
The column-oriented database partitioning
optimization based on the natural computing

algorithms

Artur Nowosielski1
1PhD Studies, Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland

Email: artnowo@gmail.com

Piotr A. Kowalski2,3, Piotr Kulczycki2,3

2Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland

Email: {pakowal,kulczycki}@ibspan.waw.pl

3Division for Information Technology and Biometrics

Faculty of Physics and Applied Computer Science

AGH University of Science and Technology

al. Mickiewicza 30, 30-059 Cracow, Poland

Email: {pkowal,kulczycki}@agh.edu.pl

Abstract—This paper describes the basic components of a
research project aimed at the application of natural computing
metaheuristics to optimize the horizontal scaling of databases.
Column oriented databases were selected for the project because
of their unique properties. A mathematical model has been
created in order to align the problem of horizontal scalability
to the general optimization methods, such as natural computing
algorithms.

I. INTRODUCTION

T
HIS article is an overview of research on column oriented

databases (DB) partitioning optimization with the use of

the natural computing algorithms. Column-oriented databases

are believed to qualify for this purpose nicely thanks to

their physical storage structure. Sometimes they are used

as a NoSQL equivalent for relational database management

systems because of their flexibility and partial similarity to

relational model. In the class of the natural computation

algorithms there are metaheuristic procedures that suite well

to the problems of optimization with multiple constraints and

multi-modal objective functions.

There are three main pillars of the research, described in

the following subsections. Subsection I-B contains a general

description of the column-oriented databases along with the

most important relevant details. From the scalability options

for databases, horizontal scalability gained some noticeable

attention and major implementations, especially in a modern

so-called “web 2.0” services. Subsection I-A describes basic

features along with pros and cons of a database horizontal

scaling. The natural computing algorithms described in the

section I-C are an important branch of the research on com-

putation models and methods. Their main goal is to implement

heuristics inspired by the natural environment’s behaviors and

processes, to solve optimization problems.

The next sections describe current state and results of

the aforementioned research. They consists of the prototype

implementation of a column-oriented DBMS along with its

mathematical model. Selected natural computing algorithms

were also implemented in order to discover and describe their

features on the basis of the typical benchmarking optimization

problems. Section III contains the description of the appli-

cation of the algorithms to the optimization problem using

a created mathematical model. Current short- and long-term

plans for further research are described in order to familiarize

the reader with the expectations of the research.

A. Database partitioning

In general, two main classes of scalability solutions can be

distinguished: vertical scaling and horizontal scaling. These

approaches are slightly different. Vertical scalability is based

on the assumption that, in order to increase system capacity,

its resources should be enforced, e.g. by swapping the CPU

to a faster one. In this approach, a unit of work remains

assigned to only one processing unit and is therefore limited

by the unit’s capabilities. Additionally, hardware capabilities

are finite and it is possible to reach to the point in which

it will not be possible or reasonable to deploy a more pow-

erful hardware. Instead, this approach is easy to implement,

because it preserves previously used computation model and

processing methods. Especially, it does not involve any work

division, which means no additional synchronisation issues are

introduced. In the horizontal scalability (scaling out) approach,

it is assumed the unit of work to be done exceeds the capacity

of any single unit and needs to be divided. That slightly

changes the processing model and introduces concurrency- and

synchronisation-related issues, but in return, offers virtually

infinite theoretical capacity.

Within the database domain, horizontal scalability can be

split into the three classes: replication, sharding (also referred

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1035–1041

DOI: 10.15439/2015F262

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1035

to as a horizontal partitioning) and partitioning (also known as

the vertical partitioning). Please note that the terms “vertical”

and “horizontal” regarding partitioning and sharding are ab-

solutely not related to the general scalability terms. Both are

parts of the horizontal scalability class. That is, both involve

some division of a data in a database into more than one

database management system (DBMS) instance. Replication

is out of the research scope, so it will not be described here.

It has been covered widely, along with the remaining solutions

in the master thesis [1].
Horizontal and vertical partitioning differ by a division

plane. Horizontal partitioning duplicates database (or just

single table) schema on many instances but splits the data

between them. Please note that specific partitions can be

distinctive (that is, every records belongs to one and only

instance) as well as redundant. Partitioning function can take

into consideration record’s identifier, single other field or a

set of fields. A value which is used to perform partitioning

is so-called “partitioning key”. Typical partitioning schemas

include:

• by range (e.g. clients with last name starting with letters

A, B, ..., I, J go to the instance#1, K, L, ..., Y, Z - #2);

• by modulo function (e.g. if record have natural numeric

key they go to instance number (key % n) where n =

number of instances);

• by list (if record has a field constrained by a finite set

of values, instances can be assigned with its subsets; e.g.

clients born on monday, tuesday and friday go to the first

instance, others to the second one);

• by hash function (hash function result set must reflect

instance set).

More sophisticated methods include combinations of previ-

ously enumerated ones and consistent hashing. Consistent

hashing is a technique which optimizes a division for frequent

remapping, reducing number of data to be migrated after every

change.
Very useful concept here is the abstraction of hash function

results from the physical arrangement of database engine

instances. That requires additional mapping between these

two tiers, but brings some significant advantages of a direct

linkage. Primarily, changes in the arrangement of database

servers does not involve modifications of the hash function.

In other words, it satisfies well-known “single responsibility

principle” coming from the software engineering domain.
Sharding can then be considered as a data division between

duplicated schema instances. Vertical partitioning, in turn, can

be thought as a schema division. It requires a deep analysis of

the data usage and implicitly assumes that structure of every

records is common if not exactly the same. Then rarely used

parts of data are extracted and moved to a different instance(s)

than the frequently used parts. That is not the only possible

analysis schema though. It is also possible to highlight data

parts which are frequently used together and divide a database

by that. Obviously, in real world application both techniques

can be joined and applied together in any arrangement, which

leads to virtually infinite number of possible variants.

B. Column-oriented databases

Column-oriented databases (sometimes referred to as a

column-family databases, columnar databases or column

stores) is a non-relational database data model. Although not

strictly defined, this model brings some significant features

increasing its horizontal scalability. The current section de-

scribes the model as it is understood within the conducted

research. For the ease of understanding, analogies to the well

known relational database model are highlighted. Nevertheless,

it needs to be stated explicitly that both models are not related.

Modern column-oriented data stores have been covered in

[2]. Implementation details of the Apache Cassandra column-

family store have been described in [3].

Fundamental terms and concepts are common to every

column-oriented DBMS implementation. Keyspace is the basic

storage and logical entity. It acts as a container for lower

level entities and could be compared to database or schema

in terms of relational databases. A column family is a named

collection of records with similar or the same column set.

Column families belong to the keyspaces.

The most important feature coming from the described

concepts is so-called schemalessness, which means that col-

umn family’s data structure is flexible. A column set for

specific records within the same column family is variable.

In real world solutions it is usually “defined” only by an

established convention, not by a strict constraints stated during

the database creation process. As opposed to the relational

database tables, if a given record does not have (in a logical

sense) value in given column, it does not store actual NULL

value (in a storage sense). That feature brings a significant

impact on the storage structure and application logic. Also, it

allows to implement some use cases which are not effective

or even possible in relational databases. A common use case

is the time-series data store, which contains actually only one

row of data, but with dozens of columns created every time a

new value is saved. In that case, the value timestamp becomes

a column name. Another typical appliance is a data store for a

recommendation system. Such systems rely on huge matrices

correlating all users with all items.

C. Natural computing algorithms

Natural computing algorithms are a significant class of the

heuristic procedures, which takes its inspiration in processes

and behaviors taken from nature. According to [4], natural

computing algorithms can be divided into three main cate-

gories:

• evolutionary algorithms;

• swarm intelligence algorithms;

• bacterial foraging algorithms.

They are all based on an observation, that many processes in

nature are in fact non-linear, multi-modal and multi-objective

optimization processes. The whole evolution process leads

to survival of the fittest specimens and species. Within that

process there are many constraints, most of which are not well-

defined or even not well-known, in some cases they could be

1036 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

fuzzy. Obviously, individuals do not use any numeric, analyt-

ical methods to fit, because it is not possible. That conclusion

leads to arise of metaheuristic algorithms, which follow the

nature patterns and can be used to perform optimization under

similar conditions. For the sake of correct understanding the

algorithm’s abstraction, it is very important to emphasize

analogies between the biological domain and optimization

domain. Evolution’s goal (in nature it is simply survival and

reproduction of given individual’s genes) is reflected by the

objective function, which is minimized or maximized during

the computation. As the algorithms are iterative, iteration

loop reflects the lapse of time and generations succession.

Candidate solutions are equivalents of the real population

members and they pass from generation to generation using

rules which differ between the algorithms and applications. In

contrast to nature, algorithms are initialized (that is populated

with an initial population) with random solutions to provide

some reasonable starting point for the algorithm execution. It

is very important to note that natural computation algorithms,

as they are metaheuristics, do not guarantee finding optimal

solution. Although, given enough population size and gener-

ation number, they usually lead to the suboptimal solutions

which are suitable enough for the most of applications.

Two algorithms for the evaluation and application were

chosen in the described research: the Flower Pollination Al-

gorithm (FPA) and the Krill Herd Algorithm (KHA).

1) Flower Pollination Algorithm: The first one has been

proposed by Xin-She Yang of Department of Engineering,

University of Cambridge in the paper [5] with further descrip-

tion in the paper [6]. It belongs to the class of evolutionary

algorithms and it reflects the process of reproduction of flow-

ering plants by the pollination. It is performed by pollinators,

such as insects, birds or bats (biotic pollination) or by the

wind or water (abiotic pollination). Pollination can take the

form of a cross-pollination, in which a flower is pollinated

with pollens coming from flowers of different plant, or a self-

pollination, in which flowers on the same plant pollinate each

other. Some pollinators stick to some species and specialize in

pollinating them. This phenomenon is called flower constancy.

Author highlighted four abstractions which make up the basis

of the FPA:

• global pollination is an abstraction of biotic cross-

pollination, pollinators move by performing Lévy flights;

• local pollination is an abstraction of abiotic self-

pollination;

• flower constancy is expressed by the fact that reproduc-

tion probability increases appropriately to similarity of

the two involved flowers;

• probability of occurrence of local and global pollination

is defined by the switch probability p, which abstracts

external factors, such as wind, physical proximity of

different plants and so on.

There are some additional assumptions and rules as well:

• the best solution from the generation gi passes directly

to the next generation gi+1;

Algorithm 1 FPA pseudocode

Objective min or max f(X), X = (X1, X2, ..., Xd)
Initialize a population of n flowers/pollen gametes with

random values

Find the best solution g∗ in the initial population

Define a switch probability p ∈ [0, 1]
while t < MaxGeneration do

for i = 1..n do

if rand < p then

Draw a (d-dimensional) step vector L which obeys

a Lévy distribution

Global pollination via Xt+1

i = Xt
i + L(Xt

i − g∗)
else

Draw ǫ from an uniform distribution in [0, 1]
Randomly choose j and k among all the solutions

Local pollination via Xt+1

i = Xt
i + ǫ(Xt

j −Xt
k)

end if

Evaluate new solution

If the new solution is better, update it in population

end for

Find the current best solution g∗
end while

• with global pollination, candidate solutions tend to the

current most fit individual;

• a random value determining pollination type is obtained

for every flower in every iteration;

• newly generated solution passes to the next generation

if, and only if, it is better fitted than its predecessor.

Assuming that the current best solution is represented by g∗,

generating solution xi in step t + 1 in global pollination is

performed by the following formula:

Xt+1

i = Xt
i + L(Xt

i − g∗) (1)

where L > 0 is acquired from the Lévy distribution. A local

pollination version is in turn expressed by the formula:

Xt+1

i = Xt
i + ǫ(Xt

j −Xt
k) (2)

where ǫ is a value obtained from the regular uniform distribu-

tion.

The FPA has been benchmarked with some typical two

dimensional functions enumerated in the original FPA article,

as well as custom function created especially for the sake of

research. Tests were performed on the implementation created

in the SciPy environment using a small custom test framework.

Tunable parameters of the algorithm were changed between

specific test runs, which led to the following conclusions:

• finding a solution for the unimodal problem requires

much less effort (in terms of generation number and

population size) than for the multimodal problem;

• probability switch parameter p does not matter signifi-

cantly in unimodal problems;

• given enough iterations, every other parameter also does

not really matter in unimodal problem solving;

ARTUR NOWOSIELSKI ET AL.: THE COLUMN-ORIENTED DATABASE PARTITIONING OPTIMIZATION 1037

Fig. 1. Results of the application of FPA to the custom benchmark two-
dimensional function.

• for multimodal problems, increasing population size

gave significantly less improvement than increasing it-

eration number;

• in extreme cases, during the few first generations there

was no improvement in comparison to the initial random

population (!);

• high values of the pollination switch parameter p de-

creased effectiveness by sticking the computation to local

minimum values in a multimodal problems.

Figure 1 presents a plot of the custom two dimensional

benchmark function. Its objective function is the minimum in

the domain of [−100, 100] in both dimensions.

f(x) =

(

(xi

20

)2

− 2

)

(xi

20
+ 2

)

− 2

+ 50 sin
(xi

40

)

+ 10 sin

(

(xi

20
)2

2

)

(3)

Red dots are individuals of the initial flower population,

while blue dots are individuals of the population in the last

generation. Green stars mark the most fit flower in the last

generation along with its coordinates.

2) Krill Herd Algorithm: The Krill Herd Algorithm rep-

resents a slightly different category of metaheuristic nature-

inspired algorithms from the FPA. It is a swarm intelligence

algorithm. Originally proposed by Amir Hossein Gandomi and

Amir Hossein Alavi in the paper [4], it mimics the behaviour

of the individual krill specimens moving together as a herd.

Such herds, or swarms, move accordingly to environmental

factors, but every krill moves separately. An individual’s

movement is determined by three factors:

• the movement vector of the whole swarm (neighbours

within the swarm);

• food foraging;

• additional random bias (diffusion).

After removal of an individual krill (caused by predator

attack) from a herd, krills tend to “fix” the low-density gap

while still being oriented on finding food. From this emerges

a multiobjective optimization problem. Overall, generalized n-

dimensional formula for difference of krill position in subse-

quent time units goes as follows:

dXi

dt
= Ni + Fi +Di (4)

Enumerated aspects of individual krill moves can be described

by a set of equations:

• Ni - motion induced by neighbours:

Nnew
i = Nmaxαi + ωnN

old
i (5)

where Nmax is the maximum possible speed that can

be induced, ωn in the range [0, 1] is the inertia weight

of an individual krill. Nold
i is the motion induced in the

previous turn and

αi = αlocal
i + α

target
i (6)

αlocal
i is the local influence of the neighbours on an

individual krill, while α
target
i is the target direction.

Target is determined by the position and movement of

the best individual in a swarm.

αlocal
i =

NN
∑

j=1

K̂ijX̂ij (7)

X̂ij =
Xj −Xi

‖Xj −Xi‖+ ǫ
(8)

K̂ij =
Ki −Kj

Kworst −Kbest
(9)

where K in general is a fitness value of a given krill,

so Kworst and Kbest are the worst and the best fitness

degrees achieved so far by any individuals. NN is a num-

ber of reachable krill neighbours and ǫ is an immaterial

positive number introduced to avoid singularities in the

formula.

The NN value depends on a stated sensing scope of

krill individuals. It can be defined in a static way, e.g.

individuals always take into consideration a constant

number of closest krills, regardless of their distance.

The other way is to determine neighbour sets using the

heuristic in every iteration:

ds,i =
1

5N

N
∑

j=1

‖Xi −Xj‖ (10)

Every krill individual has its target vector defined as

follows:

α
target
i = CbestK̂i,bestX̂i,best (11)

1038 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

where

Cbest = 2
(

rand+
I

Imax

)

(12)

I , Imax is the current iteration number and a maximum

number of iterations. rand is a random value between 0

and 1.

• Fi - food foraging:

Fi = Vfβi + ωfF
old
i (13)

where Vf is the food foraging speed and ωf , as previ-

ously, is the inertia of the movement. Food fitness of the

individual is defined as follows:

βi = β
food
i + βbest

i (14)

And food attraction for the krill individual is:

β
food
i = CfoodK̂i,foodX̂i,food (15)

The food coefficient, expressing global attraction of the

food center, is:

Cfood = 2
(

1−
I

Imax

)

(16)

βbest
i = K̂i,bestX̂i,best (17)

where Ki,best is the best fit achieved by given krill

individual so far.

• Di - random physical diffusion. In the simplest case

it can be fully random. A general rule concerning the

diffusion states that the better the krill’s position is,

the less its random motion diffusion is. The following

formula defines a diffusion on the basis of that rule and

the assumption that krills’ positions improve by the time:

Di = Dmax
(

1−
I

Imax

)

δ (18)

where Dmax is the maximum possible diffusion, δ is the

random directional vector.

The distinctive feature of the KH algorithm is a implemen-

tation of two basic evolutionary operators, crossover and

mutation, despite it is not really an evolutionary algorithm.

The crossover operator is inspired by the genetic algorithms.

Its result is an individual with some features of both “parents”.

Mutation, in turn, is a random change in an individual’s

features. Paper [7] contains a description of the process of

incorporating mutation scheme into the KH algorithm. A stop

condition for the algorithm could be a time limit, reaching

a desired fitness level or the combination of these two. High

level pseudocode of the KHA is presented as the Algorithm

2. Applications and studies on parameters tuning of the KHA

have been described in publications: [8], [9], [10] and [11].

Papers [12] and [13] contain other proposed modification of

the algorithm.

Algorithm 2 High-level KHA pseudocode

Define and populate algorithm’s data structures

Initialize random initial population

while stop condition is reached do

Evaluate fitness of each krill individual on the basis of

its position

Calculate motion of each krill individual

Perform genetic operations

Update each krill position in the search space according to

calculated motion and eventual genetic operations results

end while

II. CODB - PROTOTYPE IMPLEMENTATION OF A

COLUMN-ORIENTED DB

One of the main goals of the research is the implementa-

tion of a column-oriented database management system (the

term CODB will be used). A typical contemporary Java SE

development stack has been chosen as an implementation

environment. It consists of the standard Java Development Kit

8 along with supplementary libraries Google Guava (general

purpose library), Logback (logging facility), jUnit (unit testing

framework) and Mockito (mocking facility for unit tests). This

implementation is used as a foundation for the further research.

Implementation objectives were stated as follows:

• possibility to be used as embedded database in Java and

other JVM-based programming languages, but enabling

future use with custom connectivity protocol and drivers

for other languages, as well as a REST service;

• usage of the memory-mapped data files, thus requiring

64-bit OS for sufficient performance;

• UUID v1 as an objects’ identifiers;

• custom binary storage file structure (please see the

description below);

• all values stored as an UTF-8 encoded strings;

• full in-memory indexing;

• static storage garbage collection;

• full unit test coverage of logic and storage code (except

so called boilerplate code, such as field accessor meth-

ods);

• lack of any access rights/database user management

facility;

• object-oriented API;

• partitioning and/or sharding support.

A. Storage structure

The CODB supports one keyspace in one running instance,

i.e. one instance serves for only one keyspace. Keyspace is

simply a directory in the operating system’s file system tree.

It does not have any metadata except a name. The keyspace

directory contains subdirectories representing column families.

The column family directory contains binary column

datafiles, one file per one column. Binary data files contain

a sequence of value entries. Every value entry consists of the

actual UTF-8 encoded value, a set of UUIDs of records which

ARTUR NOWOSIELSKI ET AL.: THE COLUMN-ORIENTED DATABASE PARTITIONING OPTIMIZATION 1039

contains a given value and length values necessary to calculate

offsets. UUIDs are stored as a pair of long (64-bit) values.

Every length value is just a long 64-bit value. Please note that

every specific value is stored only once, notwithstanding the

number of records which contain it. Table I shows a structure

of a single entry in the column datafile.

The current implementation offers full in-memory indexing.

A full datafiles scan is performed during startup in order to

build the indices. Planned materialized indices or eventual

column metadata would be stored in the same directory as

the data. The indexing facility in the CODB engine has two

aspects:

• indexing physical location (offset) of column values in

the datafile;

• indexing offset of spare space fragments in the datafile

(see description below).

Because of performance reasons record entries (that is pairs

(value, UUID)) are not actually updated, but removed and

created again with new values. When a value which belongs

to a given record is changed, the record’s identifier is removed

from the UUID set assigned to the previous value and will be

added into UUID set of a new value. If there is no entry of

a new value, it is appended at the end of the datafile. If the

identifier set of the new value does not have enough space

to be extended directly in its place, it is removed from its

current place and appended at the end of the datafile. When

a value is removed from the last record which possessed it,

the record’s identifier is removed from the set but the value

remains in the datafile. That feature raises a need of some

garbage collecting mechanism. A prototype implementation

offers a static garbage collection facility, that is a separate

application which is intended to be run when the actual DBMS

engine is not running. The garbage collector performs a full

data scan to build the full index and then squashes the datafile

by placing values one directly after another and throwing

out the values without any corresponding records. That way,

spacings introduced while updating values, as well as unused

value entries, are removed from the datafiles.

III. MATHEMATICAL MODEL OF A COLUMN-ORIENTED DB

AND APPLICATION

In order to apply selected natural computation algorithms

to the CODB project, one needs to translate fundamental

concepts of the domain into the mathematical model which

reflects the nature domain. Correct translation between these

three fundamentally different worlds is the key to obtaining

satisfying results. Natural computation algorithms are a gen-

eral heuristic mean of optimization problem solving. They

are not tailored to any particular problem domain, but the

problem itself should provide a mathematical model instead.

Such models consist of a few basic components:

• objective function;

• input as a scalar or vector value or n-dimensional matrix;

• output as a scalar or vector value or n-dimensional

matrix.

The objective function for the considered problem must take

several criteria into consideration when calculating the score

for the candidate partitioning solution, these include:

• partitioning scheme application cost, that is cost of

moving data back and forth between database engine

instances;

• estimated cost of the data division introduced by the

selected partitioning scheme.

Input for the objective function is a candidate solution. Its

output is the fitness degree, a value which determines a given

candidate’s quality. Enumerated objectives can be formulated

on the basis of a query log and other data usage statistics,

which must be analysed for mutual co-appearance of different

data parts. The superior goal here is placing data which often

occur together in the same instance.

The input of the algorithm should consider at least the

following aspects:

• relationship between different data parts;

• current state of the database;

• cost of moving the data item between instances (usually

size).

For every application, such a list can differ fundamentally, but

probably always it will be an n-dimensional matrix, in which

one of the dimensions will represent all records currently

stored in the considered database.

The output of the algorithm is the most fit model of

partitioning the database. In the simplest, non-optimized case,

it will be at least a 2-dimensional matrix, in which one

dimension covers all the records.

IV. SUMMARY

This paper summarises the overall perspective on the

research about horizontal scalability of column-oriented

databases with use of natural computing algorithms. The

research has already brought some encouraging results. Cur-

rently, the biggest challenge is the creation of an appropriate

objective function reflecting all the necessary aspects of dis-

tributed database operation. Correct mapping of the problem

from the database domain to the mathematical model also is

crucial for the effectiveness of the proposed solution. The pri-

mary goal at the current stage is careful creation of the model

and elaboration of the database usage log analysis methods.

Another important objective is inspection of the FPA and KHA

algorithms’ features and properties in details. Creation of the

fully featured column oriented database management system

in Java, intended as a foundation of solution application is

yet another goal, although it goes beyond the scope of the

research.

REFERENCES

[1] A. Nowosielski, “RDBMS horizontal scalability – architectures review
and example implementation,” 2013, AGH University of Science and
Technology, M.Sc.-Thesis.

[2] D. Abadi, “The design and implementation of modern column-
oriented database systems,” Foundations and Trends® in Databases,
vol. 5, no. 3, pp. 197–280, 2012. doi: 10.1561/1900000024. [Online].
Available: http://dx.doi.org/10.1561/1900000024

1040 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE I
SINGLE ENTRY STORAGE STRUCTURE

Data type Size Content

long 8B value length - l
UTF-8 encoded string ≥ lB actual value
long 8B number of associated keys - n
0 or more (long,long) pairs n× 16B big endian encoded keys

[3] “Apache CassandraTM 2.1 Documentation,” 2014, (access 28th June
2015). [Online]. Available: http://docs.datastax.com/en/cassandra/2.1/
pdf/cassandra21.pdf

[4] A. H. Gandomi and A. H. Alavi, “Krill herd: A new bio-inspired
optimization algorithm,” Communications in Nonlinear Science and

Numerical Simulation, vol. 17, no. 12, pp. 4831–4845, 2012. doi:
10.1016/j.cnsns.2012.05.010. [Online]. Available: http://dx.doi.org/10.
1016/j.cnsns.2012.05.010

[5] X.-S. Yang, “Flower pollination algorithm for global optimization,”
in Unconventional Computation and Natural Computation. Springer
Science Business Media, 2012, pp. 240–249. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32894-7_27

[6] X.-S. Yang, M. Karamanoglu, and X. He, “Multi-objective flower
algorithm for optimization,” Procedia Computer Science, vol. 18, pp.
861–868, 2013. doi: 10.1016/j.procs.2013.05.251. [Online]. Available:
http://dx.doi.org/10.1016/j.procs.2013.05.251

[7] G. Wang, L. Guo, H. Wang, H. Duan, L. Liu, and J. Li, “Erratum
to: Incorporating mutation scheme into krill herd algorithm for global
numerical optimization,” Neural Comput & Applic, vol. 24, no. 5, pp.
1231–1231, 2013. doi: 10.1007/s00521-013-1422-y. [Online]. Available:
http://dx.doi.org/10.1007/s00521-013-1422-y

[8] S. Łukasik and P. A. Kowalski, “Study of flower pollination algorithm
for continuous optimization,” in Intelligent Systems'2014. Springer
Science Business Media, 2015, pp. 451–459. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-11313-5_40
[9] P. A. Kowalski and S. Łukasik, “Experimental study of selected

parameters of the krill herd algorithm,” in Intelligent Systems'2014.
Springer Science Business Media, 2015, pp. 473–485. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-11313-5_42

[10] G. P. Singh and A. Singh, “Comparative study of krill herd, firefly and
cuckoo search algorithms for unimodal and multimodal optimization,”
IJISA, vol. 6, no. 3, pp. 35–49, 2014. doi: 10.5815/ijisa.2014.03.04.
[Online]. Available: http://dx.doi.org/10.5815/ijisa.2014.03.04

[11] P. K. Adhvaryyu, P. K. Chattopadhyay, and A. Bhattacharjya,
“Application of bio-inspired krill herd algorithm to combined heat
and power economic dispatch,” in 2014 IEEE Innovative Smart Grid

Technologies - Asia. IEEE, 2014. doi: 10.1109/isgt-asia.2014.6873814.
[Online]. Available: http://dx.doi.org/10.1109/isgt-asia.2014.6873814

[12] L. Guo, G.-G. Wang, A. H. Gandomi, A. H. Alavi, and
H. Duan, “A new improved krill herd algorithm for global
numerical optimization,” Neurocomputing, vol. 138, pp. 392–
402, 2014. doi: 10.1016/j.neucom.2014.01.023. [Online]. Available:
http://dx.doi.org/10.1016/j.neucom.2014.01.023

[13] G.-G. Wang, A. H. Gandomi, and A. H. Alavi, “Stud krill herd
algorithm,” Neurocomputing, vol. 128, pp. 363–370, 2014. doi:
10.1016/j.neucom.2013.08.031. [Online]. Available: http://dx.doi.org/
10.1016/j.neucom.2013.08.031

ARTUR NOWOSIELSKI ET AL.: THE COLUMN-ORIENTED DATABASE PARTITIONING OPTIMIZATION 1041

