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Abstract—Fuzzy cognitive map (FCM) is a soft computing
methodology that allows to describe the analyzed problem as a set
of nodes (concepts) and connections (links) between them. In this
paper a new Structure Optimization Genetic Algorithm (SOGA)
for FCMs learning is presented for modeling complex decision
support systems. The proposed approach allows to automatic
construct and optimize the FCM model on the basis of historical
multivariate time series. The SOGA defines a new learning error
function with an additional penalty for highly complexity of FCM
understood as a large number of concepts and a large number of
connections between them. The aim of this study is the analysis
of usefulness of the Structure Optimization Genetic Algorithm
for fuzzy cognitive maps learning. Comparative analysis of the
SOGA with other well-known FCM learning algorithms (Real-
Coded Genetic Algorithm and Multi-Step Gradient Method)
was performed on the example of prediction of rented bikes
count. Simulations were done with the ISEMK (Intelligent Expert
System based on Cognitive Maps) software tool. The obtained
results show that the use of SOGA allows to significantly reduce
the structure of the FCM model by selecting the most important
concepts and connections between them.

Index Terms—Fuzzy Cognitive Maps, Structure Optimization
Genetic Algorithm, Real-Coded Genetic Algorithm, Multi-Step
Gradient Method

I. INTRODUCTION

F
UZZY cognitive map (FCM) [16] is a soft computing

methodology combining the advantages of fuzzy logic

and artificial neural networks. It allows to visualize and

analyze problem as a set of nodes (concepts) and links

(connections between them). One of the most important aspect

connected with the use of fuzzy cognitive maps is their ability

to learn on the basis of historical data [22]. Supervised [14],

[15], [25] and population-based [1], [7], [8], [20], [28] meth-

ods allow to evaluate the weights of connections.

Fuzzy cognitive maps are an effective tool for modeling

dynamic decision support systems [18]. They were applied

to many different areas, such as prediction of pulmonary

infection [19], scenario planning for the national wind energy

sector [2] or integrated waste management [4]. Carvalho

discussed possible use of FCM as tool for modeling and

simulating complex social, economic and political systems [5].

The use of FCMs as pattern classifiers is presented in [23].

An innovative method for forecasting artificial emotions and

designing an affective decision system on the basic of fuzzy

cognitive map is proposed in [26]. The application of fuzzy

cognitive maps to univariate time series modeling is discussed

in [13], [12], [17]. Prediction of work of complex and impre-

cise systems on the basis of FCM is described in [27].

In practical applications to solve certain classes of problems

(e.g. data analysis, prediction or diagnosis), finding the most

significant concepts and connections plays an important role.

It can be based on expert knowledge at all stages of analysis:

designing the structure of the FCM model, determining the

weights of the relationships and selecting input data. Super-

vised and population-based algorithms allow the automatic

construction of fuzzy cognitive map on the basis of data

selected by the experts or all available input data. However,

modeling of complex systems can be difficult task due to

the large amount of the information about analyzed problem.

Fuzzy cognitive maps with the large number of concepts

and connections between them can be difficult to interpret

and impractical to use as the number of parameters to be

established grows quadratically with the size of the FCM

model [13]. In [12] nodes selection criteria for FCM designed

to model univariate time series are proposed. Also some

simplifications strategies by posteriori removing nodes and

weights are presented [13].

In [21] the Structure Optimization Genetic Algorithm al-

lowing selection of the crucial connections is proposed. In this

paper, we present an extension of this algorithm that allows to

significantly reduce the size of FCM by automatic selection

not only the most important connections but also the most

important concepts from all possible nodes. The proposed

approach enables fully automatic construction of the FCM

model by selection of crucial concepts and determining the

relationships between them on the basis of available historical

data. The SOGA is compared with well-known methods:

the Multi-Step Gradient Method (MGM) [14] and the Real-

Coded Genetic Algorithm (RCGA) [28] on the example of

system for prediction of count of rented bikes. Learning and
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testing of FCMs are based on historical multivariate time

series, taken from the UCI Machine Learning Repository [6].

Simulations are accomplished with the use of the developed

ISEMK (Intelligent Expert System based on Cognitive Maps)

software tool [24].

The aims of this paper are:

• to introduce a new FCM learning algorithm that allows to

automatic optimize the structure of fuzzy cognitive map

by finding the most important concepts and connections

between them on the basic of historical data,

• to perform a comparative analysis of the proposed method

of FCM learning with other well-known algorithms on

the example of system for prediction of count of rented

bikes.

The paper is organized as follows. In Section II fuzzy

cognitive maps are described. Section III introduces the pro-

posed method for fuzzy cognitive maps learning. Section IV

describes the developed software tool ISEMK. Section V

presents selected results of simulation analysis of the proposed

approach. The last Section contains a summary of the paper.

II. FUZZY COGNITIVE MAPS

The structure of FCM is based on a directed graph:

< X,W > , (1)

where X = [X1, ..., Xn]
T is the set of the concepts significant

for the analyzed problem, W is weights matrix, Wj,i is the

weight of the connection between the j-th concept and the i-

th concept, taking on the values from the range [−1, 1]. Value

of −1 means full negative influence, 1 denotes full positive

influence and 0 means no causal effect [16].

Concepts obtain values in the range between [0, 1] so they

can be used in time series prediction. The values of concepts

can be calculated according to the formula:

Xi(t+ 1) = F



Xi(t) +
∑

j 6=i

Wj,i ·Xj(t)



 , (2)

where t is discrete time, t = 0, 1, 2, ..., T , T is end time of sim-

ulation, Xi(t) is the value of the i-th concept, i = 1, 2, ..., n, n

is the number of concepts, F (x) is a transformation function,

which can be chosen in the form:

F (x) =
1

1 + e−cx
, (3)

where c > 0 is a parameter.

Fuzzy cognitive map can be automatic constructed with the

use of supervised and population-based learning algorithms.

In the next section, selected methods of FCMs learning are

described.

III. FUZZY COGNITIVE MAPS LEARNING

The aim of the FCM learning process is to estimate the

weights matrix W . In the paper a new population-based

approach for fuzzy cognitive maps learning is analyzed. Per-

formance of the Structure Optimization Genetic Algorithm is

compared with the Real-Coded Genetic Algorithm and the

Multi-Step Gradient Method. Description of these methods is

presented below.

A. Real-Coded Genetic Algorithm

Real-Coded Genetic Algorithm defines each chromosome

as a floating-point vector, expressed as follows [28]:

W ′ = [W1,2, ...,W1,n,W2,1,W2,3, ...,W2,n, ...,Wn,n−1]
T ,

(4)

where Wj,i is the weight of the connection between the j-th

and the i-th concept.

Each chromosome in the population is decoded into a

candidate FCM and its quality is evaluated on the basis of

a fitness function according to the objective [9]. The aim of

the analyzed learning process is to optimize the weights matrix

with respect to the prediction accuracy. Fitness function can

be described as follows:

fitnessp(Jl) =
1

a · J(l) + 1
, (5)

where a is a parameter, a > 0, p is the number of chromosome,

p = 1, ..., P , P is the population size, l is the number

of population, l = 1, ..., L, L is the maximum number of

populations, J(l) is the learning error function, described as

follows:

J(l) =
1

(T − 1)no

T−1
∑

t=1

no
∑

i=1

(Zo
i (t)−Xo

i (t))
2 , (6)

where t is discrete time of learning, T is the number of the

learning records, Z(t) = [Z1(t), ..., Zn(t)]
T is the desired

FCM response for the initial vector Z(t − 1), X(t) =
[X1(t), ..., Xn(t)]

T is the FCM response for the initial vector

Z(t−1), n is the number of the all concepts, no is the number

of the output concepts, Xo
i (t) is the value of the i-th output

concept, Zo
i (t) is the reference value of the i-th output concept.

Each population is assigned a probability of reproduction.

According to the assigned probabilities parents are selected

and new population of chromosomes is generated. Chro-

mosomes with above average fitness tend to receive more

copies than those with below average fitness [9]. The basic

operator of selection is a roulette wheel method. For each

chromosome in population the probability of including a copy

of such chromosome into the next population can be calculated

according to the formula [11]:

P (p) =
fitnessp(Jl)
P
∑

i=1

fitnessi(Jl)

, (7)

where p is the number of the chromosome, P is the population

size.

The population is mapped onto a roulette wheel, where each

chromosome p is represented by a space that proportionally

corresponds to P (p). In the analysis a more effective ranking

method of selection was used [3]. Selecting a copy of the

chromosome into the next population is based on ranking by

fitness [9].
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The crossover operator is a method for sharing informa-

tion between parents to form new chromosomes. It can be

applied to random pairs of chromosomes and the likelihood

of crossover depends on probability defined by the crossover

probability Pc. The popular crossover operators are the single-

point crossover and the uniform crossover [11].

The mutation operator modifies elements of a selected chro-

mosome with a probability defined by the mutation probability

Pm. The use of mutation prevents the premature convergence

of genetic algorithm to suboptimal solutions [11]. In the

analysis Mühlenbein’s and random mutation were used. To

ensure the survival of the best chromosome in the population,

elite strategy was applied. It retains the best chromosome in

the population [9].

The learning process stops when the maximum number of

populations L is reached or the condition (8) is met.

fitnessbest(Jl) > fitnessmax , (8)

where fitnessbest(Jl) is the fitness function value for the best

chromosome, fitnessmax is a parameter.

B. Structure Optimization Genetic Algorithm

In this paper a new Structure Optimization Genetic Algo-

rithm is proposed, which allows to select the most important

for prediction task concepts and connections between them.

SOGA defines each chromosome as a floating-point vector

type (4) and a binary vector expressed as follows:

C ′ = [C1, C2, ..., Cn]
T , (9)

where Ci is the information about including the i-th concept

to the candidate FCM model, whereas Ci =1 means that

the candidate FCM model contains the i-th concept, Ci =0

means that the candidate FCM model does not contain the

i-th concept.

The quality of each population is calculated based on an

original fitness function, described as follows:

fitnessp(J
′
l ) =

1

a · J ′(l) + 1
, (10)

where a is a parameter, a > 0, p is the number of the

chromosome, l is the number of population, l = 1, ..., L, L is

the maximum number of populations, J ′(l) is the new learning

error function with an additional penalty for highly complexity

of FCM understood as a large number of concepts and non-

zero connections between them [10]:

J ′(l) = J(l) + b1 ·
nr

n2
· J(l) + b2 ·

nc

n
· J(l) , (11)

where t is discrete time of learning, T is the number of the

learning records, b1, b1 are the parameters, b1 > 0, b2 > 0, nr

is the number of the non-zero weights of connections, nc is

the number of the concepts in the candidate FCM model, n is

the number of the all possible concepts, J(l) is the learning

error function type (11).

Fig. 1 illustrates the steps of the learning and analysis of

the FCM in modeling prediction systems with the use of

population-based algorithms (SOGA and RCGA).

InitializewthewFCMw

model

Getwnormalizedw

learningwdata

Designwthewfitnesswfunctionwandwdefinew

selectionwstrategy,wcrossoverwandw

mutationwoperators

Selectwparents

Evaluatewpopulation

Stopwcriterionwiswnotwmet

Getwnormalizedw

testingwdata

Stopwcriterionwiswmet

Returnwmeasureswofw

accuracy

Initializewpopulation

Generatewnewwpopulationwwithw

thewusewofwgeneticwoperators

Fig. 1. Activity diagram for population-based learning algorithm

In the paper the proposed algorithm was compared with

the Real-Coded Genetic Algorithm and also with supervised

learning based on Multi-Step Gradient Method.

C. Multi-Step Gradient Method

Multi-step algorithms of FCM learning are some kind of

generalization of known one-step methods. Effectiveness of

these methods in modeling of decision support systems was

presented in [15], [25]. Multi-step supervised learning based

on gradient method is described by the equation [14]:

Wj,i(t+ 1) = P[−1,1](
m1
∑

k=0

αk ·Wj,i(t− k)+

m2
∑

l=0

(βl · ηl(t) · (Zi(t− l)−Xi(t− l)) · yj,i(t− l))) ,

(12)

where αk, βl, ηl are learning parameters, k = 1, ...,m1; l =
1, ...,m2, m1,m2 are the number of the steps of the method,

t is a time of learning, t = 0, 1, ..., T − 1, T is end time

of learning, Xi(t) is the value of the i-th concept, Zi(t) is

the reference value of the i-th concept, yj,i(t) is a sensitivity

function, P[−1,1](x) is an operator of design for the set [-1,1],

described as follows:

P[−1,1](x) =
1− e−x

1 + e−x
, (13)

Sensitivity function yj,i(t) is described by the equation:

yj,i(t+ 1) = (yj,i(t) +Xj(t)) · F
′(Xi(t)

+
∑

j 6=i Wj,i ·Xj(t)) ,
(14)

where F ′(x) is derivative of the stabilizing function.

Termination criterion can be expressed by the formula:

J(t) =
1

n

n
∑

i=1

(Zi(t)−Xi(t))
2 < e , (15)

where e is a level of error tolerance.
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Simulation analysis of the presented algorithms perfor-

mance was done with the use of ISEMK software tool. The

basic features of ISEMK are described below.

IV. ISEMK SOFTWARE TOOL

ISEMK is a universal tool for modeling decision support

systems based on FCMs [24]. It allows to:

• initialize the structure of the FCM model historical data

(reading from .data files),

• visualize the structure of the FCM model,

• learn the FCM model based on Multi-Step Gradient

Method and historical data (reading from .data files),

• learn the FCM model with the use of population-based

learning algorithms (RCGA, SOGA) and historical data

(reading from .data files),

• test the accurace of the learned FCMs operation based

on historical data (reading from .data files) by calculating

Mean Squared Error measure,

• export the results of learning and testing to .csv files,

• visualize the results of learning and testing in the form

of charts.

Figure 2 shows an exemplary initialization of SOGA. Figure 3

Fig. 2. Exemplary visualization of population-based learning results

shows an exemplary visualization of testing of the learned

FCM operation.

V. SIMULATION RESULTS

To evaluate the proposed Structure Optimization Genetic Al-

gorithm, historical data taken from the UCI Machine Learning

Repository [6] were used. The dataset contains bike sharing

counts aggregated on daily basis (731 days) and has the

following fields:

• season (1:springer, 2:summer, 3:fall, 4:winter),

• year (0: 2011, 1:2012),

• month ( 1 to 12),

• hour (0 to 23),

• holiday : weather day is holiday or not,

• weekday : day of the week,

• working day : if day is neither weekend nor holiday is 1,

otherwise is 0,

Fig. 3. Exemplary visualization of testing of learned FCM

• weather situation (1: Clear, Few clouds, Partly cloudy,

Partly cloudy, 2: Mist + Cloudy, Mist + Broken clouds,

Mist + Few clouds, Mist, 3: Light Snow, Light Rain +

Thunderstorm + Scattered clouds, Light Rain + Scattered

clouds, 4: Heavy Rain + Ice Pallets + Thunderstorm +

Mist, Snow + Fog),

• temperature (normalized temperature in Celsius),

• feeling temperature (normalized feeling temperature in

Celsius),

• humidity (normalized humidity),

• wind speed (normalized wind speed),

• casual (count of casual users),

• registered (count of registered users),

• count (count of total rented bikes including both casual

and registered).

The core data set is related to the two-year historical

log corresponding to years 2011 and 2012 from

Capital Bikeshare system, Washington D.C., USA

(http://capitalbikeshare.com/system-data). The corresponding

weather and seasonal information (http://www.freemeteo.com)

were added. Normalization of the available data in the [0, 1]
range is needed in order to use the FCM model. Conventional

min-max normalization (16) can be used.

f(x) =
x−min

max−min
, (16)

where x is an input numeric value, min is the minimum of

the dataset, max is the maximum of the dataset.

The aim of the study is one-step-ahead prediction of daily

count of rented bikes based on the current values, environ-

mental and seasonal settings. The dataset was divided into

two subsets: learning (621 records) and testing (110 records)

data. The learning process was accomplished with the use of

Multi-Step Gradient Method, Real-Coded Genetic Algorithm

and Structure Optimization Genetic Algorithm. Mean Squared

Error for the output concepts (17) was used to estimate the

performance of the FCM learning algorithms.

MSE =
1

no(T − 1)

T−1
∑

t=1

no
∑

i=1

(Zo
i (t)−Xo

i (t))
2
, (17)
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where t is time of testing, t = 0, 1, ..., T − 1, T is the

number of the test records, Z(t) = [Z1(t), ..., Zn(t)]
T is

the desired FCM response for the initial vector Z(t − 1),
X(t) = [X1(t), ..., Xn(t)]

T is the FCM response for the initial

vector Z(t−1), Xo
i (t) is the value of the i-th output concept,

Zo
i (t) is the reference value of the i-th output concept, no is

the number of the output concepts.

The learning process was accomplished for various learning

parameters, determined using experimental trial and error

method. Optimal parameters of all analyzed algorithms were

chosen based on minimization of the objective function, de-

scribed as follows:

fc = f(MSE,nr, nc) = 10000MSE + nr + 10nc , (18)

where nr is the number of the non-zero weights of the

connections, nc is the number of the concepts.

The best results of all three approaches were selected. Fig. 4

presents the structure of the FCM learned with the use of

MGM (for the following parameters: m1 = 1, m2 = 0,

α0 = 1.5, α1 = −0.5, β0 = 50, λ0 = 100, e = 0.001,

c = 3). Table I shows the weights matrix for this map. Fig. 5

presents the structure of the FCM learned with the use of

RCGA (for the following parameters: P = 100, L = 200,

ranking selection, uniform crossover, Mühlenbein’s mutation,

a = 10, hmax = 0.999, c = 3). Table II shows the weights

matrix for this map. Fig. 6 presents the structure of the FCM

learned with the use of SOGA (for the following parameters:

P = 100, L = 500, ranking selection, uniform crossover,

random mutation, a = 100, hmax = 0.999, c = 5, b1 = 0.1,

b2 = 0.01). Table III shows the weights matrix for this map.

Fig. 4. The structure of the FCM learned with the use of MGM, where: X1

– season, X2 – year, X3 – month, X4 – holiday, X5 – day of the week,
X6 – working day, X7 – weather situation, X8 – temperature, X9 – feeling
temperature, X10 – humidity, X11 – wind speed, X12 – count of casual
users, X13 – count of registered users, X14 – count of total rented bikes

Fig. 5. The structure of the FCM learned with the use of RCGA, where:
X1 – season, X2 – year, X3 – month, X4 – holiday, X5 – day of the week,
X6 – working day, X7 – weather situation, X8 – temperature, X9 – feeling
temperature, X10 – humidity, X11 – wind speed, X12 – count of casual
users, X13 – count of registered users, X14 – count of total rented bikes

Fig. 6. The structure of the FCM learned with the use of SOGA, where: X4

– holiday, X5 – day of the week, X9 – feeling temperature, X10 – humidity,
X11 – wind speed, X12 – count of casual users, X13 – count of registered
users, X14 – count of total rented bikes

Figures 7-9 show the exemplary results of testing of the

learned FCMs operation. Table IV shows selected results of

the comparative analysis of the Multi-Step Gradient Method,

the Real-Coded Genetic Algorithm and the Structure Opti-

mization Genetic Algorithm. Ranking selection and uniform

crossover were used.
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TABLE I
EXEMPLARY WEIGHTS MATRIX FOR THE MAP LEARNED WITH THE USE OF MGM

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

X1 0 -0.02 -0.01 -0.12 -0.06 0.06 -0.12 -0.07 -0.06 -0.08 -0.09 -0.11 -0.01 -0.03
X2 -0.07 0 -0.07 -0.14 -0.06 -0.03 -0.13 -0.07 -0.09 -0.08 -0.11 -0.11 -0.07 -0.03
X3 -0.08 -0.01 0 -0.12 -0.09 0.05 -0.12 -0.07 -0.07 -0.08 -0.09 -0.13 -0.02 -0.03
X4 -0.05 -0.02 -0.04 0 0.08 0.05 -0.06 -0.02 0.07 0.02 -0.06 -0.08 0.08 0.07
X5 -0.12 0.07 -0.12 -0.11 0 -0.04 -0.13 -0.11 -0.13 -0.11 -0.11 -0.17 -0.1 -0.09
X6 -0.04 0.08 -0.08 -0.13 -0.08 0 -0.11 -0.04 -0.09 -0.07 -0.09 0.11 -0.12 -0.05
X7 -0.06 -0.02 -0.05 -0.08 0.05 0.08 0 -0.01 -0.02 -0.09 -0.07 -0.09 0.04 0.05
X8 -0.06 0.04 -0.06 -0.13 0.03 -0.03 -0.12 0 -0.08 -0.08 -0.09 -0.11 -0.03 -0.03
X9 -0.07 0.03 -0.05 -0.12 -0.06 0.06 -0.12 -0.09 0 -0.08 -0.09 -0.12 0 -0.03
X10 -0.04 0.07 -0.04 -0.13 0.01 -0.01 -0.12 -0.06 -0.07 0 -0.09 -0.08 -0.03 -0.02
X11 -0.05 -0.01 -0.04 -0.08 0.04 0.06 -0.08 0 0.03 0.02 0 -0.07 0.04 0.04
X12 -0.06 0 0.01 -0.12 0.04 0.11 -0.11 -0.08 0.06 -0.05 -0.09 0 0.11 0.04
X13 -0.07 0.06 -0.07 -0.13 -0.09 -0.08 -0.12 -0.08 -0.09 -0.06 -0.1 -0.1 0 -0.07
X14 -0.07 0.06 -0.07 -0.13 -0.08 0.03 -0.12 -0.08 -0.08 -0.06 -0.1 -0.12 -0.06 0

TABLE II
EXEMPLARY WEIGHTS MATRIX FOR THE MAP LEARNED WITH THE USE OF RCGA

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

X1 0 -0.99 0 0.99 -0.4 0 0 0 0.85 0.58 0.37 0.03 0.1 0.01
X2 -0.31 0 0.11 -0.7 -0.22 -0.77 0.41 -0.99 0.93 -0.31 0 0 0.01 0.05
X3 -0.4 0 0 0.16 0.65 -0.73 -0.07 0 0.17 0.34 -0.94 0.09 -0.03 0
X4 0 -0.19 0.91 0 -0.43 -0.05 0.21 0.03 0.98 0.82 0 0 0 -0.79
X5 -0.11 0 0.41 0 0 0 0 0.2 -0.35 0.08 0 0.1 -0.1 -0.08
X6 0.55 0.93 -0.72 -0.15 0.86 0 -0.73 -0.52 0.59 -0.01 0 0.16 0 0
X7 0 0.23 0.64 -0.19 -0.27 0 0 0.45 0.5 0 0 0.11 0.1 0
X8 -0.81 0 0.65 0.27 0.89 -0.57 -0.39 0 0.58 0.47 0.09 -0.4 0 0.24
X9 0.83 -0.1 0 0.42 0 -0.27 -0.68 0.01 0 0.08 0 0 -0.68 0.24
X10 0.91 0 0 0 0.14 -0.86 0.18 -0.92 0 0 0 -1 -0.28 -0.87
X11 -0.15 0 0 0.49 0.21 -0.58 0 0.77 0 -0.94 0 0 -0.55 -0.75
X12 0.59 0.63 -0.5 0 -0.2 0.08 0.33 0 -0.27 0 0 0 0.42 -0.11
X13 0 0 0.88 0 -0.77 0.8 -0.47 -0.64 0 0.45 0.51 0 0 0
X14 -0.53 0.6 0.04 0.03 -0.46 0 0.32 -0.27 -0.6 0 0.85 0 0.03 0

TABLE III
EXEMPLARY WEIGHTS MATRIX FOR THE MAP LEARNED WITH THE USE OF

SOGA

X4 X5 X9 X10 X11 X12 X13 X14

X4 0 0 -0.95 0.27 0.85 -0.58 0 -0.6
X5 -0.51 0 0 0.9 -0.13 0 -0.38 -0.01
X9 0.89 0.68 0 0.16 -0.76 -0.36 0 -0.77
X10 0.79 0.11 -0.99 0 0 -0.15 -0.12 0
X11 0.72 0.16 0 0 0 -0.63 -0.41 -0.51
X12 0.19 0.55 0 0 0 0 0 0
X13 0.97 0 0 -0.22 0.38 -0.57 0 0
X14 -0.35 0 0 0.66 0.56 0.25 -0.29 0

The lowest values of the objective function were obtained

for the FCMs learned with the use of the Structure Opti-

mization Genetic Algorithm. The minimum of fc = 471 was

achieved for the following parameters: P = 100, L = 200,

ranking selection, uniform crossover, Mühlenbein’s mutation,

a = 10, hmax = 0.999, c = 3, b1 = 0.1, b2 = 0.01.

Moreover, the second case of SOGA gives value of MSE

lowest than Multi-Step Gradient Method and very similar to

Real-Coded Genetic Algorithm. Also, from the fig. 6, we

can say that bike-sharing rental process is highly related to

holiday, day of the week, feeling temperature, humidity and
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Fig. 7. Obtained values X12(t) and the desired values Z12(t) during testing

wind speed. The results show the superiority of the SOGA. It

allows to significantly simplify the FCM model by selecting

the most important for prediction task concepts (e.g. 8 out of

14 possible) and connections (e.g. 41 out of 182 possible) with

keeping the low values of MSE.
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TABLE IV
CHOSEN RESULTS OF ANALYSIS OF THE MGM, RCGA, SOGA

Method Learning parameters MSE nr nc fc
m1 = 1, m2 = 0,
α0 = 1.4, α1 = −0.4, 0.0429 174 14 743

MGM β0 = 10,
λ0 = 100,
e = 0.001, c = 5
m1 = 1, m2 = 0,
α0 = 1.5, α1 = −0.5, 0.0418 179 14 737

MGM β0 = 50,
λ0 = 100,
e = 0.001, c = 3
m1 = 1, m2 = 0,
α0 = 1.5, α1 = −0.5, 0.043 181 14 751

MGM β0 = 10,
λ0 = 10,
e = 0.001, c = 5
P = 100, L = 500,
a = 100,

RCGA fitnessmax = 0.999, 0.0366 141 14 647
c = 5, random mutation,
Pc = 0.8, Pm = 0.2
P = 100, L = 200,
a = 10,

RCGA fitnessmax = 0.999, 0.0333 127 14 601
c = 3, Mühlenbein’s mutation,
Pc = 0.5, Pm = 0.1
P = 100, L = 500,
a = 100,

RCGA fitnessmax = 0.999, 0.0533 135 14 808
c = 3,random mutation,
Pc = 0.5, Pm = 0.1
P = 100, L = 500,
a = 100, b1=0.2, b2=0.05,

SOGA fitnessmax = 0.999, 0.0463 37 8 580
c = 5, random mutation,
Pc = 0.8, Pm = 0.2
P = 100, L = 200,
a = 10, b1=0.1, b2=0.01,

SOGA fitnessmax = 0.999, 0.035 41 8 471

c = 3, Mühlenbein’s mutation,
Pc = 0.5, Pm = 0.1
P = 100, L = 500,
a = 100, b1=0.2, b2=0.005,

SOGA fitnessmax = 0.999, 0.046 19 6 539
c = 3,random mutation,
Pc = 0.5, Pm = 0.1
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Fig. 8. Obtained values X13(t) and the desired values Z13(t) during testing
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Fig. 9. Obtained values X14(t) and the desired values Z14(t) during testing

VI. CONCLUSION

In this paper we present a new approach for fuzzy cognitive

maps learning allowing selection of the most important for

the analyzed tasks concepts and connections between them.

The proposed Structure Optimization Genetic Algorithm is de-

scribed together with well-known methods for FCM learning.

Comparative analysis of SOGA, RCGA and MGM was per-

formed on the example of prediction of count of rented bikes.

Simulation research was done in ISEMK. Selected results of

simulation analysis of the developed algorithms performance

are presented. The obtained results show that the proposed

approach can significantly reduce the size of FCM by selecting

the most important concepts and connections between them.

The SOGA algorithm seems to be promising and effective

method for modeling complex decision support systems based

on fuzzy cognitive maps. There are plans of further analysis

of the use of the Structure Optimization Genetic Algorithm.
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