
GRENAD, a Modular and Generic Smart-Grid

Framework

Sylvain Ductor, Jesus-Javier Gil-Quijano, Nicolas Stefanovitch, Pierrick Roger Mele

CEA-LIST, Département Métrologie Instrumentation et Information (DM2I),

Laboratoire d’Analyse de Données et Intelligence des Systèmes (LADIS),

Digiteo lab - bat 565 - Point courrier 192,

91191 Gif-sur-Yvette Cedex - France Bâtiment 425,

Email: {surname.name}@cea.fr

I. INTRODUCTION

Abstract—We present in this paper GRENAD, a Multi-
Agent System based framework for the simulation and pilot-
ing of power-grids and particularly smart grids. Exploiting a
component-based approach, it allows a flexible design of complex
smart grid applications by providing a generic canvas where ex-
tensible, modular and reusable components, defined on the basis
of their functionalities, can be easily combined and connected.
Thanks to Multi-Agent approach, a set of such components
can naturally be integrated into a coherent economical agent.
GRENAD makes no assumption on the energy definition and
eases the development of MAS control algorithms for smart
grids. The level of details of the energy-related information is
controllable. This information is computed either through inter-
nal physical models or by interfacing with external simulators.
We present here our model, illustrate its features with a rich
example which exhibits its genericity, and demonstrate how a
coordination protocol can easily be integrated to it.

E
NERGY supply is at the core economy while being

also one of the major items of expenditure. Decreas-

ing fossil energy supplies as well as rising concerns about

climate made it critical to change in the near future the

way energy is produced, distributed and consumed. Smart

grids are highly automated power networks that possess fine

grained monitoring and control capabilities, from the power

plant to the domestic appliance. Easy access to information

and autonomous decision making allow smart grids to save

energy by quickly reacting to changes in the environment and

reorganising demand, production and distribution. Smart grid

are also meant to allow the massive integration of distributed

renewable energy resources (DER) as well as new equipments

such as combined heath and power (CHP) generation and

energy storage. As such smart grids are called to play a crucial

role in the coming years for the efficient control of power

systems.

Hardware for production, monitoring and storage in smart

grids already exist. While still not being widely deployed,

the penetration of such equipments is constantly progressing

and increasingly supported by legislations. However they raise

new challenges. Indeed, as opposed to the traditional power

grids approches, energy flows may be intermittent and/or

bidirectional. Moreover smart grids technologies also foster

a radical change in the business of energy supply, by allowing

the energy to be islanded, it is to say produced, sold and

consumed locally. Lastly, increased interconnection and infor-

mation exchange between actors enables them to coordinate

more closely, providing thus a new opportunity to reach higher

efficiency and revenues.

One of the most challenging aspects of smart grids is thus

at the engineering and at the logical level: the development

of efficient control and coordination algorithms that are able

to fully exploit their different potentialities. In order to tackle

these challenges the use of a Multi-Agent Systems (MAS)

approach is particularly relevant as the structure of MAS

closely match the structure and behaviour of smart grids:

They are constituted of a set of interconnected distributed

autonomous actors, each aiming at maximising their respective

goals through coordination. Also, a given smart grid is com-

posed by interconnecting differents components (production,

distribution or storage) that may be used, as is, on another

smart grid. It is thus relevant to adopt a modular approach for

modeling the equipments in a reusable, and thus capitalizable,

way. Therefore a key driver for the deployment of smart grids

is the conception of a dedicated platform that ease their devel-

opment by exploiting both oriented-component paradigm for

equipment modelisation aspects and oriented-agent paradigm

for coordination and optimisation aspects.

In the context of the Resilent FP7 project [20], we have

developed such a platform, GRENAD, which stands for

“Gestion des Ressources ENergétiques,

Autonome et Distribuée” (Autonomous and

Distributed Management of Energetic Resources). GRENAD

presents two main aspects. The first is a feature rich API

and Domain Specific Language (DSL) based on JADE [11]

which allows to construct component-based JADE agents. As

such it benefits of all the features and standard compliance

of JADE and can natively be used in conjunction with other

JADE-based applications. The second is a generic smart grid

model implemented on top of this DSL. Thanks to these two

aspects, it is possible to easily capitalize and reuse developed

software across different smart grid applications.

While most MAS publications in the smart grid domain

focus on the connection with a simulator or the conception of a

new control algorithm, our contribution is a platform that offer

enough flexibility to allow an easy interfacing with simulators

and an easy implementation of control algorithms. Also, each

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1781–1792

DOI: 10.15439/2015F310

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1781

Fig. 1. A rich scenario

component defining the smart grid can natively be monitored,

or even controlled, either by an agent, a GUI, or a remote

optimisation algorithm.

In Section II we present a smart grid scenario exhibiting

all critical features for the applications we are interested in. In

Section III we present the related work and how they answer to

the objectives highlighted by our scenario. In section IV we

present the GRENAD agent and smart grid models and we

describe how to implement the scenario with them. In Section

V we show how to easily integrate a smart grid optimization

algorithms in GRENAD.

II. A RICH SCENARIO

In this section we present a district energy system scenario.

The richness of this scenario allows us to demonstrate the

capabilities of our MAS based tool to model complex energy

management systems at the district-level. This scenario ex-

hibits most of the main characteristics that challenge today

the design of smart grid energy management systems [19]:

• Interdependence of several energy flows (electricity, heat

and gas)

• Distributed generation and storage capabilities

• Interaction with the main energy grids (electricity and

gas)

• Local renewable energy generation capabilities

• Prosumers

• Diverse consumption profiles

In the scenario, the considered components (producers,

distribution grid, consumers/prosumers and storage systems)

are modelled as autonomous agents that interact with the

intention of providing real time management at the district

level and optimizing the energy production and distribution in

the district, in conjunction with the main energy networks.

A. Business and organizational models

The behaviors of the different components are defined by

their individual roles and their internal characteristics (phys-

ical, economical, quality of service, etc.). Those behaviors

are constrained by the business and organizational models of

the system as well as by the interconnection mode to the

main grid (an energy system can work either in connected

or islanded mode w.r.t the main energy grids). In our scenario

we considered a system connected to the main gas and power

grids (represented as components 3 and 4 in Figure 1).

Among the different existing business and organizational

models we can list:

• Free markets: the components are competitors and in-

teract via a market mechanism [12];

• Virtual Power Plant (VPP): combination of produc-

tion storage and consumption resources. A VPP [18] is

adapted when all the resources belong to or are managed

by a single actor;

• Cooperative Virtual Power Plant (CVPP): In a CVPP

[3] different actors manage/own the different components,

they coordinate in a cooperative way to use shared

resources (for instance centralized storage systems, the

distribution network, etc.) and provide global services

(for instance: grant the energy balance, the security of

the network and/or the quality of service).

All these different organizational models can be considered

in our approach. In our scenario we model interactions be-

tween components as a free market.

B. Roles

The main roles that we support are producer, storage,

consumer, prosumer and distribution. The different constraints

and characteristics associated to those roles are described

below:

1) Producer components: The characteristics of the gen-

eration of energy provided by producers depend on several

aspects:

• Internal physical constraints: the nominal power (max

power capabilities), start/stop conditions (time to be op-

erational/off operation), their efficiency (it is the rate be-

tween the output generated energy and the input primary

used energy), and for renewables the variability and the

intermittence.

• Controllability: The controllability of a given generator

depends on the primary energy source that it uses and on

internal state variables. Most of renewable-energy sources

(e.g. wind, solar) are considered non-controllable, it is,

their availability and level of energy cannot be controlled.

Nevertheless, some renewable based generators can adapt

their internal state (i.e. orientation of wind turbines or

solar trackers) in order to secure and optimally generate

energy according to the primary-source real time condi-

tions. Generators whose primary energy supply can be

controlled provide different control levels, for instance

some generators can only provide on/off control while

others can provide intermediate levels of functioning.

In our scenario we consider two producers (the components

1 and 2 in Figure 1): a set of wind turbines for power gen-

eration and a Combined Heating and Power (CHP) generator

that generates both power and heating from combustion of

gas. Gas is provided by the main gas grid (component 3 in

1782 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Figure 1) and can be stored nearby the CHP. The system is also

connected to the main power grid (component 4 in Figure 1).

The gas and the power main grids are considered in our model

as controllable producers, it is, we consider that the quantity of

gas or the power drawn from the main grids can be controlled.

In the real system only the gas flow can be directly controlled,

the drawn power from the main grid is indirectly controlled

and corresponds to balance needed power, it is, the consumed

power minus the local producer power.

2) Storage components: The behavior of a storage com-

ponent depends mainly on its nominal capacity, its rate of

charge/discharge and its instantaneous state of charge (SoC).

Other important variables are the efficiency of the conversion

in the charge and discharge phases and the self-discharge rates.

The usage of some storage systems, for instance batteries, is

constrained by the charge/discharge cycling conditions that

optimize their efficiency and increase their lifetime. In our

scenario we consider a thermal storage component (see com-

ponent 6 in Figure 1).

3) Distribution components: The distribution of energy

generates losses due to the physical characteristics of the

transportation system used (i.e. transmission capabilities, dis-

sipation rates, etc.) and the distances of transmission of the

energy. In general, at the district level, the electricity losses due

to distribution are negligible while the heating and hydraulic

(heating network related) losses are not. Some distribution

components (as valves in heating networks and some types

of transformers) allow the dispatching of input energy among

different outputs. While the availability of energy over elec-

trical networks is instantaneous (electricity is transmitted at

about the speed of light), the transmission of energy over

heating and cooling networks, due to the transport inertia,

needs significant time (several minutes per km) to go from

the injection to the consumption points. In our scenario we

consider local heating and power networks: all the production

and consumption components considered in the scenario are

connected to at least one of these distribution networks.

4) Consumer components: The characteristics of the energy

consumed, basically their load curves, depend mainly on the

buildings physical characteristics (i.e. thermal inertia, storage

capabilities), the behaviors of the inhabitants (presence/ab-

sence, used services) and the comfort constraints (e.g. ambient

temperature set points). In our scenario we consider two

consumers, the components 7 and 8 in Figure 1.

5) Prosumer components: Besides the characteristics that

define the load curves of the consumer components, prosumers

can partially or totally cover their needs in energy and under

some conditions produce energy surplus that can be injected

into the main or local energy grids. In our scenario we consider

one prosumer (component number 5 in figure 1), that locally

produces power thanks to the PV solar panels installed on its

roof. It uses part of this energy for self-consumption and is

able to inject part of this energy into the power distribution

network.

C. Planing and operation

Due to the temporal inertia of most of the components

(e.g. time to start or change generator command level;

thermal inertia on houses and distribution networks; time

to charge/discharge storage systems) and the use of non-

controllable sources (that are intermittent and variable), the

energy usage needs to be planned before actual generation and

delivery. In our approach, we consider planning strategies that

are combined to real-time operation strategies. Planning is

based on estimation of the consumption loads and generation

capabilities and allows to establish negotiated (i.e. agreed by

all parties) generation, storage and consumption schedules.

For the renewable based generators, the estimation depends

on weather and generation capabilities forecasting. For end

consumers, the estimation depends mainly on weather and us-

age forecasting, as well as on thermal inertia evaluation. Those

different forecasting based estimations lead to inaccuracies at

the planning phase. In order to maintain the balance between

consumption and generation and minimize the use of external

generated energy, we implement and operate a mechanism that

allows the near real-time correction of energy schedules when

deviations of generation and load are detected (monitored or

forecasted). This mechanism can be seen as a capacity market

where global flexibility is provided by the combined individual

flexibility capabilities (e.g. deferrable load, dedicated storage

capabilities, etc.)

D. Real-Time payment

Smart-Grid also aims to adapt the consumption to the energy

production capacity. This is particularly critical when some

producers are not controllable (e.g. weather dependant renew-

able energy source). By exploiting for instance a building

thermal inertia, it is possible to respect a required comfort

level while adapting the actual consumption.

A commitment of the consumer on how it will consume

energy allows to optimise energy production and distribution

during the planning. Several payment approaches [22] propose

to impose penalties if such a commitment is not respected

during operation phase. The actual payment of a consumer

is thus computed by comparing its planned and operational

consumption along with some other production-related and/or

conventional parameters.

III. RELATED WORKS

Actual testing and deployment of smart grid software

require platforms able to directly support the execution of

control software developed following as well as the ability

simulate or even pilot power systems. Among the few available

commercial systems that target specifically smart grids, only

a bit of them follow the MAS approach.

The available commercial software that simulate and control

traditional grids [15], [7], can to some extent be used to

simulate parts of a smart grid, notably for the distribution

aspect. However, smart grids possess several specificities that

preclude the use of such software for the full chain control.

On the other hand, smart grid software have not reached

SYLVAIN DUCTOR ET AL.: GRENAD, A MODULAR AND GENERIC SMART-GRID FRAMEWORK 1783

this level of maturity and are mostly experimental or at the

level of academic research. Dedicated software solutions for

smart grids exist independently, for different aspects presented

in this scenario: storage simulation and dimensioning [10],

DER integration [5], demand side management [9] and VPP

[2]. While none of these commercial software uses a MAS

approach, PowerMatcher [17] is an exception. It can perform

simulation and piloting and uses auction protocols to interact

over a market of flexibilities.

Among non commercial software, GridLab-D [4] is a no-

table one, it is a low level electrical simulation tool based

on a MAS paradigm. It allows to assign different profiles

of consumption to the devices on the network, but fails to

represent economic actors and is not able to endow agents

with advanced smart behaviours that react to change in their

environment.

Most academic works in smart grids consider separately the

development of a platform, a model and control algorithms.

As such they provide very limited reusability and interoper-

ability between the different layers. Platforms in the literature

mostly act as a middleware and focus on the coupling of a

MAS platform (JADE [11] being the most popular) with an

electrical simulator and data exchange formats[1], [23], [21].

The designs provided in papers that present models [16], [8]

fail to acknowledge either the simulation or the control aspects

and often both of them, limiting their applicability. Finally,

while most control algorithms are backed by experimental

simulations, they are coded specifically for non smart grid

environments and therefore fail to be reused and extended. We

believe this shows a clear need for a generic and flexible tool

for smart grid algorithms conception, testing and deployment.

In this paper we propose such a tool: a platform and a model

that have been thought for reusability in smart grid applications

and aims at supporting different smart grid applications at

all levels. We demonstrate this by exhibiting the coupling

of a state of the art distributed control algorithm. Previously

mentioned works lack an abstract representation encompassing

both the socio-economical actors and the physical devices, in

GRENAD both are explicitly modeled.

The implementation of GRENAD is based on JADE. JADE

is a widely popular generic purpose MAS execution platform

providing primitives to ease the development of agents and

deployment of agents [11]. This platform, by being generic,

lacks support for smart grid elements needed to represent,

simulate or even control a smart grid. GRENAD extends JADE

and enrich its capabilities with additional communication

mechanisms and smart grids specific objects and proposes a

component based architecture.

IV. OUR MODULAR AGENT-BASED SMART-GRID MODEL

In this section we present and illustrate our contribution: an

agent model implemented on top of JADE and a smart-grid

model implemented on top of our agent model. The conception

has been driven by the Design Pattern approach. For more

information about Design Patterns please have a look at [6].

We first present our agent model, then we present our smart-

grid model and last we describe how to formalize the scenario

thanks to this model.

A. Agent Model

GRENAD is implemented as an overlay of JADE. It pro-

vides a Domain Specific Language (DSL) that exploits a

component-based approach in order to describe the agents and

enhance JADE with a set of native services (agent building

system, ergonomic agent messaging service, generalized sup-

port of a publish/subscribe system, . . .). The agent building

system simplifies the use of JADE for defining agents at

compile time and runtime (initialisation step). The first class

to understand in the agent building system is GrenadAgent.

A GrenadAgent<ID extends GrenadIdentifier>

can be viewed as a pair made of an identifier of type Id and

a list of components. It is an implementation of the builder

pattern from [6, p. 97]: the identifiers and components hold all

the information required to build a JADE Agent exposing all

the natively proposed features of JADE as well as non natively

proposed ones.

A GrenadIdentifier is the specification of a JADE

AID (the JADE Agent IDentifier): GrenadIdentifier

allows to obtain the AID once the JADE agent is set up by

JADE1. A component is a stateful and active object that is

executed within the environment of the hosting agent. Such

an environment provides access to a set of services shared by

all the components of the same agent. We distinguish three

groups of components:

• Action components are components that produce a list

of JADE Behaviour objects that are to be added in the

to-be-constructed JADE Agent.

• Runtime components allow to modify the way a

GrenadAgent is handled by JADE. They can modify

the GrenadAgent or execute side effects that depend

on it, at agent set up or take down. They can specify

actions to realise while cloning or moving the agent. They

can also catch and handle exceptions issued by the agent

execution, which is a functionality not natively proposed

by JADE.

• Composite components are collections of components

(as such they follow the composite pattern from [6,

p. 163]). They allow to manipulate a bag of components

as if it was a single one. From the agent point of view,

loading a Composite component is equivalent to

loading each component of the collection it represents.

By definition a component is an independent piece of

software: it has its own state (set of constants, variables and

methods) and has no access to the other components of the

hosting agent (except for certain Runtime Components, as it

is their goal). Certain actions allow to specify their state in a

separate class and thus easily share it with other components

1JADE agent life cycle starts by building the agent, then executes the
method setup once the agent is alive. It then executes the method
takeDown if the agent is required to terminate, and finally kills it

1784 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

of the same agent. The goal is to enhance component re-

usability by separating configuration/decision aspects to ac-

tion/communication ones. For example, different behaviours or

protocols may require at some point to have access to the agent

launch date, its neighbourhood, its preferences or abilities

such as computing an optimal path. Exploiting the Template

Method Pattern from [6, p. 325] allows to identify those

methods that ought to be placed in interfaces implemented

by the component state. It is then the responsibility of the

agent to globally implement them in states shared by its

components, thus ensuring both coherence of its actions and

efficient factorisation of its code.

Let us consider, for instance, an auction about a certain

type of objects that runs between an auctioneer and several

bidders. In this process each bidder is characterized by the

value it attributes to the objects. Except for this decision

function, all other actions executed during this auction process

are conventions specified by the auction rules. A correctly

factorized implementation would thus define a component

that encodes the behaviours resulting from those rules and

exploits the evaluation function on the considered bidders,

implemented in a separated state. Let us suppose now that

one of these same bidders has latter participates in a different

kind of auctions about the same type of objects. The expected

behaviour for this agent is to evaluate the objects in the same

way. Our "correctly factorized" approach does it naturally

since the agent will only need to share the previously used

state with the component executing this new process.

Please note that we strongly recommend to avoid data muta-

bility in this approach by only sharing constants and methods.

If the state has variables, it is up to the programmer to ensure,

when building the agent, that the different components that

exploit it do not modify them in an incoherent way.

Besides, all the components of a same agent share three

services :

• Access to the unique identifier of the agent.

• Access to the agent communication service, which allows

to send messages and have access to the mailbox.

• Access to the publish/subscribe service of the agent.

The Publish/Subscribe Pattern (also known as the Observer

Pattern, see [6, p. 293]) is natively proposed by GRENAD, be-

cause it provides an efficient way to decouple communication,

as opposed to the natural approach of message sending. In the

Publish/Subscribe Pattern, an agent, the publisher, publishes

whenever it decides any information it finds relevant. It does

not know a priori who is interested by this information. A

published information is identified by its type, a name set by

the publisher, and the identifier of the publisher. A subscriber

agent knows a priori which publication of which publisher it

is interested in. It thus subscribes to it, and indicates at the

same time the action it will execute upon the reception of a

new publication (how it will react). It may stop this behaviour

at any time by unsubscribing.

Simple direct message exchange and the Publish/Subscribe

Pattern are opposed approaches to communication: in the for-

mer, the receiver of the message is decided by the sender, while

in the latter the sender of a message is decided by the receiver.

Natively proposing both approaches brings a great flexibility

in the way of establishing communication neighbourhoods.

Publish/Subscribe Pattern is also well suited for the event-

driven approach that characterizes reactive agents.

The approach proposed so far achieves modularity in the

production of multi-agent systems by applying the Builder

Pattern on a class that encapsulates its own strategy (i.e.

the list of components), thus allowing to get rid of the

“extends” keyword for varying the characteristics of the in-

stantiated agent. Indeed the Strategy Pattern, by promoting

encapsulation, is more suited than inheritance when it comes

to flexibility, re-usability and modularity. Modularity comes

from the fact that a component can informally be seen as a

full and independent functionality. It can be assembled with

other components in order to easily define a complex agent.

Component independence is the first root of re-usability. The

second root lies in the ability to delegate the responsibility of

the configuration or decision methods to the agent rather than

to the components. Hence, given a set of already implemented

components, it is possible to build heterogeneous agents

by varying their preferences, planning methods, etc.. Lastly,

flexibility is provided by the simultaneous native support

of traditional mail-box based message sending and reactive

Publish/Subscribe Pattern, which avoids imposing constraints

upon the initial coupling of neighbours.

B. Smart-Grid Model

On the basis of the agent structure presented in section IV-A,

we propose here a model that allows to describe, simulate

and pilot complex smart-grids. In order to do so, it exploits

physical models of atomic components as well as simulators

of groups of components. It allows a fine-grained remote

monitoring and control of the energy distribution given infor-

mation about consumption, production and a “configuration”

of each component (i.e. an instantiation of its actuators).

Also, actuators can be remotely controlled, thus allowing the

smart-grid to be controled by a user interface (GUI, service

web, . . .) or an autonomous decision mechanism. Considered

energy information is projected over time and includes generic

multi-flow energy demand, generic offer characteristic and

whether the offer can meet the demand at each point of the

grid. Relevant physical model can simulate the propagation

of blackouts or brownouts. Also several simulations can run

simultaneously on the same smart-grid, made mutually depen-

dent (e.g. planning and operation) and easily compared (e.g.

real-time payment).

The model proposed here has been implemented in

GRENAD as a collection of components (see Section IV-A).

Hence it can naturally be integrated with other components

and distributed over a network in order to be used in various

situations. For instance, it can get its values and set its

actuators from and to a physical smart-grid ; it can be used

as an isolated simulator ; it can be used in conjunction with

a coordination protocol ; encapsulating agents may interact

SYLVAIN DUCTOR ET AL.: GRENAD, A MODULAR AND GENERIC SMART-GRID FRAMEWORK 1785

with real clients ; encapsulating agents may negotiate on stock

market, . . .

In this section we present the different aspects of our smart-

grid model: how energy is represented by the different roles,

how information about energy is stored and updated, how it

is transmitted between the agents and projected over time.

1) Energy and Roles: We consider three roles.

• A consumer expresses a demand as an amount of energy

on the different flows considered (e.g. heat, electricity,

. . .).

• A producer expresses an offer, as a function that, given

a demand, returns whether it can be produced. If so, it

returns also what would be the Quality of Service (QoS)

(e.g. CO2 impact (in kgCO2), base cost (in euros), . . .).

• A distributor distributes the energy among its neigh-

bours. It associates with each consuming neighbour an

offer and each producing neighbour a demand.

A given component has a specific representation of the

energy. This representation is structured among two aspects:

amount and QoS. No constraints at all are put on these objects:

they are only defined w.r.t. the information required by the

physical models and the simulators used in the considered

application. However, some components require a manipula-

tion function to be provided. For this reason, we consider a

dedicated algebra over amounts or QoS. This algebra allows

the component to manipulate energy information as a black

box, thus ensuring genericity. For instance, let A be an amount,

⊕A : A×A 7→ A is an additive operator over A. It allows to

compute the overall demand of two consumers. ∅A represent

a null amount, i.e. the neutral element of ⊕A. The same goes

for QoS.

A Demand<A> is a container of several flows of energy

of type A. We implements a flow as a class that extends

the class A. A Demand<A> can be manipulated, given

an aforementioned algebra over A by simply applying it

independently on each of its flow.

An offer Offer<A,QoS> is a function from

a Demand<A> to an Optional<QoS>. An

Optional<QoS> can either be a value of type QoS ,

if the producer has the capacity to satisfy the demand, or be

empty if it cannot.

2) State, Fields and Internal Model: The state of a smart-

grid component is defined as a collection of a dedicated

class of fields, SGField<A>. An SGField<A> allows to

handle asynchronicity by outputting four types of values: (1)

an object of type A if it has been correctly instantiated (in

this case, the field is said to be valued), (2) NotReady if

some information is still missing or some computation is still

running on, (3) IncoherentNeighbourhood if an infor-

mation received from some neighbour is incoherent and (4)

InvalidInternalState if the instantiation of the state

of the component is invalid w.r.t. the internal model. Note that

we do not throw any exception, since the states 2, 3 and 4 can

come from a delay of communication due to asynchronicity

or distribution. For instance, if two neighbours are required to

modify their configuration, the first that receives the request

may define an IncoherentNeighbourhood while it has

not received the updated information of the other component.

We distinguish five types of SGField. The first,

Fixed<A>, has a constant value and, thus, should always

be valued. The second and third fields have dynamic values

and exploit the Publish/Subscribe pattern: Output<A> is an

observable field that is observed by a Sensor<A> field of a

neighbour. Whenever a new value is set in an Output<A>, it

is published. The neighbour’s Sensor<A>, upon the recep-

tion of the publication, will trigger the occurrence of a new

event within the component. This will typically result to the

call of the internal model of the component, which may in

turn update some outputs, thus propagating the information.

The fourth field, Actuator<A>, is an Output<A> that can

be remotely controlled by the fifth field, Controller<A>,

which is a Sensor<A> that may send a request to implement

a new value on the actuator it observes, thus modifying the

configuration of the smart-grid.

Each class representing a smart-grid role (consumer, pro-

ducer or distributor) is associated in one hand to a set of fixed,

outputs, sensors and actuators (its state) and, in another hand,

to an internal model. As stated above, the internal model is

triggered upon the reception of a new event, either a new

value observed by some sensors, or the modification of some

actuators. When called, the internal model will read the value

of the fixed fields, the sensors and the actuators and update

the outputs. The internal model is an abstract method whose

implementation is application specific and may rely on some

simple Java models or complex external physical simulators.

3) Links and Information Propagation: In our smart-grid

model, the neighbourhood relation is defined using outputs

and sensors: each component associates an output to each of

its neighbours. It also defines a sensor for each output that has

been associated to him.

Sensors may transform the observed information. This al-

lows to easily implement link losses or maximal capacity. Sen-

sors may also change the type of the information. Hence, given

a function from A to B, an Output<A> can be observed by

a Sensor. This allows to easily connect heterogeneous

components.

Note that each component is associated to a group. Only

outputs and sensors of the same group can interact. This

allows a same agent to load different instances of the same

component, each being uniquely identified by its group.

Thanks to this architecture, it is easy to do simultaneously

the current operation phase and tomorrow planning phase

on a same agent. The latter may easily compute its real-

time payment by comparing the outputs of its planning and

operation components.

The three roles (consumer, producer or distributor) rely

on a strict neighbourhood architecture. Figure 2 presents the

neighbourhood relation between the roles. Next to the role

is represented the type of its output; each output is mirrored

by a sensor of the neighbour. For clarity, we always consider

in this article homogeneous components: they use the same

energy representation, (A,QoS).

1786 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Prod.

Dist.

Cons.

Offer Supplier

Demand Supplier

1

* Offer Supplier

Demand Supplier

*

1

Offer Supplier Demand Supplier

* *

Fig. 2. Relation between roles

Consumers and producers are seen as clients of the distribut-

ing network. For this reason, they have exactly one neighbour,

which is a distributor. They are responsible for defining either

their demand (consumers) or their offer (producers), which

is then observed by the distributor. A distributor may have

several neighbours, either consumers or producers. The result

of the distributed propagation of energy information is that

every distributor outputs an offer to each of its neighbour

consumer and a demand to each of its neighbouring producer.

A distributor may also have several distributor neighbours. For

each couple of distributor neighbours, one must be consuming

and the other producing. The attribution of the role results from

the internal models that may rely, for instance, on the value of

actuators. Indeed, the distributor neighbour which consumes

outputs a demand and observes an offer, and conversely

for the producing one. If the neighbours disagree on their

respective roles, they will output an IncoherentState.

We refer to a distributor neighbour that has the consumer (rep.

producer) role as a consumer (resp. producer) neighbour of a

distributor. We refer to a distributor neighbour that is either

the consumer (rep. producer) or a distributor that is consuming

(resp. producing) as a consuming (resp. producing) neighbour

of a distributor.

This model has been designed in order to perfectly separate

the responsibility of each role. Consumer internal models are

only concerned by the definition of the demand. Producer

internal models are only concerned by the definition of the

offer. Distributor internal models take as input the demand

and the offer and are only concerned about their distribution.

This abstract model is the basis of our components. Concrete

classes require to implement specific internal models. Such

models exploit specific actuators or outputs/sensors. Con-

trollers allow a dynamic reconfiguration of actuators, by either

a distributed or centralised algorithm, in order to optimize the

energy distribution.

4) Projection over time: In Section IV-B2, we

presented an SGField<A> as a container of either

A, NotReady, IncoherentNeighbourhood or

IncoherentInternalState. However, it is a more

complex class. Indeed, it is a planning, i.e. a function, that,

given a date, returns one of those four values or Undefined

if no value is associated to the date. We propose several

implementations of the inner function model, which is set

at construction time (see strategy pattern). For instance, a

constant will return the same value for all the dates, a scatter

graph is only defined on a discrete set of date, a step function

is defined on a range of dates Many other models can be

thought of, however, in order to be exploitable they have to

implement the following set of methods.

Let us consider FV<A> (FV stands for Field Value), an

abstract class that can only be instantiated as one of the five

types of value that can be returned by an SGField<A>. An

SGField<A> delegates from its inner function model2:

• SGField map(Function2<Date,FV<A>,FV

> f), a function that transforms a SGField<A> to a

SGField, given a function that takes a date, a

FV<A> and output a FV.

• SGField<C> zipWith(SGField that,

Function3<Date,FV<A>,FV,FV<C> >

f), a function that aggregates a SGField<A> and a

SGField into a SGField<C>, by applying a

function on the couple of values associated to each date.

Both functions aim to provide required generic features,

while preserving the fact that the inner model is a black

box. map allows to modify the content of an SGField.

For example, you can trigger a “maximum of capacity” for

a planning of offers or “losses” on link transmission by

mapping the appropriate function into the initial planning.

zipWith allows to combine two SGField objects into one.

For example, a planning of demand and a planning of offer

can be combined into a planning of Optional<QoS>, which

results, at each date, from the application of the demand to

the offer. If the f parameter of zipWith is a binary operator

(i.e. A equals B equals C), zipWith may be used to fuse a

collection of SGField<A> into one SGField<A>.

Note that the f parameters of zipWith and map take the

date as argument. This allows to implement time-dependent

operations which is critical for any application that depends

on the weather. For example the losses on a heat pipe may be

dependent on the external temperature, which can be predicted

with weather information.

Note that there exist several ways to simplify the f pa-

rameters of zipWith and map. First, if you do not con-

sider a time-dependent application, you can build a function

f : Date × A → B from a function f ′ : A → B

by simply returning the application of A to f ′ whatever

the date is. Second, you can consider a conventional way

of handling NotReady, IncoherentNeighbourhood

and InvalidInternalState by order of criticality.

If the mapped initial value (or one of the zipped

value) is an InvalidInternalState, the resulting

value is an InvalidInternalState. Or if it is an

IncoherentNeighbourhood the resulting value is an

IncoherentNeighbourhood since the internal state is

valid but not w.r.t a neighbour internal state. If it is NotReady

the resulting value is a NotReady since it means that there is

2this approach is inspired from the category pattern[13]

SYLVAIN DUCTOR ET AL.: GRENAD, A MODULAR AND GENERIC SMART-GRID FRAMEWORK 1787

Main Gas Grid CHP

Heat Storage

Dist0

Main Power Grid

Wind Farm Dist3

ProsHouse

PV Panel

Dist1 House1

Dist2

House2

Fig. 3. Formalisation of Figure 1 scenario

a priori no error, but a computation is going on and we should

wait for its completion. Hence, it is possible, using these

rules, to automatically build a Function<FV<A>,FV

>, from a Function<Optional<A>,Optional >

where Optional<A> is of type A if a value is associated to

the considered date or of type empty if no value is associated

(i.e. type Undefined). The third and last way of simplifying

the f parameter is to consider that if the mapped value or one

of the zipped value is Undefined, the result is Undefined.

This allows to get rid of the Optional.

Hence, given those three simplifying rules, to manipulate

an SGField<A> one can rely most of the time

on SGField map(Function<A,B> f) and

SGField<C> zipWith(Function2<A,B,C> f)

for time-independent application and on SGField

map(Function2<Date,A,B> f) and SGField<C>

zipWith(Function3<Date,A,B,C> f) for time-

dependent applications. The richness of our model allows

however more fine-grained control on relevant cases.

C. Implementing the scenario

Figure 3 is the formalisation of the scenario of Figure 1

described in Section II. Figure 3 uses the same convention

as Figure 2: producers are boxes, consumers circles and

distributors diamonds. One can verify that Figure 3 is conform

to the specification of Figure 2.

Economic actors are modelled using different components,

each one characterising one functionality of the actor. Com-

ponents House1 and House2 define the consumption of the

elements 7 and 8 of Figure 1. They are respectively associated

to Dist1 and Dist2, which define the quality of production of

the energy they are supplied with. CHP and Heat Storage are

distributors since they both consume and supply energy.

The links model interactions between actors; arrows are

oriented from production to consumption. Both links and

components are multiflow. There is a neighbourhood relation

in form of a ring, the heating network, that goes along

Dist0, then Dist3 then Dist1 then Dist2 to go back to Dist0.

Simultaneously, there is a tree shaped network, the electricity

network, that connects the root, Dist0 to Dist1, Dist2 and

Dist3. For instance, the link between Dist0 and Dist1 only

transmits electricity information, the one between Dist3 and

Dist1 only heating information and the one between Dist0

and Dist3 convey both. We choose to connect all the main

power producers into a single distributor, Dist0, however, Dist0

may hide a complex subnetwork. Indeed, it is possible to fuse

several distributors into one distributor. For instance, one could

have modelled Figure 1 with only one distributor instead of

Dist0, Dist1, Dist2 and Dist3 or even including Heat Storage

and CHP. The same operation is feasible with consumers (or

producers) connected to a same distributor. Please note that,

in this case, one looses direct access to some information.

For example, if one fuses every distributor into a single one,

GRENAD will provide an easy access to all the information

from and to the producers and consumers but not necessarily

the information between the distributors. This feature allows to

design the application with total control of the level of details.

This is particularly useful for delegating the computation of

the distribution of energy of certain local parts of the system

to an external simulator.

We will now detail the implementation of the components.

1) Consumers: Consumers (a.k.a House1, House2 and

ProsHouse) may be implemented in different ways. Each im-

plementation should provide an output that defines a demand

at any time and is aware of the neighbour distributor offer.

Also, an enhanced consumer may implement a mechanism

similar to the one described in Section V in order to adapt its

consumption by coordinating, during the planning phase, with

its distributor neighbour. Besides, thanks to the controller of a

dedicated actuator, one can provide a total control to a remote

end-user during the operation phase.

2) Common distributor: The distributors Dist0, Dist1, Dist2

and Dist3 have as sole function to distribute the energy

coming from the producers to the consumers. The stability

of a grid requires electricity to respects the Kirchoff law:

the flow in must equal the flow out3. For this reason, we

propose a generic distributor class, the KirchoffStar.

This distributor is characterized by an actuator that indicates

the part of the overall demand associated to each of the

producing neighbours. Hence, this actuator holds a map that

associates, to each producer and distributor neighbour, n, a

number pn ∈ [0, 100]. pn is the percent of the sum of the

consumer neighbour demands that the producing neighbour

n has to satisfy. The actuator values, at each time point, is

valid if it respects the Kirchoff law, that is to say the sum of

the pn equals 100. Note that if a distributor neighbour n is

consuming, pn will be null.

Reciprocally, we associate to each consumer the QoS that

corresponds to the part of its consumption w.r.t. the overall

consumption. For example, let us suppose that three consumers

3Note that as explained in Section IV-B3, losses, or any link related
modification of the energy, are handled during the communication between
an output and its sensor

1788 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

with a demand expressed on the considered flow at the

considered time point, as 3, 2 and 5 kWh. Let us suppose

that there are two producers, the first assuming 30% of the

consumption and the second 70%, as such, the first will assume

3 kWh and the second 7. Let us suppose that the first producer

emits 4 kgCO2 for producing 3 kWh and the second 6 for

producing 7 kWh. Hence, the first consumer demand will be

associated to a QoS of 3 kgCO2, the second to a QoS of 2

kgCO2 and the third to a QoS of 5 kgCO2

However, our model requires the distributor to output not

a QoS but an offer, that is to say, a function that associates

to any demand a QoS, if this demand is satisfiable. The offer

output to each consumer is computed under the hypothesis

that it is the only one changing its demand. Let proddist be

the offer function associated of a given distributor, dist. A

given demand a is distributed by dist to each of its producing

neighbor, n, according to their associated pn. This offer is

computed for the demand a as the sum of the QoS returned by

each those neighbours for their associated part of the demand.

Let Producingdist be the set of the considered producing

distributor neighbours,

∀a ∈ Demand < A >, proddist(a) =
{

empty if some neighbour can’t supply it’s part
∑

n∈Producingdist
offern(a× pn) else

(1)

The offer output to a consumer cons, outputcons, considers

proddist as if all other consumers had already consumed.

Let Consumingdist be the set of the considered consuming

distributor neighbours, and, for any c ∈ Consumingdist, let

ac be its demand,

∀a ∈ Demand < A >, outputcons(a) =

proddist(
∑

c∈Consumingdist\cons

ca ⊕ a) (2)

Please note that this approach is coherent with the above

mentioned examples. It also provides more information and

allows to still use a simple model that only considers two

types of information, demand and offer.

3) Prosumer: The prosumer house with PV panel needs to

be separated into 3 components. One defining the offer (PV

Panel), the other the demand (ProsHouse) and the third the

distribution (Dist3). Please note that, in case the PV panel

does not have any actuator and provides energy only to the

house, it is possible to remove this component and only use

a “gain” on the links, implemented thanks to the sensors

(see Section IV-B3). In this case, the sensors of Dist3 and

ProsHouse both transform the observed output over time by

applying the weather-dependent prediction of the production

of the PV Panel. If it is not the case, a separate element is

required, either to be able to receive actuator modifications

or to be seen by Dist 3 as a source of energy that can be

distributed to the network.

4) Storage: The Storage unit is a distributor with two

neighbours that can be decomposed as three internal compo-

nents. It holds a consumer, which defines a demand, an internal

state, which holds the information about the stored energy, and

a producer, which defines an offer. The demand is output to

one of the neighbours and the offer to the other.

The decision related to the storage is about how much

energy is stored and at which time, this is why the storage

demand is held by an actuator. The internal state is a pri-

vate output that holds the stored energy in the form of a

demand, which may be initially not null. It is updated by

the storage demand, which adds energy, and the observed

consuming neighbour demand, which subtracts energy. Also a

special function defines losses by modifying the internal state

accordingly.

The maximum capacity offer is defined by the internal state.

The QoS of energy offered to the storage consuming neighbour

is independent of the consuming neighbours demand. Indeed,

the offered energy has already been produced at the time it is

stored. Hence, the consuming neighbours are informed of this

QoS even if their demands are null. For any time point t, let

QoSt
stor be the QoS returned by the application of the demand

of the storage at time t to the offer of its producing neighbour

at time t (assuming this demand is sustainable). Let storedt

be a demand indicating the stored energy at time t (i.e., the

internal state). For any demand at of the consuming neighbour,

the storage can assume at if at is inferior to storedt, and the

offered QoS is always equals to QoSt
stor.

Note that, if necessary, you can encode the fact that the stor-

age unit can not simultaneously store and deliver by triggering

an InvalidInternalState whenever a positive value of

the demand actuator matches a positive value of the observed

demand of the consuming neighbour.

5) Main Grids: Main gas and power grids are typically

producers that are out of the scope of control of the considered

smart-grids. Hence, they do not provide any actuators. If

GRENAD is used as a simulator, they will be implemented

with a predefined offer to output. If it is used as a piloting tool,

they exploit the interface pattern for two purposes. Firstly, to

get the information from the external system they represent

and construct from it an offer, and secondly, ot transmit the

demand computed by GRENAD in the appropriate format.

6) CHP: The CHP unit offers energy both on the heat

and the electricity flows. It is a distributor since it transforms

energy by consuming it from the main gas grid and supplying

it to Dist0. The CHP offer to Dist0 is computed from the main

gas grid offer, and an internal actuator that indicates how much

of the energy consumed is used to produce electricity and how

much is used to produce heat. CHP demand to the main gas

grid is computed back from Dist0 demand given the internal

actuator value.

7) Wind Farm: In our scenario, the orientation of the wind

farm turbines is controlled by the application. Hence, the

wind farm producer provides a collection of actuators, each

one defining the orientation of the turbine it is associated

with, along the time. Those actuators can either be manually

SYLVAIN DUCTOR ET AL.: GRENAD, A MODULAR AND GENERIC SMART-GRID FRAMEWORK 1789

controlled by a remote end-user or dynamically optimised by

a coordination mechanism run by GRENAD (see for instance

Section V).

In the application we are considering, the objective is

typically to optimise the energy production, distribution, and

consumption as a whole. The optimisation of the wind farm

production is not about maximising independently their pro-

duction but coordinating the production of the different pro-

ducers (main grids and CHP) as well as the storage units in

order to optimise the overall QoS of the energy supplied to

the consumer. One may also wants to include the consumer in

order to match the consumption with the production capaci-

ties. GRENAD ergonomically supports the implementation of

such a coordination protocol by exploiting the state pattern

coupled with the natively proposed publish subscribe pattern,

as described in the next section. However, the definition of

such a protocol in the complex case of this rich scenario is

behind the scope of this article.

V. OPTIMISATION OF ENERGY DISTRIBUTION

In order to present the genericity and flexibility of GRENAD

we describe in this section the port in GRENAD of a dis-

tributed algorithm that performs an optimal distributed dis-

patching of electrical power over radial networks. The pre-

sented algorithm solves a distributed constraint optimisation

problem and is a part of [14], the port to GRENAD introduces

some modifications. First, GRENAD generic way of handling

energy allows to easily apply the presented algorithm in a

more general context than [14] (see Section V-B). Second, the

combination of the State Pattern, from [6, p. 305], with the na-

tively implemented publish/subscribe pattern allows a simple

description and implementation of the distributed algorithm.

In particular, no effort have to be put on the communication,

one only needs to focus on how each component reacts to the

observed state of its neighbourhood.

We first expose an overview of the distributed algorithm,

then we describe some hypothesis on the production, and last,

we details the two phases of the algorithm.

A. Overview of the Distributed Algorithm

The application cases of the algorithm are composed of

consumers and producers with a static demand and offer.

All of them can be directly represented using the proposed

model, the nodes being modeled as distributors, which extend

the KirchoffStar class. We also use the sensor/output

algorithm, described in Section IV-B3 to implement maximum

capacity of the links. The solution computed by the algorithm

defines: for each producer, the demand it will have to deliver,

for each consumer, the QoS resulting from its demand, and,

for each distributor, the percent of the overall demand of

its consuming neighbours it will require from each of its

producing neighbours. At the end, if the offer can answer

the demand, an optimal distribution will be implemented,

otherwise all consumers will be informed that the network is

overused. The use of the KirchoffStar class either ensures

that the demand is satisfied or detects any demand that would

violate the flow conservation constraint or the capacity.

The algorithm requires the network to be tree shaped (e.g.

electric network), and proceeds in two phases. In the first,

the collect phase, information is going from the leaves to the

root: each node acquires and transmits to its parent the overall

consumption and production information about its subtree. In

the second, the propagation phase, information is going from

the root to the leaves: each node decides an optimal power

dispatching given the one of its parent.

Implementing this algorithm in GRENAD is done in the fol-

lowing way: each distributor possesses an actuator named pro-

posal for each of its distributor neighbours, and observes with

a sensor the proposals of these respective neighbours. This

communication network allows the information required by

the proposal phase to be transmitted from point to point. Each

actuator is updated by the optimisation algorithm. GRENAD

allows transparently this optimisation algorithm to be either

located at the level agent or in a remote controller. For the

sake of clarity, in this section, we refer to the initial state of

sensors and outputs of the KirchoffStar as regular sensors

and outputs.

The implementation exploits the state pattern: a given

behavior is associated to a certain instantiation of the proposal

and regular sensors, output and actuator. We distinguish three

states:

1) Not Ready distributor: the distributor did not already

receive enough information from its neighbours to be

able to act. It is therefore waiting.

2) Collect Ready distributor: all but one of the distributor

neighbours has instantiated their proposal actuator, the

only neighbour that has not instantiated its proposal

is then considered as its parent and the others as its

children. When a distributor is in this state, it computes

and instantiates its proposal actuator.

3) Propagation Ready distributor: all distributor neighbours

have instantiated their proposal actuator. The distributor

has then enough information to compute an optimal

distribution between itself and its neighbours. The opti-

mal distribution for this component is implemented by

instantiating its regular outputs. Also, it is propagated

by providing instructions to its children by the mean of

its proposal outputs.

In the next section we detail how a proposal is computed

and how the optimal configuration is determined.

B. Production Characteristics

In order to compute an optimal distribution, certain hypoth-

esis have to be made on producers. We consider a smart-grid

where the energy demand is modeled as an amount A and

the quality of production as QoS . We consider the following

algebra over A and QoS , required by the computation of the

following sections:

• ⊕A is a binary operator over A,

• ⊕QoS is a binary operator over QoS

1790 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

• ≻A is a preorder over A.

• ≻QoS is a preorder over QoS .

In this section, a producer refers to a tuple (p,maxPp,∝p

, offerp), where p is its identifier, maxPp is the maximum

amount of energy it can produce, ∝p is a comparable object

that allows to compare producers with respect to their quality

of production and offerp is their offer function. A higher ∝

(given ≻∝) is equivalent to a better quality of production, i.e.

:

∀p, q producers, ∀a ∈ A, a ≺A maxPp ∧ a ≺A maxPq,

∝p≻
∝∝q ⇐⇒ offerp(a) ≻

QoS offerq(a) (3)

In [14] the author considers a single energy flow whose amount

is expressed in kWh, and encodes ∝ as the slope of a linear

function that associates a CO2 impact to the production of a

given amount of energy.

In this setting, given a set of producers, an optimal distri-

bution is obtained by saturating the production of producers

in decreasing order of ∝. This is done by distopt, a function

that considers a set of producers and an amount of energy that

returns for each producer the amount of energy it must produce

in the optimal distribution. ˆdist
opt

is a function that exploits

the result of distopt and returns the part of the consumption

attributed to each producer in the optimal distribution, in order

to instantiate the actuator of the KirchoffStar.

C. Collect Phase

A proposal is computed by a Collect Ready Distributor

and transmitted to its parent, which will have to decide the

flow of energy between them. The information provided by

a Collect Ready Distributor in a proposal to its parents is

(1) the list of producers of its subtree, composed of the

producer neighbours listed in its children proposals and its

own producer neighbours, and (2) the overall demand of the

consumers of its subtree, computed from the overall demand

provided by its children proposals and the demand of its

consumer neighbours. Given this proposal, the parent has to

decide, during the implementation phase, whether it considers

neighbouring distributors to be producing or consuming. It

also has to decide of the amount of energy demanded to

producers, the remaining energy of the overall consumption

being assumed by the producers of the subtree. Please note

that the transmitted energy between a distributor and its parent

cannot exceed the maximum capacity of their power line.

Hence, proposals are modified so that the overall demanded

consumption does not exceed this limit. Exceeding energy is

deduced from the subtree producers offer.

The proposal of a Collect Ready Distributor, d, is a tuple

(Prop
Offer
d ,PropDemand

d) where Prop
Offer
d is a list of pro-

ducers and PropDemand
d a demand. They are computed as

follow: Let Consd be the set of consumer neighbours of d,

Prodd, the set of its producer neighbours, and Childd, the set

of its distributor neighbours that have defined their proposals.

To say that d is a Collect Ready Distributor is equivalent

to say that Childd refers to all but one of its distributor

neighbours, ḋ, which is its parent. The overall demand of

d subtree4 is computed as the sum of the demands of its

consumer neighbours and its children proposals. The list of

producers of d subtree is computed as the union of both its

producer neighbours and the producers listed in its children

proposals.

Let Excessd be the difference between the line capacity

and the overall demand of d subtree. Two cases are possible:

(1) Excessd is negative or null, in which case the parent can

answer the demand without any restriction. In this case, the

proposal of d is defined as the list of producers and the overall

demand of its subtree; (2) Excessd is positive, in which case

the answer of the parent is limited by the transmission line.

The exceeding amount has then to be assumed by the subtree.

In this case, d proposal demand is defined as the line transmis-

sion capacity. The exceeding power is dispatched in an optimal

way using distopt on d subtree list of producers. For each

producer p of d subtree, let localp be the demand attributed

to p by the aforementioned call of distopt. d proposal offer

is then a modified list of producers of its subtree. First, for

any p, localp is subtracted from maxPp. Second, for any p,

offerp is modified into offer′p by assuming that localp is

produced, i.e. :

∀a ∈ Demand < A >, offer′p(a) =

offerp(a⊕Amount localp) (4)

D. Propagation Phase

A distributor, ḋ, is in the Propagation Ready state if all

of its neighbours have either defined their proposal (i.e. they

are its children) or they outputs (i.e. there is exactly one,

which is its parent in the network tree or zero if it is the

root of the network). Such a distributor has the responsibility

to determine a globally optimal distribution to each of its

neighbour by instantiating its outputs. To do so it considers

the overall demand and the list of producers of its subtree.

Those information are computed from the children proposals,

the consumer and producer neighbours and the possible parent,

which can either be seen as a producing or as a consuming

neighbour.

For each producer p of its subtree, let prodoptp be the

demand it must assume in an optimal distribution. prodoptp

is computed by distopt applied on the overall demand and

the list of producers of ḋ subtree. To each child d of ḋ, is

attributed the total amount of energy, Prod
opt
d , the child should

supply in a globally optimal solution. Prod
opt
d is computed

as the sum of prodoptp for any p belonging to Prop
Offer
d .

Three cases are possible: (1) Prod
opt
d = PropDemand

d , which

means that in an optimal solution d subtree supports exactly

its demand. No energy is transmitted between d and ḋ. This

subnetwork can be isolated; (2) Prod
opt
d > PropDemand

d ,

which means that in an optimal solution d subtree supports

its own demand and offers some exceeding energy. In this

case ḋ is configured so that it is demanding this exceeding

4the subtree of the network whom root is d

SYLVAIN DUCTOR ET AL.: GRENAD, A MODULAR AND GENERIC SMART-GRID FRAMEWORK 1791

energy from d; (3) Рrodd

opt
<Рropd

Demand
, which means

that in an optimal solution d subtree does not support its own

demand. In this case, ḋ is offering the difference to d,

ḋ declares itself as a producer whose maximum produc-

tion is the remaining demand. Please note that in this case,

even if d does not support its own demand, some of its pro-

ducers may no be used in the optimal configuration. How-

ever, a distributor always consumes first all the energy of-

fered by its parent.

VI. CONCLUSION

In this work, we have presented GRENAD, a JADE-based

framework, that allows to describe, simulate and pilot smart

power grids. The aim of GRENAD is to provide a great flex-

ibility in the design and implementation of smart power grids

applications, so that it can be used either as a standard basis

to build and test such applications or as an interface to moni-

tor and pilot actual grids. As such, it is compliant with the

main business and organizationals models: it proposes the

classical roles of production, consumption, prosumption, dis-

tribution and storage. GRENAD allows time-dependant

monitoring and computation; it supports both internal physi-

cal models and connection to external ones; it provides flexi-

bility in manual, automatic or autonomous processing of the

computed energy-related information; and finally it eases the

integration of distributed smart grid control algorithms. To

meet these objectives, GRENAD exploits a combination of

Multi-Agent and component-oriented paradigms. Such an

approach allows to build complex agents using simple reus-

able components and, thus, capitalize the development of ap-

plications.

We also have proposed a model of smart-grid that handles

demand and offer and rely on the most general interpretation

of consumption, production and distribution. The informa-

tion about energy exchanged by the agents is complex. In-

deed, it does not impose any assumption on the energy defi-

nition, which can be a combination of several flows and it is

projected over time. Also, its management handles asyn-

chronicity of computations and incoherence of states. The

use of algebras and the category pattern[13] allows an effi-

cient and ergonomic processing of this information. Also,

GRENAD does not require to deal with communications,

since it implements a transparent event-driven approach for

information exchange, supported by the publish-subscribe

pattern. Lastly, we demonstrated the ease of implementation

of a generic sophisticated optimization distributed algorithm

thanks to this architecture and the state pattern.

Future works include the development of more component

libraries, of simulator interfaces and of dedicated optimiza-

tion algorithms. Another interesting line of development

would be to improve the reliability of the platform by inte-

grating model checking capabilities.

REFERENCES

[1] Kyle Anderson, Jimmy Du, Amit Narayan, and Abbas El Gamal.
Gridspice: A distributed simulation platform for the smart grid. In
Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), 2013 Workshop on, pages 1–5. IEEE, 2013.

[2] BOSCH. Vppm. https://www.bosch-si.com/solutions/energy/virtual-
power-plant/virtual-power-plant.html.

[3] Georgios Chalkiadakis, Valentin Robu, Ramachandra Kota, Alex
Rogers, and Nicholas R. Jennings. Cooperatives of distributed energy
resources for efficient virtual power plants. In The 10th International
Conference on Autonomous Agents and Multiagent Systems – Vo-
lume 2, AAMAS ’11, pages 787–794, Richland, SC, 2011.
International Foundation for Autonomous Agents and Multiagent
Systems.

[4] US DOE. Gridlab-d. http://www.gridlabd.org/.
[5] HOMER Energy. Homer. http://www.homerenergy.com/.
[6] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[7] ETAP. Etap. http://www.etap.com/.
[8] Bou Ghosh, Jingpeng Tang, et al. Agent-oriented designs for a self

healing smart grid. In 2010 First IEEE International Conference on
Smart Grid Communications, pages 461–466, 2010.

[9] TRILLIANT Inc. Trilliant. http://www.trilliantinc.com.
[10] Electric Power Research Institute. Esvt. http://www.epri.com/

abstracts/Pages/ProductAbstract.aspx?
ProductId=000000003002000312.

[11] Tellecom Italia. Jade. http://jade.tilab.com/.
[12] J. K. Kok, C. J. Warmer, and I. G. Kamphuis. Powermatcher:

Multiagent control in the electricity infrastructure. In Proceedings of
the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’05, pages 75–82, New York, NY,
USA, 2005. ACM.

[13] Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s
Guide. No Starch Press, San Francisco, CA, USA, 1st edition, 2011.

[14] Sam Miller. Decentralised coordination of smart distribution
networks using message passing. PhD thesis, University of
Southampton, February 2014.

[15] NEPLAN. Neplan. http://www.neplan.ch/.
[16] Manisa Pipattanasomporn, Hassan Feroze, and S Rahman. Multi-

agent systems in a distributed smart grid: Design and implementation.
In Power Systems Conference and Exposition, 2009. PSCE’09.
IEEE/PES, pages 1–8. IEEE, 2009.

[17] Flexible Power. Powermatcher. http://flexiblepower.github.io.
[18] D Pudjianto, C Ramsay, and G Strbac. Virtual power plant and

system integration of distributed energy resources. IET
RENEWABLE POWER GENERATION, 1:10–16, 2007.

[19] Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and
Nicholas R. Jennings. Putting the ’smarts’ into the smart grid: A grand
challenge for artificial intelligence. Commun. ACM, 55(4):86–97,
April 2012.

[20] Resilient. Resilient project. http://www.resilient-project.eu/.
[21] S Schutte, Stefan Scherfke, and M Troschel. Mosaik: A framework for

modular simulation of active components in smart grids. In Smart
Grid Modeling and Simulation (SGMS), 2011 IEEE First
International Workshop on, pages 55–60. IEEE, 2011.

[22] G. M. Team. Electricity and gas supply market report. Technical
Report 176/11, The Office of Gas and Electricity Markets (Ofgem),
December 2011.

[23] Chia-han Yang, Gulnara Zhabelova, Chen-Wei Yang, and Valeriy
Vyatkin. Cosimulation environment for event-driven distributed
controls of smart grid. Industrial Informatics, IEEE Transactions on,
9(3):1423–1435, 2013.

1792 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

