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Abstract—Recursive Filters (RFs) are a well known way to
approximate the Gaussian convolution and are intensively used
in several research fields. When applied to signals with support
in a finite domain, RFs can generate distortions and artifacts,
mostly localized at the boundaries of the computed solution.
To deal with this issue, heuristic and theoretical end conditions
have been proposed in literature. However, these end conditions
strategies do not consider the case in which a Gaussian RF is
applied more than once, as often happens in several realistic
applications. In this paper, we suggest a way to use the end
conditions for such a K-iterated Gaussian RF and propose an
algorithm that implements the described approach. Tests and
numerical experiments show the benefit of the proposed scheme.

I. INTRODUCTION

Recursive filters (RFs) have achieved a central role in

several research fields, as in data assimilation for operational

three-dimensional variational analysis schemes (3Dvar) [4],

[10], and in Electrocardiogram (ECG) denoising [1], [2].

Among RFs, the Gaussian RFs are particularly suitable for

digital image processing [13] and applications of the scale-

space theory [8], [15]. Gaussian RFs are an efficient computa-

tional tool for approximating Gaussian-based convolutions [3],

[14], [10], [11], [12]. Gaussian RFs are mainly derived in three

different ways: the Deriche strategy uses an approximation of

the Gaussian function in the space domain [5]; the approxi-

mation procedure of Jin et al. is carried out in the z-domain,

i.e. it is based on an approximation of the z-transform of the

Gaussian function by means of rational polynomial functions

[9]; and the approach followed by Vliet et al. [12], [16]

approximates the Gaussian function in the Fourier domain.

The latter approach is particularly attractive since the Fourier

transform of a Gaussian function is a Gaussian.

From a mathematical point of view, a Gaussian RF consists

of two infinite sequences of equations (forward and backward

equations) that involve the entries of both the input and

output signals. However, algorithms that implement RFs need

to consider only a finite number of these equations, i.e. they

take into account a finite number of input and output signal

samples. Without additional assumptions, such a reduction

(from the infinite to the finite) introduces distortions and

artifacts on the computed finite output signals. In particular,

these solutions present an error that affects the entries near to

the boundaries. This phenomenon has been recognized as an

edge effect in [3] and some authors, such as Purser et al. [10]

and Triggs et al. [14], suggest how to avoid this by simulating

the effect of the continuation of the neglected equations. This

results in inserting the so-called boundary conditions, or end

conditions, i.e. in modifying some of the filter equations so

that the backward equations can be primed. These strategies

are based on some heuristic assumptions on the input signal

and seem to fix the edge effect problem.

In some real applications [3], [6], [7], Gaussian RFs are

used iteratively. This relies on a more general definition

of RFs, named K-iterated RFs, which have been formally

introduced in [3]. So far, a comprehensive study of the

conditions for the K-iterated RFs is still lacking. Moreover,

as noticed in [3], and recalled in this work (see Section 3),

edge effects reappear when the number K of filter iterations

increases, even though the classic RF end conditions are

used. In this context, the purpose of this work is to provide

an algorithm which combines classic end conditions with a

suitable oversizing and reduction of both the input and the

output signals, so that the edge effects are strongly mitigated.

The paper is organized as follows. In Section 2, we recall the

definitions of the discrete Gaussian convolution and Gaussian

recursive filters, then we derive classic end conditions in a

general way and show their specific features for the first-order

Gaussian RF used in [3], [6], [7]. The benefit of the end

conditions is shown through some numerical examples. In

Section 3, we give the definition of the K-iterated RFs and

point out how the filter coefficients of a K-iterated first-order

RF have to be taken. Finally, we propose a numerical

scheme that implements a K-iterated first-order RF with end

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 641–647

DOI: 10.15439/2015F286

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 641



conditions and a strategy for preventing the occurrence of

edge effects. In Section 4, we report some experiments to

confirm the reliability of the proposed algorithm and give

suggestions on how to set the parameters of the proposed K-

iterated scheme. Finally, Section 5 contains some concluding

remarks.

II. MATHEMATICAL BACKGROUND

Let

g(x) =
1

σ
√
2π

exp

(

− x2

2σ2

)

be the Gaussian function and

s(0) =
{

s
(0)
j

}+∞

j=−∞

=
(

. . . , s
(0)
−2, s

(0)
−1, s

(0)
0 , s

(0)
1 , s

(0)
2 , . . .

)

a signal (i.e. a complex function defined on the set of integers

Z). The discrete Gaussian convolution of s(0) gives rise to an

output signal s(g) whose entries are defined by:

s
(g)
j

def
=

(

g ∗ s(0)
)

j
=

+∞
∑

t=−∞

g(j − t)s
(0)
t . (1)

The entries s
(g)
j of s(g) in (1) can be approximated by means

of Gaussian recursive filters. The n-order Gaussian RF filter

gives an output signal s, which is an approximation of s(g),

whose entries solve the infinite sequences of equations:

pj = βjs
(0)
j +

n
∑

t=1

αj,tpj−t, j = −∞, . . . ,+∞, (2)

sj = βjpj +
n
∑

t=1

αj,tsj+t, j = −∞, . . . ,+∞. (3)

The equations in (2) and (3) are conveniently referred to as the

advancing and backing filters, respectively, since in the former

the index j must be treated as in increasing order while, in the

latter, it must be treated in decreasing order [10]. The values

αj,t and βj are called smoothing coefficients and satisfy:

βj = 1−
n
∑

t=1

αj,t.

The smoothing coefficients depend on σ, n and, in a more

general setting, even on the index j. Hereafter, we only

consider the homogeneous case, i.e. we set:

βj ≡ β, αj,t ≡ αt, (4)

where the advancing and backing filters take the form:

pj = βs
(0)
j +

n
∑

t=1

αtpj−t, j = −∞, . . . ,+∞, (5)

sj = βpj +

n
∑

t=1

αtsj+t, j = −∞, . . . ,+∞. (6)

If we assume that the support of the input signal s(0) is

in the grid {1, 2, . . . , N}, then equations (5) and (6) can

be implemented in an algorithm in which the index j in-

creases from 1 to N , for the advancing filter, and decreases

from N to 1, for the backing filter. This scheme needs

to prime the advancing filter, by setting the values pj , for

j ∈ {0,−1, . . . , 1 − n}, and the backing filter, by setting the

values sj for j ∈ {N +1, N +2, . . . , N +n}. For example, a

common choice is to set at zero the required pj and sj values,

i.e.:
p−n+1 = p−n+2 = . . . = p0 = 0;

sN+1 = sN+2 = . . . = sN+n = 0.
(7)

However, this assumption gives rise to a well-known edge

effect, already noticed in [14], and discussed in detail in [3].

An outline of such a scheme, implementing (5), (6) and (7),

is provided in Algorithm 1.

Algorithm 1 Scheme of an n-order Recursive Filter with zero

end constraints

Input: s(0), σ Output: s

1: set β, α1, . . . , αn % smoothing coefficient precomputation

2: for j = 1, 2, . . . , n % left zero end conditions

3: pj−n := 0

4: endfor

5: for j = 1, 2, . . . , N % advancing filter

6: pj := βs
(0)
j

7: for t = 1, 2, . . . , n

8: pj := pj + αtpj−t

9: endfor

10: endfor

11: for j = 1, 2, . . . , n % right zero end conditions

12: sN+j := 0

13: endfor

14: for j = N, . . . , 1 % backing filter

15: sj := βpj

16: for t = 1, 2, . . . , n

17: sj := sj + αtsj+t

18: endfor

19: endfor

Example 1. Now we provide some insights into the edge

effect through the following example. Let s(0) be the input

signal with entries:

s
(0)
j =







0 for j ≤ 0;
1 for 1 ≤ j ≤ N = 30;
0 for j ≥ N + 1 = 31;

(8)

In Figure 1, we report the results obtained by applying the first-

order RF and third-order RF to the signal s(0). In particular,

the red line represents the signal s(g), i.e. the discrete Gaussian

convolution of s(0) with σ = 4. Conversely, the white

squares and gray diamonds are the values of the output signals

computed by means of the first-order RF and third-order RF,

respectively. Notice that both computed solutions differ from

s(g) mostly on the boundary entries. In particular, the third-

order filter seems to not well approximate the entries of s(g)

close to the right boundary. This phenomenon can be better
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Gaussian convolution

Fig. 1. Red line: discrete Gaussian. White squares: first-order RF solution.
Gray diamonds: third-order RF solution.

understood by looking at the relative errors

ej =
|sj − s

(g)
j |

|s(g)j |
. (9)

The value of the errors ej , for the first-order RF and third-order

RF, are shown in Figure 2. Observing the order of magnitude

of the values ej , we can conclude that, in general, the output

signals present a larger error at the boundaries.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

first−order RF error
third−order RF error

Fig. 2. White squares: first-order RF relative errors. Gray diamonds: third-
order RF relative errors.

A. Introducing end conditions

The edge effect, shown in the previous example, can be

partly explained by observing that, in the transition from the

infinite sequences of equations to the finite algorithm, the

computed solution s has been constrained to assume the value

zero on the right off-grid points N + 1, N + 2, . . . , N + n,

while this property is not true for s(g). Hence, assumption (7)

introduces a sort of perturbation error on the output signal

s of the RF. This drawback can be avoided by simulating,

in the finite setting, the effect of the continuation of the

neglected equations (for j > N ). To achieve this aim, we

adapt to our setting and notations the derivation of the end

conditions (e.c.) described in [14].

We consider an n-order recursive filter with smoothing

coefficients α1, . . . , αn and βj . Let C and A be the following

n× n matrices:

A =















α1 . . . αn−1 αn

1 . . . 0 0

...
. . .

...
...

0 . . . 1 0















(10)

C =















β 0 . . . 0 0

0 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 0















(11)

Now, by setting:

~pt =
(

pt, pt−1, . . . , pt−n+1

)T
,

~st =
(

st, st+1, . . . , st+n−1

)T
,

~s
(0)
t =

(

s
(0)
t , s

(0)
t+1, . . . , s

(0)
t+n−1

)T
,

the forward and backward filters in (5) and (6), take the form:

~pt+1 = C~s
(0)
t+1 +A~pt, (12)

~st = C~pt +A~st+1. (13)

Then, applying recursively (12) and (13), we obtain:

~pt+k =

k−1
∑

l=0

AlC~s
(0)
t+k−l +Ak~pt, (14)

~st =
k−1
∑

l=0

AlC~pt+l +Ak~st+k. (15)

Assuming that the support of the input signal s(0) is in

{1, 2, . . . , N}, the equation (14), for k > 0 and t ≥ N ,

becomes:

~pt+k = Ak~pt. (16)

Now, using (16) in (15), and taking the limit for l → ∞,

provided that s is bounded, we obtain:

~st = M~pt, with M
def
=

∞
∑

l=0

AlCAl. (17)

For t = N , equation (17) provides a way of priming the

backing filter. In other words, (17) behaves as a sort of turning

condition that accounts for the infinite sequence of neglected

equations and allows us to skip from the advancing filter to the

backing filter. Indeed, the values sN , sN+1, . . . , sN+n−1 are

linear functions of the values pN , pN−1, . . . , pN−n+1 which

are computed by the advancing filter. In this approach, we

need to precompute the matrix M . This can be done in several
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ways: in [14], it is observed that the recursive definition of M

implies that it solves the equation:

M = C +AMA;

otherwise, one could compute an approximation of M as the

partial sum Mk =
∑k

l=0 A
lCAl, provided that Ak+1CAk+1 is

negligible. Observe that, for the first-order RF with smoothing

coefficients α ≡ α1 and β = 1− α, we simply have:

A = α, C=β, M=

∞
∑

l=0

β · α2l =
β

1− α2
=

1

1 + α

and for t = N in (17),

sN =
1

1 + α
pN .

An exact expression of the matrix M , in terms of the

coefficients α1, α2, α3 and β, can be derived for the third-

order RF [14] and will be used in the example below. In order

to take into account the end conditions, steps 11. 12. and 13.

of Algorithm 1 must be replaced with the computation of

M and the computation of ~sN . Moreover, the last loop (steps

14.-19.) must start from N − 1.

Example 2. To see the effect of the e.c. on the RFs, we

consider the input signal s(0) in (8). The results obtained

by applying the first-order and the third-order RFs, with and

without e.c., are plotted in Figure 3 and Figure 4, respectively.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2
first−order RF with e.c.
first−order RF
Gaussian convolution

Fig. 3. Red line: discrete Gaussian. White squares: first-order RF without
end conditions. Blue squares: first-order RF with end conditions.

In Figure 3 the solutions of the first-order RFs with and

without e.c. are compared; analogously, Figure 4 deals with the

third-order RFs. In both cases, one can notice the improvement

of the computed solutions, especially on their right boundary

entries, when the e.c. are considered. In particular, the output

signal of the third-order RF with e.c. is very close to the

Gaussian convolution output s(g).

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2
third−order RF with e.c.
third−order RF
Gaussian convolution

Fig. 4. Red line: discrete Gaussian. Gray diamonds: third-order RF without
end conditions. Blue diamonds: third-order RF with end conditions.

III. K -ITERATED GAUSSIAN RECURSIVE FILTERS

The latter example highlights that the third-order filter mim-

ics very well the effect of the discrete Gaussian convolution.

Conversely, the output signal of the first-order RF, even with

e.c., is still a poor approximation of s(g). Purser et al. [10]

suggest that applying several times the same RF can improve

the accuracy of the approximation. This fact could be seen

as a consequence of the central limit theorem applied to the

Gaussian convolution. This idea has been discussed and im-

plemented in [3], [6] and [7] where the authors iteratively used

the first-order RF (without e.c.) to solve a three-dimensional

variational data assimilation problem. Here, we are interested

in formalizing such an iterative approach.

A K-iterated n-order Gaussian RF filter computes the output

signal s(K), i.e. the K-iterated approximation of s(g), as

follows:

p
(k)
j = βs

(k−1)
j +

n
∑

t=1

αtp
(k)
j−t, j = −∞, . . . ,+∞, (18)

s
(k)
j = βp

(k)
j +

n
∑

t=1

αts
(k)
j+t, j = −∞, . . . ,+∞. (19)

The filter iteration counter k goes from 1 to K , where K is

the total number of filter iterations. For K>1, the problem of

triggering the advancing filter at iteration k = 2, . . . , K can

be faced with the same strategy used to generate the (right)

end conditions for a classic RF (K = 1). Assuming indeed

that, at the iteration k:

p
(k)
−n+1 = p

(k)
−n+2 = . . . = p

(k)
0 = 0,

s
(k)
N+1 = s

(k)
N+2 = . . . = s

(k)
N+n = 0,

(20)

and rearranging the equations (12) and (13), it results:

~p
(k)
1 = M~s

(k−1)
1 , (21)

with M as in (17). Similarly, the backing filter, for iterations

k = 2, . . . , K , can be triggered by setting

~s
(k)
N = M~p

(k)
N . (22)
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The smoothing coefficients depend on σ, n and even on K .

The correct setting of the smoothing coefficients is crucial for

the convergence. We remark that, in the Fourier domain, the

Gaussian convolution in (1) becomes

S(g)(ω) = G(ω, σ) · S(0)(ω), (23)

where

S(g)(ω) =
(

F
(

s(g)
)

)

(ω), S(0)(ω) =
(

F
(

s(0)
)

)

(ω)

and

G(ω, σ) =
(

F(g)
)

(ω) = exp

(

−ω2σ2

2

)

are the Fourier Transforms of the signals s(g), s(0) and g,

respectively. Rewriting (23) as:

S(g)(ω) =

(

G

(

ω,
σ√
K

))K

· S(0)(ω), (24)

we obtain, in the signal domain, that s(g) can be seen as the

result of K successive Gaussian convolutions with an identical

Gaussian function with a standard deviation:

σK =
σ√
K

.

This argument suggests that σK must replace σ in the expres-

sion of the smoothing coefficients of a K-iterated RF. For

example, the smoothing coefficients α and β of the (one-

iterated) first-order Gaussian RF, in the homogeneous case,

are set as:

α=1+Eσ −
√

Eσ(Eσ + 2), β=
√

Eσ(Eσ + 2)−Eσ.

(25)

with

Eσ =
1

σ2
.

Then, for the K-iterated first-order Gaussian RF, the value of

Eσ must be replaced by:

EσK
=

1

σ2
K

=
K

σ2
.

Example 3. To see the behaviour of such a K-iterated

filter, we apply it to a random input signal with support in

{1, 2, . . . , 30}. In Figure 5, the RF output signals for three

different values of the number iterations (K = 12, 25, 50)

are reported. The results show that, despite the fact that the

accuracy on the central entries does not seem to change, the

edge effects reappear when the number of filter iterations

increases. In particular (see Figure 6), the relative errors ej ,

defined as in (9), increase both in the left and right boundary

entries as K increases. Conversely, the convergence to the

Gaussian convolution output signal may be observed by

looking at the central entries of the errors in Figure 6. We

highlight that, in the previous test, the end conditions (21)

and (22) have been used. The fact that the e.c. do not work

as expected, mostly at the edges, can be simply explained as

a consequence of the wrong assumptions in (20).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

first−order RF with e.c. − 12 iterations
first−order RF with e.c. − 25 iterations
first−order RF with e.c. − 50 iterations
Gaussian convolution

Fig. 5. Discrete Gaussian (red circles) versus first-order RF solutions with 12
iterations (dotted blue line), 25 iterations (dashdot green line) and 50 iterations
(solid black line).

0 5 10 15 20 25 30

10
−2

10
−1

10
0

first−order RF (with e.c.) relative error  − 12 iterations
first−order RF (with e.c.) relative error  − 25 iterations
first−order RF (with e.c.) relative error  − 50 iterations

Fig. 6. First-order RF relative errors for 12 iterations (dotted blue line), 25
iterations (dashdot green line) and 50 iterations (solid black line).

Here, we suggest a scheme that allows the use of the K-

iterated first-order Gaussian RF and prevents the edge effect.

Our idea consists in three steps:

(i) extending the given input signal s(0), with support in

{1, 2, . . . , N}, by adding artificial zero entries at the left

and right boundaries. More specifically, we introduce the

extended signal:

s(0),m =
(

0, . . . , 0, s
(0)
1 , . . . , s

(0)
N , 0, . . . , 0

)

, (26)

which is obtained by placing m zeros before s
(0)
1 and m

zeros after s
(0)
N ;

(ii) applying the K-iterated first-order Gaussian RF to s(0),m;

(iii) reducing the output signal s(K),m, by removing its first

and last m entries.

The underlying idea of that scheme is to shift the edge effects

on the artificially added entries. Steps (i)-(iii) are summarized

in the following algorithm. For the sake of simplicity, we

consider the case of the first-order RF. Nevertheless, the same
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algorithm could be easily modified for any K-iterated n-order

RF.

Algorithm 2 Scheme of the K-iterated first-order recursive

filter with end conditions

Input: s(0) , σ, m, K Output: s(K)

1: extend s(0) to s(0),m

2: set s(0) := s(0),m; β, α as in (25); M := 1/(1 + α)

3: for k = 1, 2, . . . ,K % filter loop

4: compute p
(k)
1 := Ms

(k−1)
1 % left end conditions

5: if k = 1 then

6: p
(k)
1 := βs

(k−1)
1

7: end

8: for j = 2, . . . , N % advancing filter

9: p
(k)
j

:= βs
(k−1)
j

+ αp
(k)
j−1

10: endfor

11: compute s
(k)
N

:= Mp
(k)
N

% right end conditions

12: for j = N − 1, . . . , 1 % backing filter

13: s
(k)
j

:= βp
(k)
j

+ αs
(k)
j+1

14: endfor

15: endfor

16: reduce s(K) as described in step (iii)

In the next section, through some numerical examples, it will

be pointed out how the parameter m has to be set, in order

to obtain a satisfactory accuracy on the computed RF output

signals, even at their boundary entries.

IV. NUMERICAL EXPERIMENTS

In this section, we present two experiments. The aim of

the first test is to prove the effectiveness of Algorithm 2 in

removing the edge effects. In the second test, we show that

a suitable value of m can guarantee a negligible edge error,

regardless of the filter number iterations K and the size N of

the input signal.

A. Convergence at the edges

We consider the random input signal of Example 3.. We

use Algorithm 2 varying both the number of iterations and the

size of s(0),m. More precisely, in Figure 7, we report the output

signals obtained with K = 12 iterations and by extending the

input signal s(0) with m = 1, 3, 6 zeros at each boundary.

Figure 8 shows the results obtained with the same values of

m and increasing the number of iteration to K = 25.

Looking at Figure 7 and Figure 8, we observe that the

edge effects seem to disappear as m increases. Notice that,

comparing the behaviour of the blue curves (m = 1), the

results worsen as K increases. This drawback can be avoided

by suitably increasing the value of m. Figure 9 shows picto-

rially that, taking m = 3σ = 12, the accuracy is preserved

also at the boundaries. Moreover, Figure 10 indicates that the

component-wise convergence holds as K increases.

B. Suitable choice of m

In this test we measure the error ‖s(g) − s(K)‖2, where

s(K) is the output signal obtained by applying the Algorithm

0 5 10 15 20 25 30

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 first−order RF with e.c. − 12 iterations − m=1
first−order RF with e.c. − 12 iterations − m=3
first−order RF with e.c. − 12 iterations − m=6
Gaussian convolution

Fig. 7. Discrete Gaussian (red circles) versus first-order RF solutions with
12 iterations and m = 1 (dotted blue line), m = 3 (dashdot green line) and
m = 6 (solid black line).

0 5 10 15 20 25 30
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0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 first−order RF with e.c. − 25 iterations − m=1
first−order RF with e.c. − 25 iterations − m=3
first−order RF with e.c. − 25 iterations − m=6
Gaussian convolution

Fig. 8. Discrete Gaussian (red circles) versus first-order RF solutions with
25 iterations and m = 1 (dotted blue line), m = 3 (dashdot green line) and
m = 6 (solid black line).

2 to the random input signal s(0) of Example 3. varying the

values of m and K . The results summarized in Table I, for

σ = 4, show that the convergence is reached, as K increases,

provided that m ≥ 2σ. For m ≤ σ the convergence is not

achieved due to the edge effects. We also note that increasing

m beyond 3σ does not improve significantly the accuracy.

TABLE I
NORMS ‖s(g) − s(K)‖2 FOR SEVERAL VALUES OF K AND m.

σ = 4, N = 30.

K\m 0.25σ 0.5σ σ 2σ 3σ 6σ

5 9.85e-01 4.70e-01 1.00e-01 1.23e-01 1.42e-01 1.16e-01
15 1.14e+00 5.66e-01 7.75e-02 4.96e-02 6.00e-02 5.73e-02
30 1.19e+00 6.07e-01 8.14e-02 3.41e-02 3.48e-02 3.00e-02
50 1.23e+00 6.18e-01 8.61e-02 2.48e-02 2.49e-02 2.54e-02

100 1.26e+00 6.40e-01 9.09e-02 1.71e-02 1.70e-02 1.70e-02

Table II shows that the above results about convergence and

accuracy hold true also for different values of σ. We remark
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Fig. 9. Discrete Gaussian (red circles) versus first-order RF solutions with
25 iterations (dotted blue line), 100 iterations (dashdot green line) and 200
iterations (solid black line). m is set to 12 and the computed solutions can
not be distinguished.
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Fig. 10. First-order RF relative errors for 25 iterations (dotted blue line),
100 iterations (dashdot green line) and 200 iterations (solid black line).

that, for any fixed value of K , the value m = 3σ represents a

good trade-off between accuracy and efficiency.

TABLE II
NORMS ‖s(g) − s(K)‖2 FOR SEVERAL VALUES OF K AND m.

σ = 6, N = 30.

K\m 0.25σ 0.5σ σ 2σ 3σ 6σ

5 1.02e+00 4.88e-01 1.01e-01 1.13e-001 1.61e-001 1.18e-01
15 1.13e+00 5.63e-01 7.71e-02 4.57e-002 4.98e-002 5.43e-02
30 1.20e+00 6.02e-01 8.31e-02 3.24e-002 3.65e-002 3.48e-02
50 1.23e+00 6.21e-01 8.62e-02 2.31e-002 2.41e-002 2.30e-02

100 1.26e+00 6.42e-01 9.08e-02 1.64e-002 1.74e-002 1.65e-02

The results in Table III prove that the above conclusions do

not depend on the size of the input signal.

V. CONCLUSIONS

In this paper, we have discussed a way to overcome the

edge effect in K-iterated Gaussian RFs, by a suitable choice

TABLE III
NORMS ‖s(g) − s(K)‖2 FOR SEVERAL VALUES OF K AND m.

σ = 4, N = 2000.

K\m 0.25σ 0.5σ σ 2σ 3σ 6σ

5 1.13e+00 5.84e-01 3.07e-01 4.68e-01 2.87e-01 3.47e-01
15 1.20e+00 6.00e-01 1.39e-01 1.33e-01 1.25e-01 1.32e-01
30 1.25e+00 6.25e-01 1.17e-01 8.23e-02 9.08e-02 9.11e-02
50 1.29e+00 6.44e-01 1.03e-01 6.27e-02 5.90e-02 6.48e-02

100 1.32e+00 6.67e-01 1.01e-01 4.28e-02 4.29e-02 4.28e-02

of the end conditions. We have introduced an algorithm

that implements the described approach. We have shown by

means of several numerical experiments the effectiveness of

the proposed K-iterated scheme. Finally, we have discussed

in detail several issues related to the suitable choice of the

parameter of our method.
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