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Abstract—Machine-to-Machine Communication (M2M) en-
ables communication between heterogeneous devices without hu-
man intervention. It is considered to be a key enabler technology
for the concept of Internet of Things (IoT) and Cyber Physical
Systems (CPS). With M2M’s integration with Wireless Sensor
Networks (WSN), information from different kinds sensors can
be obtained. In order to discover useful knowledge from sensor
data, various data mining techniques need to be applied. Due
to the development of microprocessors on end devices in M2M
system which collect data from sensors, data processing can also
be executed on those devices. However, since end devices are
often battery powered, energy consumption when running those
algorithms needs to be taken into account. In this paper we
implement an algorithm in M2M system, on Libelium Waspmote
devices, which detects temperature plummeting in an indoor
space. Afterwards, energy consumption of Waspmote devices is
analyzed for two cases: when algorithm is executed on-device and
when algorithm is executed on gateway or on back-end system.

I. INTRODUCTION

MACHINE-to-Machine Communication (M2M), a con-

cept which enables connection of heterogeneous de-

vices with limited human intervention, is considered to be

one of the enablers for the process of provisioning advanced

applications and services, such as smart cities and hospitals,

automated vehicular and industrial operation, along with oth-

ers [1]. Through integration with Wireless Sensor Networks

(WSN), M2M systems can obtain wide range of information

[2]. By analyzing that information, useful knowledge can be

discovered, and appropriate actions can be initiated. M2M

is considered to be one of the fundamental technologies for

enabling the concept of Internet-of-Things (IoT) and Cyber

Physical Systems (CPS) [3]. The IoT concept includes con-

necting sensors and other devices to the broader Internet by

using general Internet technologies [4]. CPS is considered as

evolution of M2M which supports more intelligent and inter-

active operations, under the architecture of IoT [3]. Although

interlaced with the aforementioned areas, in this paper we use

the term of M2M systems for a sensing systems in which end

devices collect measurements from sensors, and send them via

gateway to the back-end system.

M2M systems generate massive data sets which are con-

sidered to be of high business value [5]. To extract hidden

knowledge from data, data mining algorithms can be applied.

For instance, by analyzing sensor measurements collected

within a smart home, the system can detect actions of the

inhabitants and predict their future behavior. Additionally,

it can recognize outliers, events which are not within usual

patterns, and indicate towards a potential problem [6].

Most of the existing M2M solutions incorporate a central

point for collecting and analyzing information [7]. However,

with the development of hardware technologies which enabled

miniaturizing wireless devices, smart sensors or actuators and

micro-controllers, and enhancing their processing power, new

schemes for refining software for embedded systems started

to evolve [6]. The example of those new schemes is the

possibility for certain algorithms to be executed on end devices

or on gateways, instead of only on back-end system [8].

In this paper we analyze data mining techniques in M2M

networks. Furthermore, we want to disclose how the func-

tionalities of nodes within M2M system architecture influence

energy efficiency of the system with limited energy resources.

Particularly, we compare energy consumption of the battery-

powered end devices when end device has measurement

analysis functionality (i.e. analysis is performed on-device)

and when measurement analysis functionality is performed

elsewhere (i.e. when analysis is performed on gateway or on

back-end system).

Section 2 presents research activities within the area of inter-

est of this paper. Section 3 describes the network architecture

compliant with existing M2M standards in which we conduct

our measurements. In section 4 we introduce an algorithm

which was deployed on end devices of our system and which

monitors temperature fluctuations in an indoor space. Section

5 presents energy consumption comparison of end devices for

two cases - when algorithm was executed on end devices, and

when it was executed elsewhere. Section 6 concludes the paper

and gives an outline for future work.

II. RELATED WORK

This section presents current research efforts in the area

of applying data processing techniques within M2M network.

Stojmenovic [7] considers M2M as a key enabling technology

for the CPSs. The author identifies the problem that existing

work in the area of M2M communication is based on small-

scale M2M models and centralized solutions, while a few

existing distributed solutions do not scale well. A paradigm
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shift is suggested where end nodes should also make decisions

based on local knowledge, instead of only forwarding collected

messages to back-end system. By using this new paradigm,

M2M solutions could scale to a significantly larger number of

M2M devices. In the use-case example, the author considers

a smart building control application in which sensors and

actuators exchange information directly, without communica-

tion with servers, and coordinate by using distributed decision

making to react to data. This reactions include opening of

windows or injecting fresh air when needed.

Chen et al. [5] introduce an overview of data mining

techniques in the area of Internet of Things. They present

five data mining functionalities: classification, clustering, as-

sociation analysis, time series analysis, and outlier analysis.

The application areas of data mining are also presented: e-

commerce, banking, retail, health care, and city governance.

The main research issues are identified in the area of finding

erroneous data, analysis of data streams and developing a

framework to support big data mining. As for the nodes where

data processing is performed, the authors suggest servers in

the cloud where open source solutions like Hadoop, HDFS,

Storm or Oozie can be used. According to their perception,

end devices are used only for data gathering and forwarding

towards cloud.

Bruns et al. [9] state that in traditional M2M systems,

data processing is usually hard-coded and scattered all over

source code, which makes it difficult to maintain. Therefore,

they propose a complex event processing system (CEP) which

separates event processing from source code. In CEP, event

processing is capsulated in rules which can be efficiently

adapted and maintained. The authors discuss the application of

the proposed system in solar power plants and printer supply

and maintenance service. CEP is implemented on M2M server,

it processes data streams just as new data arrives to the server.

M2M systems where end devices are serving as nodes which

collect measurements from sensors are referred to as Wireless

Sensor Networks (WSN). Analytics in WSN is also an ongoing

research topic closely connected with the concept of M2M

systems. Mahmood et al. [10] propose a taxonomy of data

mining techniques for WSN. First level of classification is

connected with general data mining classes: frequent pattern

mining, sequential pattern mining, clustering and classifica-

tion. Second level of classification is based upon the ability of

the approach to process data in a centralized or distributed way.

The third level of classification is determined according to the

focus on two different aspects - WSN performance issues and

application issues. The approaches which focus on WSN per-

formance issues try to take into account resource constraints

like energy, memory, and communication bandwidth. On the

other hand, approaches which focus on application issues try

to satisfy application requirements without much consideration

for WSN performance. The authors group existing data mining

techniques for WSN according to the presented taxonomy.

Moreover, they also discuss what is the focus of this paper

- on which nodes to execute different data mining techniques.

Sensor nodes, referred to as M2M devices in M2M system

architecture, perform single pass algorithms and forward only

the required and partially processed data to the network. In

network, referred to as M2M gateway, data from various

end devices is collected, and activities as network pattern

identification are carried out. On sinks, reffered to as M2M

servers, computationally demanding tasks are executed.

Alsheikh et al. [11] present an overview of existing machine

learning techniques used in WSNs. They group them into

the categories of supervised, unsupervised and reinforcement

learning. As important aspects which need to be taken into ac-

count when deploying machine learning techniques in WSNs,

the authors emphasize power and memory constraints of sensor

nodes, topology changes, communication link failures and

decentralized management. The main functional challenges for

which machine learning techniques were adopted include rout-

ing in WSN, clustering and data aggregation, event detection

and query processing, localization and objects targeting, and

medium access control. As for the nodes where processing is

taking place, the authors also consider in-network processing

of data since it enables the nodes to rapidly adapt their

future behavior and predictions in correspondence with current

environmental conditions. However, when executing learning

algorithms on-device, special attention needs to be payed not

to exhaust the nodes with complex and resource demanding

computational tasks.

Suryadevara et al. [6] developed a smart home solution

which enables identification of the Activities of Daily Living

(ADL) in order to determine the wellness of elderly people.

This was done by processing time series of data collected by

the sensors deployed at users’ homes. Among other things,

the authors discuss different storage mechanisms for WSN

data. They identify two approaches for storing data in WSNs

- centralized and decentralized way. In centralized approach,

data is stored and can be analyzed on a node which generates

it. In decentralized approach, data is stored on different nodes.

The most common decentralized storage approach is data

centric storage, where data is stored on a node called sink.

Centralized approach is identified as not appropriate for a setup

with recurrent bursts of activities since it quickly overfills

memory resource. Moreover, when sequences gathered from

different sensors need to be processed, as is the case in the

solution developed by the authors, data-centric storage appears

to be a better solution. Therefore, the authors developed a

system which stores sensor data in the form of event activities

on a central system which then analyses that data and makes

assumptions of ADLs.

Research efforts analyzed within this section focus on

presenting current trends in the area of data processing in

M2M/IoT/WSN domain. However, we have not identified

solutions which would take into consideration optimal position

in the network to perform data processing with regard to

energy efficiency of the system with limited energy resources.

III. M2M ARCHITECTURE

The architecture of our M2M system is shown in Figure

1, and is compliant with functional M2M specification from
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oneM2M1 [12] and high-level M2M system architecture by

ETSI2 [13].

Application Dedicated Node (ADN) contains sensors which

collect measurements from their physical environment. It

contains at least one Application Entity (AE), which is an

entity in the application layer that implements M2M appli-

cation service logic. Examples of these application entities

are power metering application or remote blood sugar moni-

toring application. ADN does not contain Common Services

Entity (CSE) which is situated on Middle Node (MN) or

Infrastructure Node (IN). CSE is a set of common service

functions of the M2M environment, like data management,

device management, subscription management and location

services. Middle node contains CSEs and can contain one or

more AEs. When ADN contains CSE, it is called Application

Service Node (ASN). ADN/ASN can communicate directly

with IN, or can communicate with IN via MN. In our case

scenarios, ADN and ASN communicate via MN. ADN/ASN,

MN, IN, defined in oneM2M standard [12], can be referred to

as M2M Device, M2M Gateway and M2M Server respectively

in previous standards by ETSI [13].

In this paper we focus on M2M communication within

smart homes which can include following sensors: temper-

ature, humidity, luminosity, presence, hall effect, electricity

consumption or water metering. Based on the data collected

by these sensors, various events can be detected, for instance

if residences are present in the house, if temperature fluctuates

unnecessarily (e.g. a window is opened too long during cold

winter or hot summer days) and should be controlled, if

power is more affordable in certain times of day and when

should specific consumers with variable operating times like

washing machine be turned on etc. Moreover, the system

can detect outliers and report them to the interested users,

like water leakage, extreme temperatures or unusual power

consumption. Our system is composed of ADNs/ASNs which

1oneM2M (http://www.onem2m.org/) - organization which develops stan-
dards for M2M and the Internet of Things

2ETSI (http://www.etsi.org/) - European Telecommunications Standards
Institute

Fig. 1: M2M Architecture

monitor temperature fluctuations and an MN through which

the devices communicate with IN.

The easiest way to perform the analysis of data collected by

sensors is to transfer it to infrastructure domain where servers

have plenty of memory and processing power [14]. However,

due to rapid development of embedded devices which have

more and more processing power and due to application needs

for faster response, processing can also take place in field

domain, on MNs and ADNs/ASNs [11], [15]. When executing

in-network data processing, special attention needs to be paid

not to exhaust the nodes with complex computational tasks.

By analyzing data in networks, valuable information instead

of raw data is delivered to infrastructure domain, from where

it can be easily accessed by user applications.

In the first case scenario of our energy consumption mea-

surement process, explained in detail in Section V, end device

is according to oneM2M specification an ASN because it

contains both AE and partially CSE - data management. In the

same scenario, gateway is MN with only CSE functionality.

In the second case scenario, end device is an ADN since it

contains only AE, while CSE - data management and other

functionalities, as well as a part of Application Entities (AE)

is executed on MN (gateway).

IV. OUTLIER DETECTION ALGORITHM

Temperature function shown in Figure 2 recorded temper-

ature values at our laboratory during one week in winter

from February 23rd until March 1st. Vertical dotted lines

separate measurements belonging to a certain day of the week.

The measurements were obtained from sensors and forwarded

to back-end system every 10 seconds. Three peaks can be

identified, which are marked on Figure 2 and which occurred

when the window was opened, and no-one was present in the

room. In these cases, temperature fell to around 12°C. The

algorithm that we propose has its main goal to raise the alarm

when temperature plummets like in those 3 cases. The reason

for that is because in such occasions the temperature in the

room was too low to reside there. By raising the alarm, window

could be closed sooner to prevent those unpleasant conditions.

In order to determine the algorithm which could detect

rapid temperature fall, which we define as an outlier from

normal temperature fluctuation during the day, we monitored

the derivative of the temperature function. Since the tem-

perature function is discrete, its derivative, often referred to

as backward difference, is calculated by using the following

expression [16]:

∆nf(n) = f(n)− f(n− 1) (1)

where f(n) is a current temperature value measured by

end device, while f(n − 1) is the value measured in the last

measurement. In our case, the difference between those two

consecutive measurements is 10 seconds. By calculating the

difference of the function, we wanted to analyze how does the

difference of the function behave when the temperature plum-

mets. When analyzing the difference between two consecutive
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Fig. 2: Measurements from temperature sensor during 1 week in winter

values, extreme descends as the ones seen in Figure 2 cannot

be detected since in those events the temperature does not fall

in every interval. However, if we monitor the difference in

larger time window, which is a good approach when dealing

with data that arrives continuously in time [17], rapid decrease

can be detected when comparing current measurement with the

5th historic measurement. The equation of such differences

calculation is the following:

∆nf(n) = f(n)− f(n− 5) (2)

where f(n) is current measured value, and f(n− 5) is 5th

historical measurement, measured 50 seconds ago. We have

tried to use more recent historic measurements (1st-4th), but

in those cases certain temperature decreases were captured

which were not so steep as the ones we wanted to identify.

When running an algorithm which analyzes when difference

values calculated as in Equation 2 are falling in 10 more than

consecutive intervals, extreme descends in temperature like

the ones marked in Figure 2 can be detected. The number

of falling intervals was set according to empirical evaluation.

Table I shows the number of falling intervals for the cases

when temperature plummeted. The times of these events were

9:36 on Tuesday, 9:13 on Wednesday, and 9:23 and 9:27 on

Thursday. The reason for two captured intervals on Thursday

is because temperature was falling for a longer period on that

day. The temperature for that case did not fall in every interval,

in some intervals it remained unchanged or even slightly grew.

Since the algorithm was analyzing constant falls of differences

from Equation 2, this particular outlier was captured twice.

If the number of intervals in which descend is monitored is

between 7 and 10, those rapid falls can always be detected.

However, if the number of falling intervals is smaller than

7, then some other events can be captured, which are not

interesting to us, like the fall of temperature during night

when the heating was off. Since the algorithm in which 10

consecutive falling intervals are detected fits to our needs

TABLE I: Captured outliers when looking for negative

difference in more than 10 consecutive measurements

time
number of
falling intervals

Tue 24.2.2015 9:36:04 12
Wed 25.2.2015 9:13:01 10
Thu 26.2.2015 9:23:00 15
Thu 26.2.2015 9:27:08 10

(it identified rapid temperature fall caused by the opened

window), it was implemented on our M2M system in order to

monitor energy consumption of end devices in different case

scenarios described in detail in the next section.

V. ENERGY CONSUMPTION ANALYSIS

The proposed algorithm described in Section IV was imple-

mented on Libelium Waspmote devices v1.2 [18] with XBee

communication modules to monitor energy consumption of

end devices for two case scenarios: when the algorithm is

executed on end devices and when algorithm is executed

on gateway or on back-end system. Since device consumes

different amounts of energy by executing different tasks during

its operating cycle, it was necessary to identify those tasks,

measure its duration and power consumed during the execu-

tion. Figure 3 shows the tasks and their order of execution for

both scenarios.

Fig. 3: Activity diagram of end device
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In each operating cycle, device wakes up from hibernate

mode, which is a state on Waspmote device where lowest

amount of energy are consumed. Afterwards, it obtains mea-

surements from sensors. In the first case scenario, shown

on the left-hand side of Figure 3, that task is followed by

executing the algorithm to detect rapid temperature decrease.

When the overseen decrease is identified, the device reports

it by sending a message to the gateway. After reporting the

alarm message, it waits for a certain amount of time to receive

a new message from gateway which contains information for

a new task, e.g. if measurements are to be sent in a specified

interval instead of forwarding only alarms. If no alarm needs

to be raised, the device only waits for a message from the

gateway. After the time for receiving message has expired,

the device is ready to return to hibernate mode. The process

of exchanging messages between end devices and gateway in

order to reach an agreement about operating times is described

in our previous work [19].

In the second case scenario, shown on the right-hand side

of Figure 3, after wake up from hibernate mode and obtaining

a measurement from sensor, the end device forwards that data

to gateway. Since end device does not execute algorithm for

detecting temperature decrease, acquired measurement needs

to be sent to back-end system for further analysis. As in the

first case scenario, the end device then waits for messages from

gateway. After the eventual processing of the received message

from gateway, end device goes back to hibernate mode.

Table II shows power consumption and duration of tasks

executed on end devices when analysis is performed on-device

(ASN functionality), while Table III shows power consumption

and duration of tasks executed on end devices when analysis

is performed on gateway or back-end system (ADN function-

ality of devices). Current consumption and voltage levels are

measured by using Rigol DS1102D oscilloscope3.

TABLE II: Power consumption and duration of tasks in the

case of on-device analysis

state/task
wake-up

initialization
measure analyze send receive

handle
response

power
consumption (mW)

70,13 130,83 258,95 262,68 141,12

duration (ms) 80 70 255,3 208,8 1

TABLE III: Power consumption and duration of tasks when

analysis is not performed on-device

state/task
wake-up

initialization
measure send receive

handle
response

power
consumption (mW)

70,13 77,7 258,95 262,68 141,12

duration (ms) 80 10 255,3 208,8 1

Figure 4 shows the energy consumption for one operating

cycle. The left-hand and central columns represent energy

consumption for the first case scenario when analysis is

performed on-device. Since the end device in that scenario

needs to raise an alarm, it sends a message to the gateway

3http://www.rigolna.com/products/digital-oscilloscopes/ds1000d/ds1102d/

Fig. 4: Energy consumption of end devices during one

operating cycle

only when temperature value plummets. The consumption of

that operating cycle is shown in the left-hand column. When

rapid temperature decrease is not detected, the device does not

send any data to gateway. The consumption of such operating

cycle is shown in the central column. The consumption of

the operating cycle in second case scenario, when end device

reads the value from sensor and forwards it to the gateway, is

shown in the right-hand column of Figure 4.

It can be observed that energy consumption presented in

the left-hand and right-hand columns is similar. It appears

that on-device analysis does not add much to total energy

consumption of the device in one operating cycle. However,

when comparing the power consumption for measurement and

analysis task in Table II - 130.8 mW and only measurement

task in Table III - 77.7 mW, it can be observed that for the

scenario when data is analyzed, the power consumption is

around 70% higher. But since both actions last for quite a short

time (0,07 s and 0,01 s), they do not have a large influence

on the overall energy consumption. On the other hand, energy

consumption shown in the central column is about 50% lower

than in two aforementioned cases. The reason for that lies in

the fact that sending data has a high influence on overall energy

consumption. Although it consumes only twice as much power

compared to measuring and processing, it lasts around 3.5

times longer.

Total energy consumption during one week for the two

cases when analyzing data presented in Figure 2 is shown

in Figure 5. Left-hand column shows consumption for the

first case scenario when analysis is performed on-device. In

that scenario, in most of the operating cycles the device was

only performing measurements and analysis without sending

alarm message to the gateway due to the fact that on the

Fig. 5: Energy consumption of end devices during 1 week
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analyzed data set alarms were needed to be raised only on

four occasions. Since operating cycle which includes analysis

without sending consumes around 45% less energy than the

operating cycle in which the measurement data is forwarded

to back-end system, the total consumption of the first case

scenario is around 40% less than the consumption of the

second case scenario which is shown in the right-hand column

in Figure 5 and in which data was sent during each operating

cycle.

As a power source for end devices used in this experiment

we had at our disposal batteries with capacity of 6600 mAh.

According to energy consumption shown in Figure 5, and by

taking into account that the average voltage of the battery is

3.7 V, by using the first case scenario, device can operate for

17.4 weeks. By using the second case scenario, the device

can remain operational for 10.6 weeks. For this particular

application and data set, on-device analysis extends end-device

lifetime for about 65%.

VI. CONCLUSION

This work presented the analysis of the influence of data

measurement analysis on energy efficiency in Machine-to-

Machine system with Libelium Waspmote v1.2 devices. By

implementing a specific outlier detection algorithm on end

devices, it was shown that on-device data analysis when using

this algorithm does not consume as much energy as communi-

cation. More energy can be saved by reducing communication.

As a result, it can be advisable to perform local data analysis

on end devices in those cases when the duration of the

measurement and analysis tasks is shorter than the duration

of communication tasks.

If the data set were different and temperature plummeting

occurred more often, the difference in total energy consump-

tion during one week would have been smaller. However, since

temperature outliers do not occur often, the scenario in which

the measurement analysis is performed on-device will usually

spend less energy than the scenario where measurement anal-

ysis is performed on gateway or on back-end system.

In future work, we plan to compare energy efficiency for

more sophisticated algorithms in smart home environment

which would enable event detection. We also plan to extend

this research to different types of applications, not only the

applications which should raise alarms, but applications which

require continuous or periodical streaming.
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