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Abstract—The paper describes a method of supervised context
classification for an industrial machinery. The main objective of
this study is to compare single and ensemble classifiers in order
to classify groups of contexts which are based on an operating
state of the device. The applied research was conducted with
the assumption that only classic and well-practised classification
methods would be adopted. The comparison study was carried
out using real data recorded from an industrial machinery
working underground in a mine in Poland. The achieved results
confirm the effectiveness of the proposed approach and also show
its limitations.

I. INTRODUCTION

T
HE INCREASING complexity of recent industrial objects

causes that fault diagnosis is one of the most important

directions of research in the fields of robotics and modern

automatic controls [1], [2], [3]. There are a lot of areas where

technical systems and processes are required to be safely

and reliably operated, such as aircraft, spaceships, automotive

or the mining industry. A large majority of the methods

implemented for fault detection and isolation are based on

simple approaches [4], because these are easy to implement

and fast, but the final result can be unsatisfactory because

of limitations e.g. too slow system reactions. More complex

solutions can be used to achieve better results for more difficult

cases but it can be impossible for even an expert to build this

kind of the system. One solution is to create a fault detection

and isolation system based on the classifiers which are used

to prepare and classify datasets, but it is difficult to extract

real data fragments connected with a faulty state, and as a

consequence, the training data are not good enough for the

classifiers. Another solution is context based reasoning [5]. A

system based on this approach can be focused on the list of

the contexts which are connected with e.g. working conditions

of an examined device. Simpler models of the classifiers

and more efficient results of the fault detection and isolation

process can be considered as advantages of the system based

on the context. However there are some problems connected

with this approach like when and what kind of context occurs

in a specific period of time and how to use context based

approach in the fault detection and isolation process.
The rest of the paper is organized as follows. In Section 2

the context based approach with regards to machine learning

is described. The next section includes a detailed description

of the proposed method. In particular, there are investigations

of the classification methods. Section 4 contains a case study

description and the more interesting results of the verification

experiments. The last section is devoted to concluding remarks

and suggestions for future work.

II. CONTEXT IN MACHINE LEARNING

In a classification task, it is possible to distinguish three

types of features: primary, contextual and irrelevant [6]. Pri-

mary features are useful for classification, without regard to

the other features. The irrelevant features are not useful for

classification, either when combined with the other features

or when they are considered alone. Contextual features cannot

be used directly by a classifier, but can be useful when they are

combined with other features. The primary features can be also

divided into context-sensitive and context-insensitive features.

In the case of a machine diagnosis, the context variable could

be connected with a number of factors e.g. weather conditions.

In another paper [5], the author used contextual variables

such as humidity, barometric pressure and external temperature

for a gas turbine engine diagnosis. Speech recognition is

another example of an area which can use contextual features

to improve the efficiency of classification [7]. A speaker’s

sex, nationality or age may have a strong influence on the

relevance of various features but without the primary features

the contextual features are useless for these methods. Another

type of contextual variable is unknown context which can

be identified from data by means of a method based on an

evolutionary algorithm [8], [9]. In the final implementation,

the context can be acquired directly from the data base or

distinguished from the data by the classifier.

The contextual variable is a continuous or discrete variable

connected with a specific object. In the case of a discrete

contextual variable, the contextual value is equal to one of

all the available contextual variants describing this variable.

The contextual variant can be obtained from a continuous

contextual variable by using the classifier. In the case of

an expert system, the context may be connected with text

information, where the first part of the message is connected to

the contextual variable and the object related to this variable.

The second part of the message is connected to the contextual

variant. An example of a contextual message could be the

contextual variable which refers to wind velocity. The first part

of the message connected with the variable might be Wind
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velocity is and the second part (connected with the variant)

might be too low or too high.

In the literature some of the concepts for the usage of the

context with machine learning algorithms are described [10],

[11]. Peter Turney in [6], [5] described five strategies which

show how context can be used: Contextual normalization,

Contextual expansion, Contextual classifier selection, Contex-

tual classification adjustment and Contextual weighting. The

extraction of the context during a reasoning process is one part

of the context based method of the classification. The context

can be available as an additional variable in the dataset or can

be hidden in the data. In the second approach, it is necessary

to implement an algorithm which can extract this context from

the data in the dataset. The context can occur as single context

but also as group of contexts, where each context from the

group can also occur independently.

III. METHODS OF CONTEXT CLASSIFICATION

In the next part of the article, the author describes two

methods of classification for groups of contexts. Each context

can be described as a binary variable whose value is equal to 0
or 1. All contexts can be connected together and be presented

as a decimal value obtained from the binary representation of

all contexts (e.g. six binary contexts connected together can

be presented as a binary value 010010, which is equal to 16

in decimal notation). It is possible to define a list of all the

available combinations of contexts in the group and to create

a list of all possible decimal values. This approach (Figure 1)

lets us create only one multi-class classifier and the final result

of the classification can be decoded to a binary representation

to see the state of each binary context in the group.

Fig. 1. A scheme for context classification using a single classifier

The advantage of the first method is that the result of the

classification can be connected with only one of the known

combination of the contexts, because all possible combinations

are defined in the training data. The second method (Figure

2) is based on a bank of the binary classifiers where each of

them is trained to detect different contexts. When six contexts

are available during the reasoning process, it is necessary to

implement six binary classifiers in the scheme.

In both methods, each context in the group can be used inde-

pendently for fault detection and an isolation system. However

in the second method, there is a possibility of reaching a

result which is not correct. A more detailed description of

this problem is presented in the next section of the article.

A. Used classifiers

In this paper the author compares four different classifiers

based on various approaches: Bayesian Network, Naive Bayes,

Decision Tree and Artificial Neural Network. Each of these

Fig. 2. A scheme of context classification using group of binary classifiers

classifiers returns a label for a chosen class and a degree of

belief for all predicted classes. The best result occurs when

one of the classes is characterised by the belief level equal to

1 and the rest of them are equal to 0. This gives us a 100%
certainty that a new element should be classified as belonging

to this particular class. In the next subsections, more precise

descriptions of the selected methods are given.

1) Bayesian Network: Bayesian Network, also called Belief

Network or Casual Network, is a graphical model for repre-

senting the conditional independences between a set of random

variables. Each node in the network represents a variable

[12], [13]. Each connection between the nodes is represented

by the Bayesian equation 1 where P (di|V1, · · · , Vn) is often

known as the posterior probability of di given V1, · · · , Vn.

P (V1, · · · , Vn|di)P (di) is often referred to as the likelhood of

di given V1, · · · , Vn, P (di) is the prior or marginal probability

of di and P (V1, · · · , Vn) is a normalizing term.

P (di|V1, · · · , Vn) =
P (V1, · · · , Vn|di)P (di)

P (V1, · · · , Vn)
(1)

2) Naive Bayes: Naive Bayes is a simple probabilistic

classification method which is based on Bayesian theory. How-

ever, the Naive Bayes classifier considers each of the existing

features independently. Taking into account this assumption,

the Bayesian equation (1) can be transformed to (2), where the

denominator of the equation is replaced by a constant C and

the conditional probability is calculated by the multiplication.

P (di|V1, · · · , Vn) = C · P (V1|di) · ... · P (Vn|di) · P (di) (2)

The degrees of beliefs for the classification results are equal

to the probability values obtained from the Bayesian equation.

3) Decision Tree: A Decision Tree is a classifier based on a

tree-like graph created by nodes and the connections between

them, where each end node is called a leaf and the rest of the

nodes have conditions. The result of a decision tree application

depends on a chosen leaf. In the algorithm, different split

evaluation criteria (e.g. ratio gain in C4.5; information gain

in ID3; the Gini impurity measure in CART; etc.) can be used

[14], [15]. The confidence levels for the classification results

are calculated separately for all leaves of the tree during the

learning process. Sometimes, when the learning data is very

complex, the results of the decision tree may be uncertain since

some of the leaves may be connected to more than one class.

The class which is described by more elements then others (in
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a specific leaf) is chosen as the main class for this leaf. The

ratio between the number of elements for available classes is

used to calculate the of probability for each class for the leaf.

4) Artificial Neural Network: The classifier is a feedfor-

ward neural model in which multiple layers of neurons with

nonlinear activation functions allow the network to learn

nonlinear or linear relationships between input and output

vectors [16]. In this paper, a multiple-layer network is used

which consists of three layers including n1 neurons in the input

layer, with n2 and n3 neurons in the first and the second hidden

layers, respectively. In this case, the neural computation can

be represented by the following equation:

y = LW
3
f
2
(

LW
2
f
1
(

LW
1
u+ b

1
)

+ b
2
)

+ b3 (3)

where LW
{1,2,3} correspond to the weight matrices of the

input layer and the first/second hidden layer, b
{1,2,3} are

vectors of the biases, u is the input signal, and f
{1,2} are

nonlinear transform operators consisting of tangensoidal acti-

vation functions.

IV. CASE STUDY

A longwall shearer working in a coal mine in Poland is the

subject of this study. Longwall mining is underground mining

where a long wall of materials is removed in a single slice.

The longwall mining method extracts ore along a straight front

having a large longitudinal extension. The mining technology

involves a longwall shearer, a machine 15 metres long, and

weighting 100 tonnes, that has picks attached to two drums

which rotate atat a speed of 3040rev/min. A longwall face

is the mined area from which the materials are extracted. The

shearer removes coal by traversing the face at approximately

25 minutes intervals. Traditionally, longwall mining equipment

is controlled manually, and the face is aligned in a straight line

[17], [18].

A. Data analysis

Available datasets consist of 36 signals including values

of the currents, oil and water pressures, temperatures and

rotational speeds of the left and right drums of the longwall

shearer. Redundant signals were removed from the dataset

after a statistical analysis and the final number of signals was

reduced to 21. One of the variables was the operational state

which contained information about the current state of the

longwall shearer. Information for this variable is represented

as binary value and each bit is connected with a specific state.

The available dataset covering a few days was divided into the

smaller datasets connected with single days. In each dataset

the author calculated the number of empty rows and the rows

containing data. The results of this calculation are presented

in Table I.

It can be seen that all the datasets contained empty rows

(with no values) and the size of these gaps was between 24%
and 39% of all data.

Figure 3 shows that gaps are placed in different fragments

of the dataset and the lengths of the fragments of empty data

TABLE I
RELATION BETWEEN THE NUMBER OF ROWS CONTAINING DATA AND THE

SIZE OF THE FULL DATASET

Date Rows containing data Total number of rows Ratio
18th October 64783 106385 61%

19th October 72337 102470 71%

20th October 79719 105248 76%

21st October 77200 103746 74%

22nd October 44746 67080 66%

Fig. 3. Average current value of the drive engine

and those filled with data are various. For the dataset from

19th October it is possible to distinguish 28 fragments filled

the with the continuous data. Table II presents how many of

these fragments filled with data lasted for specific periods of

time.

TABLE II
RELATION BETWEEN THE NUMBER OF FRAGMENTS OF USEFUL

CONTINUOUS DATA AND THEIR DURATION

Duration Number of fragments
0 - 1 min 2
1 - 10 min 12
10 - 60 min 7
1 - 3 h 7

The author considered only the 7 datasets with the largest

number of the samples. They contained in sequence 5031,

5362, 6461, 7351, 7680, 9937 and 10998 samples, so the

duration of the series was between one hour and seven minutes

and about two hours and thirty minutes. The higher number

of the samples can delivered more samples connected with

each operational state, providing more opportunities for the

classifiers trained on this data to work properly.

B. Operating states of the considered device

In the article operating states of the longwall shearer are

considered as contexts described in the first part of the article.

There are six operating states represented by binary value (0
or 1):

1) Breakdown,

2) Warning,

3) Operation of drives,

4) Drives turned off,

5) Drive to the left,

6) Drive to the right.
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In the study presented in this article the operating states of the

longwall shearer were recorded in the dataset by a monitoring

system. Sometimes this kind of information is not recorded

in the data base and it is necessary to discover it or to add

additional information as defined by an expert. The operating

state is available in the dataset as a decimal value and it is

important to convert it to a binary representation to extract

information about each operating state. Table III presents the

list of the considered states and the possible combinations of

them. The first row shows lists the states, where each state

can be equal to 0 or 1. The first column presents a list of

all possible combinations of the states represented by decimal

values (4, 5, 8, 20, 36, 38) and their binary representations

are presented in the central area of the table. The numerical

values in the first row of the table correspond to the labels of

the operating states in the list presented above.

TABLE III
BINARY REPRESENTATION OF ALL CONSIDERED COMBINATIONS OF THE

OPERATING STATES

1 2 3 4 5 6
4 0 0 1 0 0 0
5 1 0 1 0 0 0
8 0 0 0 1 0 0
20 0 0 1 0 1 0
36 0 0 1 0 0 1
38 0 1 1 0 0 1

Some of the combinations of the states are not correct and

they cannot be considered as possible combinations of the

states, e.g. it is not possible to set the bit numbers 5 and 6

to 1 at the same time, because bit 5 is connected with the

task Drive to the left and bit 6 is connected with the task

Drive to the right. As it is impossible to move the machine in

both directions at the same time, but it is possible to stop the

machine, then bit 5 and 6 are equal to 0.

Fig. 4. Occurrence of possible groups of operating states in one dataset

Figure 4 presents the occurrence of the context groups in

the fragment of the dataset where each context group id is

connected with the following combinations of states:

1) Operation of drives,

2) Breakdown and Operation of drives,

3) Drives turned off,

4) Operation of drives and Drive to the left,

5) Operation of drives and Drive to the right,

6) Warning, Operation of drives and Drive to the right.

Fig. 5. Occurrence of considered operating states in the fragment of the
dataset

Figure 5 shows the places were the specific states occurred

in one of the considered datasets. It can be seen that the

number of rows of data connected with each state is very

various. ID values presented on the Y axis are connected

with the list of considered operating states presented at the

beginning of this section.

C. Results

The author used seven different parts of datasets, all of

them recorded on the 19th of October. The author compared

the data using four various classifiers and two methods of

classification. Each classifier in the first method (Figure 1)

and all classifiers in the second method (Figure 2) were

trained on one dataset and tested by the rest of them. Two

measurements were considered to evaluate the effectiveness

of the classification: accuracy and recall. Accuracy was the

basic evaluation method of classification but its result may

be not fully reliable in the cases where the data was not

well balanced. The second measurement was used to reduce

the influence of various numbers of states in the considered

datasets.

To keep all results fully consistent, the final result of the

second method (Figure 1) was considered correct only if all

results of the binary classifiers (each classifier is connected

with different state) were correct. Even if only one classifier

made a mistake, the final result was treated as incorrect. This

solution is fully comparable with first method, where the final

result is presented as a group of the contexts.

Table IV shows the accuracy of all classifiers used in the

two considered methods. The classifiers are presented in the

table by their short names (DT - Decision Tree; NB - Naive

Bayes; NN - Neural Network; BN - Bayesian Network). Each

column is connected with a different training dataset and the
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values in the cells of the table show the average value of the

test cases. It is clear that the bank of binary classifiers reached

a much better result than the single multi-class classifier.

TABLE IV
ACCURACY RESULTS FOR ALL CLASSIFIERS AND METHODS

Single classifier
Dataset id 1 2 3 4 5 6 7
DT 78.1 42.8 68.9 57.7 63.6 76.6 65.4

NB 30.4 45.3 55.2 48.2 72.0 56.7 37.6

NN 51.4 53.6 70, 2 65.2 75.6 75.5 51.3

BN 51.9 27.6 33.1 37.3 46.0 48.5 51.5

Bank of binary classifiers
Dataset id 1 2 3 4 5 6 7
DT 89.4 86.8 89.9 90.8 91.0 88.5 89.4

NB 76.9 80.1 87.2 79.8 88.3 85.9 83.3

NN 83.3 86.7 92.6 82.9 92.4 92.1 88.8

BN 77.9 60.0 58.2 75.7 80.0 70.4 78.0

Accuracy is based on a ratio between all correctly classified

rows and the number of all rows in the dataset, and it does not

take into account the distinctness of each class in the testing

dataset. The result based on the accuracy can not be used only

as a measurement of the efficiency of the classification because

of the unbalanced test datasets. The second measurement used

in this test is mean recall. Recall was calculated for each

class separately. The recall value is presented as a ratio of

the number of all rows of data with a correctly predicted class

to all data rows connected with a specific class. The final result

is obtained as the average value of all recall values calculated

for all available classes.

TABLE V
MEAN RECALL VALUES FOR ALL CLASSIFIERS AND METHODS

Single classifier
Dataset id 1 2 3 4 5 6 7
DT 68.3 46.6 57.7 51.3 55.3 64.9 61.1

NB 27.0 29.7 35.8 29.2 46.8 35.3 32.1

NN 36.1 31.6 55.1 36.6 47.2 37.9 44.5

BN 35.8 27.4 27.9 35.8 37.9 38.9 43.0

Bank of binary classifiers
Dataset id 1 2 3 4 5 6 7
DT 82.4 73.2 79.8 84.3 79.4 81.8 82.5

NB 58.1 61.1 63.9 59.0 65.9 64.1 58.2

NN 64.6 65.9 64.2 60.1 73.4 57.2 55.3

BN 65.2 53.1 60.1 66.9 66.8 67.8 66.1

The method based on the bank of binary classifiers reached

much better results than the single classifiers. It can be seen

that the values for mean recall are worse than the results for

accuracy. This proves that the classifiers trained on unbalanced

datasets were not evaluated properly by the accuracy measure-

ment. The results for accuracy show that only two classifiers

in each column reached the best results interchangeably:

Decision Tree and Neural Network. The rest of the classifiers

almost always reached worse results than the two mentioned

above. The mean recall value shows that the algorithm based

on a Decision Tree is able to work more properly with the

unbalanced data, and in all columns it reached the best result.

The classifier based on a Neural Network had a tendency to

ignore classes with smaller numbers of examples.

TABLE VI
ACCURACY OF CLASSIFICATION OF EACH STATE OBTAINED BY DECISION

TREE

1 2 3 4 5 6

1 99.81 100.00 100.00 100.00 98.69 96.91

2 90.81 98.59 99.94 99.94 65.50 73.37

3 91.50 95.75 99.97 99.97 48.45 77.60

4 96.87 98.67 99.95 99.95 52.84 83.17

5 97.04 98.59 99.71 99.71 71.09 79.44

6 99.42 98.16 100.00 100.00 30.14 81.99

7 96.82 98.89 98.63 98.63 65.01 75.22

Table VI shows the accuracy result for the classification of

each operating state (columns 1 to 6) for all available datasets

(rows 1 to 7) by the bank of the binary classifiers based on

a Decision Tree. Each value shows the result of one classifier

from the bank, e.g. the value in the third row and second

column (89.67) presents the primary accuracy result obtained

by the binary classifier (based on a Decision Tree) whose task

was to distinguish the operating state called Warning (the label

of column 2). The label of each row indicates the dataset which

was used during the verification test. It can be seen that the

accuracy value for the first four states is high but for states 5

and 6 it is lower (except for the first row, because the classifier

used in this example was trained by the first dataset).

TABLE VII
RECALL OF THE CLASSIFICATION OF EACH STATE OBTAINED BY A

DECISION TREE

1 2 3 4 5 6

1 97.42 100.00 100.00 100.00 95.98 96.72

2 73.59 99.29 97.92 97.92 76.02 72.10

3 50.40 89.67 99.99 99.99 62.51 77.00

4 56.08 94.92 93.18 93.18 66.33 80.30

5 50.50 83.83 95.15 95.15 77.75 76.95

6 58.11 75.11 100.00 100.00 53.32 82.11

7 48.84 77.29 91.48 91.48 61.15 71.93

The results for a recall of the same situation (Table VII)

shows which states are more difficult to isolate and which are

not. The classifier reached a high level of efficiency for the 3th

and 4th state (Operation of drives and Drives turned off ). The

efficiency for the 2nd state (Warning) was a little bit lower.

The classifier had some problems with the identification of the

5th and 6th states (Drive to the left and Drive to the right)

and the reason for this problems could be the lack of clear

information about the direction of movement of the longwall

shearer in the dataset. There is no signal which could clearly

show the direction of the movement. The classifier reached the

worst results for the 1st state (Breakdown) because the number

of examples connected with this state was very small and the

classifier was not able to distinguish this state properly in the

test dataset.

V. CONCLUSIONS

It is possible to use different methods of classification

to implement basic schemes of context identification. The

author was able to increase the efficiency of classification by

implementing groups of binary classifiers, instead of using a
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single multi-class classifier. The final decision of the presented

schemes can be used in fault detection and isolation models

implemented in an expert system.

The main advantage of the first method (Figure 1) of

context classification is its simplicity. It requires only one

multi-class classifier, and its result is always connected with

a correct combination of states. But the classifier used in

this method always reached a worse result than the classifiers

used in the second method (Figure 2). Additionally the first

scheme needed classified dataset which contained all possible

combinations of states and sometimes it is impossible to

prepare this kind of training dataset because some of the com-

binations might not occur in the recorded data. In the second

method, it is not necessary to create a dataset with all possible

combinations of contexts because each context is classified

separately. It is therefore easier to prepare the appropriate

training data. The scheme of this method is more complex,

but the classification results are significantly more accurate

than the results of the first method (Figure 1). Nonetheless,

the results of this scheme cannot be fully correct because of

the possibility of impossible combinations of contexts as a

result of the classification (e.g. the longwall shearer moving

in both directions at the same time).

A. Future work

The next step in future research will be connected with other

methods of context classification based on ensemble classifiers

and meta-classification. Another step is the implementation

of the described and future methods inside a fault detection

and isolation system, in order to increase the quality of the

system in comparison to a solution working without context.

It is necessary to see how strong the influence of the context

classifier is on the final result of the diagnosis system, because

low efficiency of the context classifier could be a reason for

high uncertainty levels of the final decision used in the fault

detection and isolation system.
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