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Email: kslot@p.lodz.pl

Abstract—The following paper presents a simple and fast live-
ness detection method based on gaze direction estimation under
a challenge-response user authentication scenario. To estimate a
line of sight, a procedure composed of several steps, including
face and eye detection, derivation of gaze direction representation
and subsequent classification, has been proposed. The proposed,
novel gaze orientation descriptor is easy to compute and it
provides sufficiently accurate estimates for the considered task.
To assess a probability of genuine biometric trait presentation,
recorded gaze direction responses induced by presentation of
a randomly generated on-screen object, are matched against
expected patterns.

I. INTRODUCTION

O
NE OF the main threats that exist for unattended bio-

metric authentication systems are so called ’presentation

attacks’, where a system is presented with a biometric artefact.

The problem becomes especially severe when easy-to-spoof

biometric traits are considered, such as e.g. fingerprints, face

or iris images. To enable unattended (including remote, by

means of popular mobile devices) user verification, biomet-

ric systems must cope with the stated problem. For this

purpose, a methodology aimed at verification of biometric

trait authenticity, referred to as liveness detection, has been

developed.

Existing liveness detection approaches can be broadly cat-

egorized into two main groups: methods that exploit phys-

iological properties of tissues and organs subject to analysis

and various challenge-response schemes. Liveness detection is

therefore trait-specific and many diverse ways for its assess-

ment have been proposed so far. For example, several different

tests are available for iris image authenticity verification,

such as application of varying intensity illumination levels

to check for iris physiological responses (this approach com-

bines challenge-response scheme and physiology), analyzing

presence of saccades or analyzing spectra of reflected light.

Approaches considered for liveness testing in case of face-

based recognition include blink detection [1], detection of

eye-movements [2] detection of presence of facial expressions

[3] or lip motion detection [4]. A natural means against

presentation of photos provides 3D face recognition (how-

ever, it clearly becomes vulnerable if 3D masks are used).

Fingerprint validity can be assessed by analyzing perspiration
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processes. For some biometric traits, such as vein pattern

structure, liveness detection is an intrinsic component of the

adopted recognition methodology, as vein imaging (blood-flow

imaging) is possible only for living tissues.

Widespread availability of mobile devices equipped with

cameras and microphones brought up an interest in exploiting

face images and voice in remote biometric authentication,

despite their well-known limitations. One of the main prob-

lems that needs to be addressed in this scenario is clearly

liveness detection. One of the most natural liveness detection

schemes used in case of speaker recognition is a challenge-

response procedure, where a speaker is prompted to utter some

randomly generated text, and only after positive verification

of the response, a biometric system proceeds with user-

verification procedure. An application of a similar challenge-

response scheme in video based face analysis have been

proposed in [5], where a challenge requires a user to make

voluntary blinks and mouth movements (opening and closing).

Another interesting example of challenge-response scheme

that utilizes gaze tracking and that is intended as a secure

method for logging to computer systems has been proposed

in [6]. A set of icons, which includes a randomly scattered

subset of previously memorized ones, is displayed to a user,

who is supposed to trace (with her/his eyes) a path, that defines

a convex hull built upon known icons.

The presented paper proposes a simple liveness detection

method that is based on verification of line-of-sight trajec-

tory compliance (a response) with some expected pattern (a

challenge). The pattern is defined by subsequent locations of a

marker that gets displayed at random locations of a screen. The

main element of the proposed method is a novel gaze direction

estimation algorithm, which is computationally inexpensive,

enabling its real-time application even on machines with

limited computing power, such as mobile devices. Simplicity

of the proposed gaze detection method results from its specific

context: horizontal line-of-sight displacement evaluation is

sufficient for execution of liveness detection procedure.

The proposed gaze detection method conforms to a

general framework of the domain and includes two phases:

derivation of eye-image representation that correlates well

with gaze direction, followed by gaze direction evaluation.

As widely available devices are considered for the method

implementation, gaze tracking is performed using regular

visible light cameras (the best performing gaze tracking
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Fig. 1. Block diagram of gaze estimation procedure

methods exploit near infrared range and typically use infrared

light sources [7]).

Several different eye image representations have been pro-

posed for the purpose of gaze tracking applications. They

belong to two broad categories: representations based on

mutual locations of salient geometric eye features, such as

inner and outer eye corners, iris/pupil centers, and appearance

based representations (a broad review of relevant methods can

be found e.g. in [8]). Gaze direction assessment exploiting

features from the former group is basically a regression prob-

lem that can be solved using e.g. Support Vector Regression

(SVR) [9] or neural networks [10]. For appearance-based de-

scriptors, gaze direction assessment is made e.g. by computing

between-region correlation coefficients [11] or using mean-

shift algorithm [12]. The proposed algorithm for line-of-sight

direction estimation is based both on salient feature detection

and appearance-based eye modeling, and it is followed by

regression based analysis, so it combines both of the presented

general methodologies.

A structure of the presented paper is the following. The

proposed gaze detection algorithm has been introduced in

Section 2. Section 3 presents a background used for challenge-

response liveness detection. Finally, experimental evaluation of

the proposed method has been presented in Section 4.

II. GAZE ESTIMATION ALGORITHM

Block diagram of the proposed algorithm has been depicted

in Fig. 1. A general idea of the proposed line-of-sight direction

estimation is to confront information extracted from two eye

images, where one of them is mirrored, so that deviations from

a central fixation point (determined during a calibration phase

of the procedure) get amplified.

The procedure begins with face detection, followed by eye-

region detection, both performed using a well-known Viola-

Jones algorithm [13]. The detected regions (containing the

left and the right eye) are further refined by vertical and

horizontal cropping, performed to increase processing speed

and to facilitate subsequent analyses by eliminating complex

yet unrelated structures, such as eyebrows. The resulting

Fig. 2. Determination of vertical bounds for a rectangular image analysis
window: an initial eye region produced by Viola-Jones algorithm (a), sample
plot of horizontal intensity variance with the selected row interval (b) and the
resulting analysis window (c)

regions of interest (ROI) become a domain for gaze direction

assessment, which uses a quantitative descriptor that estimates

eye disks horizontal offset from their ’neutral’ position (for-

ward gaze). The descriptor is derived from Fourier spectra

of marginal distributions of vertical projections of eye image

intensities and gaze direction is represented by a value of a

phase shift between fundamental frequencies that approximate

the considered functions. The presented approach is detailed

in the following subsections.

A. ROI Derivation

An objective of vertical cropping of initial eye regions is

elimination of irrelevant upper and lower image structures,

such as e.g. eyebrows. To adjust initial eye regions vertically,

we propose to analyze horizontal image variability. As eye

images always contains regions of extreme intensities (white

cornea versus black pupil), variability of image intensities

along these rows is expected to dominate over the remaining

regions. A criterion for selection of vertical bounds of a

rectangular window that will be used for gaze analysis is based

on analysis of horizontal variance projection function. We

propose to extract from an initial eye region only the widest

strip, composed of rows with gray-level variability above the

average level, computed for the whole region (see Fig. 2).

An objective of horizontal cropping is to produce a normal-

ized image analysis domain, where two landmarks: inner and

outer eye-corners determine a system of reference. A use of

eye corners as landmarks has important advantages (they are

distinctive and separated by a fixed distance from each other,

which offers a basis for pose estimation).

The proposed eye-corner detection method operates on

vertically-cropped image eye-regions. To compensate for il-

lumination variations, prior to further processing, eye region

images are normalized in intensity. The algorithm begins with

corner detection procedure, which seeks for image points with

large contents variability. Two well-known methods that differ

in the adopted decision criterion were examined to do the

task: Harris [14] and Shi-Tomasi [15] detectors. Both methods

were able to correctly detect all salient image points, including

eye corners (see Fig. 3). However, as the Shi-Tomasi method

favors features that are easier to track (this is an important

aspect from the standpoint of computational efficiency of the

algorithm), it has been selected in further analyses.
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Fig. 3. Corner detection results in input images produced using Harris
detector (left column) and Shi-Tomasi detector (right column).

Fig. 4. Eye corner search domains (IC - inner corner search region, OC -
outer corner search region).

As it can be seen from Fig. 3, corner detection procedure

results in identification of a large set of salient points. To find

eye corners, elements of this set are subject to subsequent

analysis. Firstly, its domain gets restricted, so that inner and

outer eye corners are sought only in feasible eye subregions,

defined as boundary vertical bands of width set to 25% of eye

image (Fig. 4).

To identify eye corners among a set of available salient

points, a descriptor that summarizes image appearance within

a square, 15×15 neighborhood around a salient point, has

been generated. The neighborhood is divided into quadrants

of size r × r, r =8 (with overlapping boundaries), and mean

image intensity gradients are evaluated within each quadrant.

A descriptor of a salient point Pi,j , located in i−th row and

j−th column of an image, is thus a collection of four vectors:

Si,j =
[

g
ij
TL, g

ij
TR, g

ij
BL, g

ij
BR

]

(1)

where subscripts T,B,L,R label quadrants (top, bottom, left and

right) and the mean gradient of pixel intensities I(k, l) in a

quadrant XY (g
ij
XY) is given by:

g
ij
XY =

1

r2

∑

k,l∈XY

∇I(k, l) (2)

Descriptor gradient vectors were finally normalized in

length, so that they sum up to unity. Salient points are matched

against eye-corner models. Four separate eye-corner models

(inner and outer for the left and for the right eye), of the

same structure as given by (1), were generated from a set

of manually labeled images (five images per each corner -

see Fig. 5). Descriptors derived for training images for par-

ticular eye corners were averaged, forming the corresponding

eye-corner models CIL,COL,CIR,COR, where I,O,L,R denote

inner, outer, left eye and right eye respectively. As it was

the case for salient point descriptors, also eye-corner model

gradients were analogously normalized in length. The derived

models were matched against salient points that are present in

Fig. 5. Generation of eye-corner model: manually selected instances of
inner left eye corner (left column), gradient magnitudes derived for quadrants
(middle) and the resulting gradients (right).

Fig. 6. Sample eye corner detection results performed for three different
persons using the presented algorithm.

the corresponding eye-image bands (i.e. inner left eye-corner

model was applied to salient points present in the ’IC’ region

of the left eye image etc.). A matching score was defined

as a sum of dot products between components of a corner’s

α, β model descriptor and some considered salient point’s

descriptor:

F
ij
α,β =

3
∑

k=0

〈Si,j [k],Cα,β [k]〉 (3)

The score (3) gets maximized for salient point neighbor-

hoods that match a particular eye-corner model. Sample results

of eye-corner detection have been presented in Fig. 6.
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Fig. 7. Plots of image intensity distribution accumulated along a vertical
axis for three different gaze directions: forward (top), left (middle) and right
(bottom), for left (red) and right (blue) eyes.

B. Line-of-sight Direction Assessment

Regions of interest, derived for both eyes, provide domains

that comprise information relevant for gaze direction assess-

ment. To provide fast and accurate estimation of gaze direc-

tion, an appropriate descriptor that can be easily computed

and that is robust against possible image artifacts, needs to be

derived.

To meet the formulated goals, we decided to generate gaze

direction descriptor based on differences in general appearance

of left and right eye strips in horizontal direction. The appear-

ance of a strip can be summarized using marginal distribution

of strip pixel intensities accumulated in vertical direction. One

can observe that a general shape of the resulting function is

line-of-sight direction specific (see Fig. 7). Such a general

shape can be easily quantified by using leading components of

any of possible signal orthogonal transformations, such as e.g.

Discrete Fourier Transform (DFT). DFT has been chosen as a

basis for eye appearance representation and spectra of marginal

distributions of vertically accumulated intensities, derived for

different images (see Fig. 8), were analyzed. We found that

the first periodic component appears to be an attractive means

for summarizing eye appearance, as its phase shows good

correlation with a gaze direction. Examples of approximation

of marginal gray-level distributions by means of a fundamental

component of its DFT decomposition have been shown in

Fig. 9.

To amplify sensitivity of the representation, we decided to

confront the approximation produced for marginal distribution

derived for one of the eyes with an approximation produced for

the mirrored marginal distribution of the other eye (see Fig. 9).

Thus, a final descriptor of gaze direction is a phase difference

between two first harmonics, where the first one approximates

the marginal intensity distribution derived for the left eye and

the second one approximates a mirrored distribution derived

for the right eye.

Fig. 8. Magnitude (left column) and phase (right column) spectra derived for
marginal distributions of vertical image intensities for three gaze directions:
forward (top), left (middle) and right (bottom) (magnitudes and phases of the
two first periodic components have been enlarged for illustration clarity).

Fig. 9. Marginal distribution approximations using the first DFT harmonic
component for three different line-of-sight directions: forward (top), left
(middle) and right (bottom).

III. LIVENESS DETECTION PROCEDURE

Challenge-response scheme has been used as a framework

for liveness detection, where the challenge is an on-screen

presentation of a marker (a circle) in time-varying locations

and the expected response is a corresponding line-of-sight di-

rection adjustment. Objects are presented at random locations

and the system is attempting to determine the induced gaze

direction, thus verifying a required reaction. If probability

of correct gaze detection exceeds 0.5, one can expect that

successive repetitions of the procedure will eventually provide
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a required level of confidence that a user actually responds to a

challenge. To derive a quantitative estimate of number of trials

that are required for getting some predefined confidence level,

we assume that the considered liveness detection scheme can

be expressed in terms of a Bernoulli process. The main error

in gaze direction estimation results from erroneous detection

of eye corners, that can happen equally likely for any viewing

angle, we assume that probabilities of correct gaze detection

are the same, regardless of this angle. This justifies adoption of

the Bernoulli scheme and allows to define the two outcomes

required by the process in the following manner. A success

occurs if a response (estimated line of sight) falls within an

expected angular interval around actual position of a marker

(we assume that an angular range of on-screen locations is

evenly split into an even number of intervals). Otherwise, we

consider that an outcome of an experiment is a failure. Given

this framework, and given success and failure probabilities, we

can estimate a number of challenge repetitions that is required

to meet some predefined confidence level (or equivalently,

liveness detection error probability). It can be shown [16] that

probability of correct classification of at least n+1
2 elements

of n-element sequence Q, given probability of correct entry

classification p > 0.5 :

p(Q,n) =

(n+1)/2
∑

i=1

(

n
n−1
2 + i

)

p
n−1

2
+i(1− p)

n+1

2
−i (4)

converges to unity as n → ∞. Therefore, it is always possible

to find such n that provides some desired confidence level T

of an affirmative decision.

IV. EXPERIMENTAL EVALUATION OF THE PROCEDURE

The experimental setup used for proposed algorithm eval-

uation was the following. An application for generating a

challenge draws a single marker at time-varying, seventeen

equidistant discrete locations (a marker is a circle of a fixed

size). Locations of the marker change every 2 seconds. During

gaze direction detection accuracy tests marker locations were

periodically updated in an oscillating manner. During liveness

detection tests, marker locations were randomly selected. A

user was situated in front of a screen at a fixed distance,

so that marker is observed within a range of angles starting

from -30 degrees to +30 degrees. A simple web camera, posi-

tioned centrally atop a screen was monitoring user’s responses

(challenge generation and image acquisition processes were

synchronized). Each recorded frame was subject to a separate

analysis (no object tracking mode was used, to provide more

data for evaluation of all procedure steps).

Two databases were used throughout the experiments. The

first one was prepared by the Authors and comprises 415 low

resolution (640 × 480) test images of three subjects with

manually labeled four eye corners and with labeled line-of-

sight orientations. The second source of experimental material

was a CAVE database [17]. 1176 high resolution (5,184 ×
3,456 pixels) images of 56 different persons, with known gaze

directions, were used.

TABLE I
EYE CORNER DETECTION ACCURACY EVALUATION (COLUMN LABELS

IDENTIFY A CORNER: OL - OUTER LEFT EYE CORNER, IL - INNER LEFT

EYE CORNER, IR - INNER RIGHT EYE CORNER, OR - OUTER RIGHT EYE

CORNER).

All OL IL IR OR

Detected 96% 99% 100% 96% 96%

Identified 79.4% 86% 94% 93% 84%

Fig. 10. Plots of estimated gaze directions with respect to actual ones for
three different sets of experimental data.

The first phase of the evaluation was aimed at estimating

accuracy of ROI derivation procedure. Results of eye-corner

detection have been summarized in Table I. The first row

shows performance of Shi-Tomasi algorithm - eye corner

detection has been considered successful if any of produced

salient points was sufficiently close to the considered landmark

(within its 5x5 neighborhood). The second row of the table

specifies performance of correct salient point identification.

The first column of Table I indicates percentage of correct

detection for all corners, whereas the remaining ones show

scores for individual eye-corners.

The second set of experiments was concerned with evalua-

tion of gaze detection accuracy. A set of three video sequences

of a user asked to eye-track the oscillating marker were

recorded and a functional relation between actual marker

angular positions and positions calculated using the pre-

sented algorithm was derived. The sequences were differing

in adopted illumination conditions: the first two sequences

were taken under uniform illumination of different intensity,

whereas in the third case a face was lit from aside. For every

sequence a total of 510 frames were analyzed (an average of

30 frames per marker location). The results are summarized

in Fig. 10, where plots show the computed marker locations

against their actual locations. As it can be seen, there exist

significant variations in gaze direction estimation, however one

can identify angular intervals that can be exploited for liveness

detection.
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Given gaze-estimation results, it has been assumed that a

marker will be displayed randomly at three different locations

of a screen: two extreme positions and in the middle. An

average probability of successful detection of gaze direction

was evaluated to be p ≈ 0.66. It follows from eqn. (4) that

a number of required presentations of a marker necessary for

obtaining a T = 95% level of confidence that a subject is

actually following the marker equals 23.

The last part of experiments was concerned with evaluation

of computational complexity of the proposed algorithm. The

method was implemented in C++ programming language and

executed on a desktop computer with i7, quad core processor,

running at 2.4 GHz. The presented algorithm, excluding an

initial phase of face detection and preliminary eye-region de-

tection (both performed using Viola-Jones algorithm) took on

average only 3 milliseconds to execute (the result was averaged

for processing of 721 images). Although the aforementioned,

initial preprocessing can be time consuming, one needs to note

that it can be significantly accelerated if face tracking mode

will be used for analysis of frames that follow the first one.

V. CONCLUSION

The proposed algorithm proves that liveness detection can

be performed using line-of-sight estimation, by using a simple

camera for image acquisition. Computational complexity of

the procedure is low and we believe that it can be implemented

on popular mobile device platforms. There exist several ele-

ments of the procedure that need to be explored to increase

gaze-direction assessment accuracy, which is important to

reduce a required duration of liveness detection procedure.

The main directions of further exploration will be concerned

with improving eye-corner identification performance (e.g.

by applying multi-resolution analysis) and with modifying

the adopted eye-image representation (e.g. by including more

components of DFT decomposition of eye images).
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