem we use Algorithm HC3. For each

hyperedge e a parameter re = 1 − γe is assigned as in

Fig. 8. Let run Algorithm HC3. All parameters satisfy the

condition 0 ≤ re < 1, so we cut the hyperedge efhi and modify

parameters re by proper formulas presented in the algorithm.

We repeat this procedure untill we get a hypergraph with at

least one hyperedge e∗ for which parameter re∗ ≥ 1 or one-

hyperedge hyperpath (see Fig. 9-12). Notice that we get two

different velues at the end. First set of densities {γe} ensure

the existence of H as a factor and the second set {γe} does

not ensure.

Now we show some relations between roots of the multi-
variate matching polynomial and the inhomogeneous density
Turán problem. This kind of relations for 3-uniform linear
hypertrees have been studied in [4]. Authors of [4] obtained
Theorem 3 cited for completeness of this paper. Ealier this
subject has been studied by Csikvári and Nagy [8] for trees
and in [3] for some family of connected unicyclic graphs.

Theorem 3. (Bielak, Powroźnik [4]) Let T = (V, E) be a

weighted 3-uniform linear hypertree. Let γe = 1 − tre be

densities assigned to each hyperedge e ∈ E(T ), where re ∈
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TABLE I
CHANGING OF PARAMETERS re FOR HYPEREDGES e ∈ E(H) DURING THE EXECUTION OF THE ALGORITHM HC3 FOR TWO DIFFERENT SETS OF

HYPEREDGE DENSITIES γe OF THE HYPERGRAPH PRESENTED IN FIG. 8.

e
TRUE FALSE

step: (1) (2) (3) (4) (5) step: (1) (2) (3) (4) (5)

γe re re re re re γe re re re re re

abc 3/4 1/4 1/4 1/4 10/31 40/69 1/2 1/2 1/2 1/2 7/8 175/104

axy 3/4 1/4 1/4 1/4 1/4 − 4/5 1/5 1/5 1/5 1/5 −

yzc 4/5 1/5 1/5 1/5 8/31 − 4/5 1/5 1/5 1/5 7/20 −

cde 7/8 1/8 1/8 9/40 − − 3/4 1/4 1/4 3/7 − −

efg 2/3 1/3 4/9 − − − 2/3 1/3 5/12 − − −

fhi 3/4 1/4 − − − − 4/5 1/5 − − − −

Fig. 8. The input hypergraph H for Algorithm HC3.

Fig. 9. The hypergraph H′ obtained after the first execution of Step 2

of Algorithm HC3 with the hypergraph H presented in Fig. 8, where the
hyperedge fhi was deleted and the parameter refg was modyfied according
to the first conditional instruction.

Fig. 10. The hypergraph H′ obtained after the second execution of Step 2

of Algorithm HC3 with the hypergraph H presented in Fig. 9, where the
hyperedge efg was deleted and the parameter rcde was modyfied according
to the first conditional instruction.

Fig. 11. The hypergraph H′ obtained after the third execution of Step 2

of Algorithm HC3 with the hypergraph H presented in Fig. 10, where the
hyperedge cde was deleted and the parameters rabc and ryzc were modyfied
according to the first conditional instruction.
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Fig. 12. The hypergraph H′ obtained after the last execution of Step 2

of Algorithm HC3 with the hypergraph H presented in Fig. 11, where the
hyperedges axy and yzc were deleted and the parameter rabc was modyfied
according to the second conditional instruction.

[0, 1). Assume that after running of Algorithm T we get a

one-hyperedge hyperpath P1 with

FP1
(re, t) = 0.

Then t is a root of the multivariate matching polynomial

FT (re, s) of the hypertree T .

In Theorem 4 we show similar relation between roots of
the multivariate matching polynomial and the inhomogeneous
density Turán problem for 3-uniform linear hypergraphs with
a hypercycle C3.

Theorem 4. Let H = (V, E) be a weighted 3-uniform linear

unihypercyclic hypergraph with a hypercycle C3. Let γe =
1 − tre be densities assigned to each hyperedge e ∈ E(H),
where re ∈ [0, 1). Assume that after running of Algorithm

HC3 we get a hypercycle C3 with

FC3
(re, t) = 0.

Then t is a root of the multivariate matching polynomial

FH(re, s) of the hypergraph H.

Proof. Let H = (V, E) be a weighted 3-uniform linear
unihypercyclic hypergraph with hypercycle C3. Assume that
|E(H)| = n. To prove this theorem we use induction on the
number of hyperedges of the hypergraph H.

If this hypergraph consists of 3 hyperedges (i.e., H is
isomorphic to C3, say with E(H) = {abc, cde, efa}), then

FH(re, t) = 1− t(rabc + rcde + refa)

and the condition FH(re, t) = 0 means that t is a root of this
multivariate matching polynomial of the hypergraph H.

Assume that the statement of the theorem is true for each
hypergraph on at most n − 1 hyperedges, where n > 3. Let
H be a hypergraph with n hyperedges and assume that we
execute the Algorithm HC3 for a hyperedge e = {u, v, w},
shortly uvw, in the Step 2, where vertices u, v are two leaves
in H. Let H

′

= H − {u, v} be a hypergraph obtained
from hypergraph H by deleting u and v and the hyperedge
uvw. Densities on hyperedges in hypergraph H

′

are modyfied
by formulas presented in Algorithm HC3. By executing the
Algorithm HC3 with input H′ we obtain a hypercycle C3 with
FC3

(r′e, t) = 0. By induction we get that FT ′ (re
′

, t) = 0.
Now we apply the formula (2) for hypergraphs H′ and H.
We can expand FH′ according to whether a monomial

contains xwkz (where wkz ∈ E(H
′

)) or not. Obviously, each

monomial contains at most one of the variables xwkz where
wkz ∈ E(H).

Thus

FH′ (xe, s) = Q0(xe, s)−
∑

{k,z,w}∈E(H′)

sxwkzQkz(xe, s),

where Q0(xe, s) consists of those terms which do not contain
xwkz and −sxwkzQkz(xe, s) consists of those terms which
contain xwkz (i.e., these terms correspond to the matchings
containing the hyperedge wkz).

We observe that

FH(xe, s) = (1− sxuvw)Q0(xe, s)−
∑

{k,z,w}∈E(H′)

sxwkzQkz(xe, s).

Since
0 = FH′ (r′e, t) = Q0(re, t)−

∑

{k,z,w}∈E(H′)

t
rwkz

1− truvw
Qkz(re, t)

we have

0 = (1− truvw)FH′ (r′e, t) = (1 − truvw)Q0(re, t)

−
∑

{k,z,w}∈E(H′)

trwkzQkz(re, t) = FH(re, t).

So t is a root of FH(re, s). The proof is done.

To search more relations between roots of the multivariate
matching polynomial and the inhomogeneous density Turán
problem for 3-uniform linear hypergraphs with a hypercycle
C3 we need analogue result to Lemma 1 presented below.
According to our knowledge similar result for hypercycle C3
is not known.

Lemma 1. (Bondy, et al. [6]) Let α, β, γ be the edge densities

between the clusters of a blow-up graph of the triangle - a

cycle C3. If

αβ + γ > 1, βγ + α > 1, γα+ β > 1,

then the blow-up graph contains a triangle as a transversal.

III. CONCLUSION

In this paper we showed some results for the inhomoge-
neous density Turán problem of 3-uniform connected linear
unihypercyclic hypergraphs with a hypercycle C3.

We presented Algorithm HC3 for testing whether the 3-
uniform connected linear hypergraph H with a hypercycle
C3 with a given set of hyperedge densities {γe}e∈E(H) is a
transversal of a blow-up hypergraph B[H]. The Algorithm
HC3 has O(n2) time complexity in the worst case, where
n is the number of hyperedges of H. In this way we have the
answer whether the hyperedge densities ensure the existence
of the transversal or does not ensure.

Moreover, we stated Theorem 2 to prove the correctness of
the Algorithm HC3.
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Additionally, in Theorem 4, we stated some relation
between roots of the multivariate matching polynomial and
the inhomogeneous density Turán problem for 3-uniform
linear hypergraphs with a hypercycle C3.

Open problem: In the future work we want to find
relations between location of roots of the multivariate
matching polynomial and the inhomogeneous density Turán
problem for r-uniform linear hypergraphs with one hypercycle
of length t, where t ≥ 3. This problem for trees was studied
in [8] and for some connected unicyclic graphs was studied
in [3].
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