
A Review of Source Code Projections
in Integrated Development Environments

Ján Juhár and Liberios Vokorokos
Department of Computers and Informatics

Technical University of Košice

Letná 9, 0420 00 Košice, Slovakia

Email: {jan.juhar, liberios.vokorokos}@tuke.sk

Abstract—The term Projectional editor is commonly used for
tools that can work directly with the program’s abstract syntax
tree. They are able to provide different views of the program,
according to the specific editor used. The ability to look at the
program from multiple views is often requested as a mean to
simplify program comprehension. During their evolution, the
Integrated Development Environments were equipped with tools
that provide such possibilities. Many of them already work with
the parsed abstract syntax tree of the code and thus can be
considered for projections. In this paper we review projections
available in 6 widely used IDEs. The review categorizes existing
projections and shows that significant number of IDE tools
depend on the knowledge of program structure, but also that data
from other integrated tools are used to enhance the projections.

I. INTRODUCTION

T
HE ability to evolve a software system depends on the

programmer’s ability to comprehend its source code. The

source code comprehension (also program comprehension)

is a cognitive process that involves analysis of the source

code and retrieval of information and knowledge about the

analyzed system. This process tends to take up to a half of

a programmer’s time during the software development and

maintenance [1], [2].

The main hindrance that programmers face while com-

prehending the source code is the wide semantic gap that

exists between the problem domain and the solution domain.

Due to this gap, the mapping of a specific program feature

to the code that implements this feature (or vice versa) is

not straightforward. Factors like programmer’s personality,

experiences and skills, combined with the nature of the task

at hand have a strong influence on this process [2]. Program

represented as a source code enforces the single structure

chosen by its author onto all programmers that will work

with it later, regardless of whether they will intend to reuse,

extend or modify it. This is the reason why the tools that are

able to provide different, context-driven views of the code are

requested during the comprehension process [3].

The goal to aid programmers in the program comprehension

process stands behind many tools. The Integrated Development

Environments (IDEs) represent the most complex toolset for

working with a source code. The ultimate purpose of an IDE

and all of its tools is to cover all phases of the software life

cycle and to increase the productivity of programmers. For this

reason, an IDE typically contains code editors, browsers and

analyzers, refactoring and build automation tools, debuggers,

and other tools. The research on the comprehension strategies

of professional programmers by Maalej et al. [2] points out the

importance of integrated environments: comprehension tools

that are not a part of the IDEs are virtually not used at all in

the practice.

The main advantage modern IDEs have over pure text

editors (even the advanced ones) is that they can “understand”

the structure of the source code. After loading the source

code contained in text files, they parse it into an abstract

representation of the code – a form of its abstract syntax tree

(AST). Many operations that IDE performs, e.g., refactoring

or contextual code completion, are performed against this

AST [4]. Whenever the code or the AST changes, the other

is accordingly updated to stay in sync.

There are IDEs that take this idea to the next level and use an

AST as a base program representation. The program is stored

in the files as a serialized form of this AST, e.g., using XML

notation. After loading such file into the editor, a projection of

this base representation is presented to the programmer. There

is no need for parsing and when the programmer is editing the

program, he or she is basically directly editing the AST [5].

Such base representation abstracted from concrete language

notation can be presented through projections in multiple

forms and consequently the notation that programmer deals

with can be tailored to best suit a particular domain. Editors

of such IDEs are therefore called projectional editors [4], [5].

The most notable example of such IDE is the JetBrains Meta

Programming System (MPS) which is used not only to develop

programs in domain specific languages, but also to create these

languages along with the appropriate language notations and

editors.

In the case of MPS-like tools the idea of projections is

well-defined. It is the core of their functionality. As we already

hinted, modern source-based IDEs also operate on the abstract

representation of the code, even though it needs to be parsed

from the textual notation and it exists only during code editing.

Yet, this gives an opportunity to exploit the idea of projections

even by these IDEs.

We believe that source code projections are used by source-

based IDEs on a large scale. However, the term projection is

not well established in their context. This may be the reason

why tools that use them are seldom recognized or referred to

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 923–927

DOI: 10.15439/2015F289

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 923

as projectional. Our goal in this paper is to identify, review

and categorize projections that are used by popular IDEs.

II. INTEGRATED DEVELOPMENT ENVIRONMENTS AND

PROJECTIONS

There are many tools that programmers can use during

development for code editing. They range from pure text

editors that provide the basic text manipulation operations,

through the advanced ones that add support for syntax high-

lighting or word completion, to fully featured IDEs with all

the tools mentioned in the previous section. However, there

is no generally recognized definition of what exactly is an

IDE. Due to a great number of existing tools and an effort to

differentiate themselves, there is no clear boundary between

what is still “only” a text editor and what is already an IDE.

For our purposes, we have already laid out some require-

ments on what we consider for an IDE, mostly with regard

to projections we want to explore. We will understand an

integrated development environment as an application that is

designed to support the majority of the software development

life cycle – that is, at least the implementation, testing and

maintenance phases – by providing an environment for pro-

grammers that includes tools for the associated tasks. In addi-

tion, we will require that the included tools (not necessarily all

of them) are able to take advantage of the program structure –

they should operate on the abstract representation of the source

code.

As for the term projection, in the context of the MPS-

like projectional editors it is used to represent an interactive,

customizable rendering of the AST [5]. This can be true even

for the source-based IDEs that operate on a parsed AST,

though possibilities are limited here by the need to preserve

parsability of the base source code. Through projections,

source code can be conveyed in multiple views. The source

code projections can be thus considered for a mapping between

a set of base source code structures and a set of dynamically

created views [6]. Such views usually focus on some aspect

of the system and convey it in a concise way. Different

projections can be useful in different contexts, but generally

they can have positive effects on program comprehension by

providing a higher-level view of the system.

III. A REVIEW OF SOURCE CODE PROJECTIONS

In order to select which IDEs will be used for the review

of existing code projections, we referred to their popularity

ranking Top IDE Index1 that was compiled from Google search

trends as of April, 2015. We focused on the first ten ranks of

the index, as listed in the table I.

However, the criteria according to which the tools were

added to the index were less strict than our understanding

of an IDE. As a result, the index also contains tools like

Vim, Emacs and SublimeText. Although these are very flexible

and extensible tools for programming, we consider them for

code editors, because they work with the source code only

1http://pypl.github.io/IDE.html, accessed April 2015

TABLE I
SELECTION OF IDES FOR THE REVIEW

Rank1 Name Category Reviewed Version

1 Eclipse IDE ✓ 4.4.2

2 Visual Studio IDE ✓ 2013 Ultimate

3 Vim Editor – –

4 NetBeans IDE ✓ 8.0.2

5 XCode IDE – (n/a) –

6 SublimeText Editor – –

7 Komodo IDE ✓ 9.0

8 IntelliJ IDEA IDE ✓ 14.1

9 Emacs Editor – –

10 Xamarin IDE ✓ 5.9

at the textual level. Thus, these were ruled out of the review.

Additionally, we had to exclude XCode as it is available only

for Apple Mac platform, to which we did not have access.

Six remaining IDEs marked in the “reviewed” column of

the Table I were used in the following review of existing

projections. The reviewed versions of used IDEs are also listed

in the table.

The review of projections was conducted by evaluating

features of main application menu and code editor of each

selected IDE for projectional properties. Within the single IDE,

the features were checked for multiple languages and project

types.

Four categories of projections were identified. In the fol-

lowing subsections we describe these categories and list the

relevant projections along with their requirements.

A. In-editor Projections

The code editor is a very significant part of each IDE. It

was already mentioned that it projects editable representation

of the AST constructed by parsing the source code. Of course,

this projection will work only for languages that are supported

by the IDE. Code editor displays the loaded file with exactly

the same content as persisted on the storage medium. The

projectional properties manifest themselves in the additional

features that augment the text, and these are reviewed below.

The first is the code highlighting. It is able to convey infor-

mation not only about the code syntax (e.g., by highlighting

the keywords of the language), but also about its structure. It

takes into account the scope of the variables – it distinguishes

between local and global ones even if they have the same

name. Furthermore, it can highlight all occurrences of the same

program element (see fig. 1), identify unused statements and

more. This is where the structural information provided by

the parsed AST are exploited. However, the level to which

the IDE is capable of these features depends on the detailness

of the parsed AST and also on the language properties. The

more a language has “dynamic”2 properties, the less complete

(or reliable) knowledge about actual program structure during

2Dynamic languages are mostly defined by support for dynamic typing or
powerful reflection that allows extensive run-time modifications of a program
behavior.

924 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

runtime can be obtained from the static structure of the AST.

These properties have influence on all projections that utilize

the AST.

A related projection is the error highlighting, which brings

another informational layer to the code editor. The simplest to

detect are syntax errors. Strongly-typed languages can benefit

from possibility to check type assignment and visualize the

errors.

Another common in-editor projection is the code comple-

tion, visualized as a pop-up list of available program elements

in the specific context. Yet again, the knowledge of structural

relations of elements in the edited source code is required for

realization of this feature and the level of list completeness

depends on the AST detailness and language properties.

Apart from above described in-editor projections that are

available in every selected IDE, there are some that exist only

in one of them. IntelliJ IDEA is able to project method or

class implementation in the pop-up window over the selected

class or method name with action called Quick Definition (see

fig. 1). It is a different form of the go to definition projection

(described in section III-C) that causes less navigational over-

head, as the pop-up can be easily closed and user does not

need to switch to other editor tab or window. The projected

code is, however, not editable. Visual Studio provides feature

called Peek definition, which creates a projection with similar

purpose. This one is inserted directly in-line within the editor,

as can be seen in fig. 2, and is fully editable. The use of

this projection recursively inside the in-lined view replaces the

whole view and adds so-called “breadcrumbs” for switching

among the already opened views.

Source code in the editor can be further augmented by meta-

data available in the AST. To give an example, the presence

of documentation annotation @deprecated in a Java code

can be projected by crossing out any usage of the annotated

element in the editor to visually warn the programmer about

usage of a deprecated API.

In-editor projections are also used to project information not

obtained from the AST. While running the debugging session,

the IntelliJ IDEA projects the actual values of the variables

next to their occurrences in the code editor as the user steps

quick definitionthe same element (method)

Fig. 1. code highlighting and quick definition in IntelliJ IDEA

through the program execution. CodeLens, a feature of Visual

Studio, decorates declarations of methods with a reference

counter, as displayed in fig. 2. In addition to this, it can show

a unit tests passing score and a code changes history, if the

data are available. Only the reference counter value can be

obtained by analyzing the AST of the program. The later two

pull required data from the integrated test runner and version

control system, respectively.

B. Structure Projections

Each of the selected IDEs contains tools that provide

overview of the project structure. The most basic one – the

file browser – can be considered for an identity projection of

the project’s files, with exactly the same structure as stored on

a storage medium.

With the exception of the Komodo IDE, the selected IDEs

contain panels that show hierarchical, tree-like project struc-

ture according to packages, namespaces, modules, classes,

or other structural elements of the programs. These high-

level views of the program structure are augmented with

graphical symbols, informing the user about the visibility

of the structural elements or distinguishing their type (class,

abstract class, interface, and others).

The view of the same tool in a particular IDE differs de-

pending on the used language or the project type. For example,

in IntelliJ IDEA, Project panel shows more detailed structure

in the case of Java files than, say, Python or JavaScript files.

When working on a web project in the NetBeans IDE, the

Projects panel extends the tree structure to include even the

remote files that are linked from inside of the HTML pages.

Individual IDEs also differ in the level of the details

displayed by these tools. Particularly detailed is the Package

Explorer of Java projects that is available in the Eclipse IDE.

As shown in fig. 4, it goes down to the level of individual class

members and also provides their signature. At the file level the

view is further extended with repository information of the

latest edit. Another tool that goes deeper into the program

structure is the Architecture Explorer in Visual Studio. In

addition to listing the class members, it can recursively show

peek definition

codeLens

breadcrumbs

Fig. 2. codeLens and peek definition in Visual Studio

JÁN JUHÁR, LIBERIOS VOKOROKOS: A REVIEW OF SOURCE CODE PROJECTIONS 925

all the methods called inside the implementation of a particular

method. Moreover, it allows to create a graph that represents

the selected call hierarchy.

Apart from tools projecting structure of the whole projects,

all selected IDEs contain more focused tools that display

detailed structure of the file currently viewed in the editor.

This is intended to speed-up the navigation inside a single

file. A related to this projection is the breadcrumbs panel that

shows context of the currently edited part of the file based

on the position of the caret in the editor. Eclipse and IntelliJ

IDEA contain also projections that can display type hierarchy

of classes and call hierarchy of methods.

C. Search and Go-to Projections

The next group of projections relate to searching for specific

program elements across the project. The simple text-based

search is by the IDEs extended to take into account the source

code structure. This helps to connect related elements and

distinguish between the different elements represented with

the same name (the same text).

One of the tools providing this kind of projection is used to

search for all references of the same program element. This

tool is called differently in each IDE, with names like find

usages or find all references. It is useful for quick navigation

and for discovering code dependencies. Another related tool

deals with the comments. It displays all code locations where

comment starts with the word “todo”, or other configured

pattern, which makes possible to track tasks across the project

(see fig. 4).

Similar are tools for quick navigation between different pro-

gram element occurrences and within the inheritance hierar-

chy. These include tools with self-explanatory names like go to

declaration, go to implementation, go to super implementation

and go to type declaration. If they can navigate to only one

place in the source code, there is no “view” created and the

action implied by the tool’s name is immediately performed.

D. Domain-specific Projections

The projections reviewed so far drew the required infor-

mation for their construction from the parsed AST. Many

repository data

Fig. 3. Package explorer in Eclipse

Fig. 4. TODO tasks in Eclipse

general-purpose IDEs (in our case Eclipse, IntelliJ IDEA,

NetBeans and Visual Studio) have support for a number

of software frameworks. And there are IDEs that are built

specifically to support some frameworks (e.g., Xamarin for

mobile application development). These IDEs take advantage

of common application structures, conventional configurations

and domain-specific APIs in order to simplify development

of applications with supported frameworks. As a result, code

projections that support specific framework features were

found in the reviewed tools as well.
Applications that use a particular framework have (to some

extent) common structure and this is exploited by these

IDEs. Based on the known structure, program element across

different languages can be interconnected. Web applications

created with the Spring or Play frameworks in IntelliJ IDEA

or with ASP.Net framework in Visual Studio can have code

completion working for dynamic segments of page templates

because the IDE “knows” which program element represents

the context of the template.
An example of a projection based on a framework configu-

ration is the ability of IntelliJ IDEA to view and edit classes

annotated with the Java Persistence API’s annotations in the

form of entity relationship diagram.
The common example of domain-specific projection among

the reviewed Java-supporting IDEs – Eclipse, IntelliJ IDEA

and NetBeans – is the graphical user interface builder for the

Swing framework. Eclipse can project class inheriting from

one of the Swing window components directly to its graphical

representation and any edits made in this graphical view are

reflected back to the code. To achieve the same functionality,

IntelliJ IDEA and NetBeans use intermediary XML file that

represents the layout of user interface components. Graphical

representation is the result of projecting this XML file. In the

other direction, the source code is generated from the XML.

IntelliJ IDEA by default postpones this code generation to the

compile time, while NetBeans updates code on each change

of the design. Similar projections are available also in Visual

Studio for Windows Forms framework and in the Xamarin

IDE for creating graphical layouts for mobile applications. All

these projections require the IDE to “understand” the API of

the particular framework.

IV. PROJECTIONAL TOOLS IN THE RESEARCH

The research in the area of projectional tools is mostly

associated with the tools like the already mentioned JetBrains

926 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

MPS. In their work [5], [7], Voelter et al. focus primarily

on this language workbench. They discuss the concept of

projections and possibilities they brig to the domain-specific

language development, but also the associated issues of direct

AST manipulation. They also deal with projections in the con-

text of composition and extension of programming languages.
There is an ongoing endeavor in the research community

to create tools that supports program comprehension. Few of

those are generally viewed as projectional tools. However,

many of the tools are implemented as IDE extensions and

have projectional properties similar to those we described in

the review.
Among these tools, the Fluid source code views [8] tool

implemented for the Eclipse IDE is similar to the peek defini-

tion feature of Visual Studio that was reviewed in this paper.

Registration-based abstractions presented by Davis et al. [9]

are another example of IDE projections – in this case they

change language syntax in the Eclipse IDE editor to achieve

easier comprehension of frequently used coding patterns.
Another type of tools deal with the program concerns. The

Sieve Source Code Editor [10] for the NetBeans IDE uses the

structured code comments to create concern-oriented views

of the source code. The Code Bubbles [11] and the Code

Canvas [12] are alternative code editors for the Eclipse and

Visual Studio IDEs, respectively. These provide projections

of the source code that are abstracted from traditional file-

based views and allow programmers to create free-form ar-

rangements of the code they are working with.

V. CONCLUDING REMARKS

In this paper we presented a review of code projections that

are available in today’s integrated development environments.

We identified four main categories of the tools that feature

projectional behavior.
The in-editor projections enhance the textual notation of

the source code with code highlighting or completion. The

structure projections are available as a separate panels that

create views of the system concentrated on its structure,

providing thus higher-level view that is easier to grasp than

the full source code with all of its details. The search and

go-to projections are provided by the tools for searching the

related program elements or navigating the class hierarchies.

In the most cases, these three categories require for their

functionality a knowledge that can be extracted from abstract

syntax tree analysis. We found also projections that use other

information sources, exploiting advantages of the tools that are

available in the integrated environments. There are data pro-

jected from debuggers, version control systems or test runners.

The last category contains domain-specific projections that rely

on conventions of supported frameworks, such as common

application structures and APIs designed for a particular

domain. As a result, they can provide code completion across

languages, project annotated classes as relational diagrams or

enable graphical builders of user interfaces.
We have shown in the review that the projections are not

only a matter of projectional language workbenches as they

are extensively used in many aspects of modern source-based

integrated development environments. Their infrastructure is

well-prepared for such functionality, which is also exploited

by many research tools that are implemented as extensions of

these IDEs. And as the MPS is approaching the usability of

the standard source-based editing [5], the distinction between

the AST-based and the source-based editors is becoming less

apparent.

ACKNOWLEDGMENT

This work was supported by the project KEGA 008TUKE-

4/2013 and by the Slovak Research and Development Agency

under the contract No. APVV-0008-10.

REFERENCES

[1] T. Kosar, M. Mernik, and J. Carver, “The impact of tools supported
in integrated-development environments on program comprehension,”
in 33rd International Conference on Information Technology Interfaces

(ITI’11), 2011. ISSN 1330-1012 pp. 603–608.
[2] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the

Comprehension of Program Comprehension,” ACM Transactions on

Software Engineering and Methodology, vol. 23, no. 4, pp. 1–
37, Aug. 2014. doi: 10.1145/2622669. [Online]. Available: http:
//dx.doi.org/10.1145/2622669

[3] M.-A. Storey, “Theories, Methods and Tools in Program
Comprehension: Past, Present and Future,” in 13th International

Workshop on Program Comprehension (IWPC’05). IEEE, 2005. doi:
10.1109/WPC.2005.38. ISBN 0-7695-2254-8 pp. 181–191. [Online].
Available: http://dx.doi.org/10.1109/WPC.2005.38

[4] M. Fowler, “Projectional Editing,” 2008. [Online]. Available: http:
//martinfowler.com/bliki/ProjectionalEditing.html

[5] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards User-
Friendly Projectional Editors,” ser. Lecture Notes in Computer Science.
Springer International Publishing, 2014, vol. 8706, pp. 41–61. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-11245-9_3

[6] M. Nosál’, J. Porubän, and M. Nosál’, “Concern-oriented source code
projections,” in Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems, Kraków, 2013, pp. 1541–
1544.

[7] M. Voelter, B. Kolb, and J. Warmer, “Projecting a Modular Future,”
IEEE Software, pp. 1–1, 2014. doi: 10.1109/MS.2014.103. [Online].
Available: http://dx.doi.org/10.1109/MS.2014.103

[8] M. Desmond, M. Storey, and C. Exton, “Fluid source code views,” in
Program Comprehension, 2006. ICPC 2006. 14th IEEE International

Conference on, 2006. doi: 10.1109/ICPC.2006.24 pp. 260–263.
[Online]. Available: http://dx.doi.org/10.1109/ICPC.2006.24

[9] S. Davis and G. Kiczales, “Registration-based language abstractions,”
ACM SIGPLAN Notices, vol. 45, no. 10, p. 754, Oct. 2010.
doi: 10.1145/1932682.1869521. [Online]. Available: http://dx.doi.org/
10.1145/1932682.1869521

[10] J. Porubän and M. Nosál’, “Leveraging Program Com-
prehension with Concern-oriented Source Code Projections,”
3rd Symposium on Languages, Applications and Technologies.

OpenAccess Series in Informatics (OASIcs), vol. 38, pp. 35–
50, 2014. doi: 10.4230/OASIcs.SLATE.2014.3. [Online]. Available:
http://dx.doi.org/10.4230/OASIcs.SLATE.2014.35

[11] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, “Code
bubbles: a working set-based interface for code understanding and
maintenance,” in Proceedings of the 28th international conference

on Human factors in computing systems - CHI ’10. ACM Press,
Apr. 2010. doi: 10.1145/1753326.1753706 pp. 2503–2512. [Online].
Available: http://dl.acm.org/citation.cfm?id=1753326.1753706

[12] R. DeLine and K. Rowan, “Code Canvas: Zooming towards Better
Development Environments,” in Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - ICSE ’10, vol. 2.
ACM Press, Jan. 2010. doi: 10.1145/1810295.1810331 p. 207. [Online].
Available: http://dx.doi.org/10.1145/1810295.1810331

JÁN JUHÁR, LIBERIOS VOKOROKOS: A REVIEW OF SOURCE CODE PROJECTIONS 927

