

Abstract— This paper proposes an original framework for

modelling and verification (M&V) of starvation-free mutual

exclusion algorithms based on weak semaphores, that are

without a built-in waiting-process queue. The goal is to support

the implementation of light-weight starvation-free semaphores

useful in general concurrent systems including cyber physical

systems. The M&V approach depends on UPPAAL. First known

weak semaphores are modelled. Then they are exploited for

model checking classic algorithms. Known properties are

retrieved but subtle new ones are discovered. As part of the

developed approach, a new algorithm is proposed which uses

two semaphores of the weakest type, N bits (N being the

number of processes) and a counter. This algorithm too is

proved to be correct.

I. INTRODUCTION

UTUAL exclusion is the well-known problem of

synchronizing a group of concurrent processes (or

threads) sharing some data variables, so as to avoid

interferences on shared data. The problem is to ensure that

processes can enter their critical section (i.e., a block of

instructions accessing/modifying the shared data) one at a

time. To be acceptable, though, a mutual exclusion

algorithm should be also starvation-free, that is a process

waiting to enter its own critical section should experiment a

bounded waiting time. This in turn favors process fairness.

Commonly, mutual exclusion can be based on semaphores

or on monitor locks. This paper focuses on starvation-free

mutual exclusion algorithms based on weak semaphores, i.e.,

semaphores without an in-built process waiting queue

ensuring a first-in-first-out awakening policy.

The results of this paper can be exploited for

implementing light-weight starvation-free semaphores,

useful in general concurrent applications and cyber physical

systems (e.g., [1]), and also in distributed shared memory

systems where it is challenging to build a classical queue-

based semaphore when the processes belong to distinct

physical computation nodes (address spaces).

The goal is to propose an original approach based on

Timed Automata (TA) in the context of the UPPAAL toolbox

[2], for modelling and verification through model checking

[3] of any mutual exclusion algorithm designed on top of

 This work was not supported by any organization

weak semaphores. The goal is similar to that described in [4]

where an approach based on the use of the PVS theorem

prover was developed. This paper argues that the use of a

toolbox like UPPAAL can be preferable as a proving

framework because it avoids the mathematical formalization

necessary to specify and check properties of an algorithm. In

addition the approach permits to disclose subtle aspects of a

modelled algorithm, e.g., related to timing, which are

normally out of reach of a theorem prover.

The modelling and verification (M&V) approach is

applied to known classic algorithms, e.g. [5]-[8], of which

are confirmed known properties. Nevertheless, some new

properties (e.g., the existence of a zeno-cycle and of a time-

sensitive behavior which affects the kind of the weak

semaphores which can be used) are disclosed which were

not previously documented in the literature. As a part of the

accomplished work a novel algorithm based on the Morris

one [5] is proposed which rests only on two weak

semaphores, one counter and N bits. This algorithm too is

proved to be starvation-free.

The developed proving framework can provide some new

arguments on the E. Dijkstra conjecture [9] about the

impossibility to build a starvation-free semaphore using only

weak semaphores.

The paper is structured as follows. First an overview of

the UPPAAL M&V concepts is furnished. Then the three

known types of weak semaphores are introduced and

modelled into UPPAAL. After that, a common vision [4] of

classic starvation-free mutual exclusion algorithms is

discussed. Then the developed M&V approach is applied to

classic algorithms as well as to a new one proposed in this

paper. A comparison of the algorithms properties is finally

presented. Some indications about on-going and future work

are given in the conclusions.

II. UPPAAL CONCEPTS

UPPAAL [2] is a popular and efficient toolbox based on

Timed Automata (TA) [10] suited for modelling and

verification of real-time systems. A timed automaton is a

finite automaton augmented with a set of real-valued

variables named clocks. Clocks model the time elapsing and

are assumed to grow synchronously at the same pace of the

hidden system time. Constraints, of the form or

M

Modelling and Verification of Starvation-Free Mutual Exclusion

Algorithms based on Weak Semaphores

Franco Cicirelli, Libero Nigro
Laboratorio di Ingegneria del Software

Dipartimento di Ingegneria Informatica Modellistica Elettronica e Sistemistica

Università della Calabria, Italy

{f.cicirelli@dimes.unical.it, l.nigro@unical.it}.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 773–779

DOI: 10.15439/2015F32

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 773

 where and are clocks, is a non-negative

integer and , are called clock constraints

and can be introduced to restrict the behavior of the

automaton. A set of clock constraints used to label an edge it

is called a guard and determines the possible values which

can be assumed by the involved clocks for the corresponding

state transition to be allowed. Clock constraints of the type can also be used to label locations and are called

invariants. An automaton can stay in a location as long as

the clocks satisfy the location invariant attached to the

location. Additionally, edges can be labeled by a set of

clocks, which are reset as the corresponding transition is

taken, and by an action label.

TA can be composed to form a network of concurrent TA

whose semantics is based on interleaving of actions as well

as hand-shake synchronizations. UPPAAL adopts the notion

of a channel for input and output action synchronization and

uses a CSP-like notation. The edge of automaton labeled

with ch! (output action), where ch is a channel, matches

with an edge of another automaton labeled with ch? (input

action). At a given time it may exist more than one pair of

enabled and matched edges in which case a choice is made

non-deterministically. Taking a transition (edge) in an

automaton denotes an atomic action in the TA concurrent

model. Moreover, the update of a sender is executed before

that of a receiver.

The UPPAAL model-checker generates on-the-fly the state

graph of a network of TA (see, e.g., [11]) for checking

formulas as in the following:

- (Possibly , i.e., a state exists where holds)

- (Invariantly , equivalent to:)

- (Potentially Always , i.e. a state path exists over

which always holds)

- (Always eventually , equivalent to:)

- (always leads-to , equivalent to:)

where and are state properties, e.g., clock constraints

or boolean expressions over predicates on locations.

In addition to the support for classic TA, UPPAAL

provides integer variables with a bounded set of values,

arrays and structs, and a notion of automata templates which

can be instantiated multiple times by specifying different

values for their parameters.

Locations can also be labeled as being committed (C) or

urgent (U) both of which must be abandoned with no time

passing. Committed locations have precedence over urgent

locations. UPPAAL provides also broadcast synchronizations.

Channels can be declared to be urgent. An enabled

synchronization on a urgent channel is required to occur

without time passage.

Finally, it is worth mentioning the possibility of building a

counterexample (i.e., diagnostic trace) of a not satisfied

property, which can be analyzed in the simulator of the

toolbox.

III. MODELLING WEAK SEMAPHORES

A semaphore is an abstract object which hides an integer

variable which can only be modified by the two atomic

operations P and V. Fig. 1 shows an UPPAAL model of a

basic plain binary semaphore, whose value can be 0 or 1.

The P/V operations are modelled through a matrix of

channels. The first index s specifies the semaphore id. The

second one carries the id of the requesting process. The

model in Fig. 1 makes a non-deterministic selection of the

requesting process at a P or V synchronization. A not chosen

process rests blocked on the requesting P! or V! operation.

Of course the model in Fig. 1 is unfair: at the time of a V,

if more processes are blocked on the P! synchronization on

the same semaphore, one of them is chosen not-

deterministically to proceed. It is also possible for the V-

executor process to compete and reacquire immediately the

semaphore. Therefore, every process can experiment an

unbounded waiting. It is known that to turn an unfair

semaphore into a fair one a queue can be added to the

semaphore where processes which find the semaphore red

(0) at the time of a P are stored in first-in-first-out order and

then awaken in the same order at a subsequent V.

A challenging research goal in the literature is to achieve

a fair semaphore using only a minimum number of unfair

semaphores. In the case when the queue is replaced by a set,

the semaphore becomes unfair and it is often referred to as a

buffered [4] or blocked-set semaphore [12]. A third version

of weak semaphore is the so called polite semaphore

proposed in [4]. A polite semaphore is similar to a plain

semaphore but forbids the process which executes a V

operation to reacquire immediately the semaphore.

The three types of weak semaphores can be modelled in

UPPAAL as shown in the Fig. from 2 to 4 where for

generality a P operation is supposed to be immediately

followed by a GO synchronization to unblock the P-

requester process. A V operation, being not blocking, never

requires to be followed by a GO synchronization.

Fig. 1. A plain binary semaphore

automaton
Fig. 2. Adopted PlainBinary-

Semaphore automaton

Models in the Fig. 2 to 4 represent formal definitions of

basic weak semaphores. Their correctness can be checked as

follows. In the polite model in Fig. 3, the local variable

last stores the id of the V-executor. The default value of

774 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

last is NONE. At the time of a P, if the semaphore is green

(1) and the process id is different from last, atomically the

semaphore is turned to red (0) and the process (held in the

this local variable) immediately receives the GO signal.

Would the semaphore be red, or its id coincides with the

last value, the process partially executes the P operation

by incrementing the (local) counter cnt of blocked

processes. A blocked process can be awaken by a GO

synchronization raised in the right edge of Fig. 3, which

completes its P operation by turning red the semaphore,

decrementing the cnt variable and by assigning NONE to

last. A subsequent V operation can (non-deterministically,

as for a plain semaphore) unblock a waiting process,

provided its id is different from last, or permit to a newly

arrived process different from last to acquire the

semaphore through a P operation.

Fig. 3. PoliteBinarySemaphore automaton

Fig. 4 BufferedBinarySemaphore automaton

If s is a polite binary semaphore, the following invariants

hold:

1) A[] s.last!=NONE imply s.cnt>0

2) A[] s.last==NONE || s.cnt>0

Due to the invariant 1) it was omitted in the right edge

with a GO synchronization of Fig. 3 the test cnt>0 in the

edge guard.

In the buffered semaphore model in Fig. 4 the buffer was

purposely achieved implicitly in UPPAAL by the waiting

locations of the set of processes which have just executed

the P! operation and found red the semaphore. The number

of such blocked processes is stored in the variable cp. At the

time of a V!, if there are blocked processes, the semaphore

is not turned to 1 and one of such processes is chosen non

deterministically and receives the synchronization on the

corresponding GO channel. It should be noted that both

polite and buffered models exclude the V-executor to

reacquire immediately the semaphore. But the buffered

semaphore is stronger than the polite because at the time of a

V operation, only one already blocked process can receive

the semaphore pass. Fig. 5 summarizes global declarations

of an UPPAAL model which makes use of any semaphore

model in the Fig. from 2 to 4.

const int N=…;//number of processes
const int SEM=…;//number of weak semaphores
const int NONE=-1;

typedef int[0,N-1] pid;

typedef int[0,SEM-1] sid;

//semaphore IDs

…
//semaphore channels

urgent chan P[sid][pid];

urgent chan GO[sid][pid];

urgent chan V[sid][pid];

Fig. 5 Common global declarations for weak semaphores

Since a location without a clock invariant can disrupt

liveness of an UPPAAL model being possible to remain in the

location an arbitrary (potentially infinite) time, semaphore

channels were declared as urgent. This way, without hurting

model non-determinism, when a given operation is enabled

it will be allowed to occur without time passage. This

measure was adopted as a way to realize in UPPAAL the

finite delay property [12] or weak fairness [4] of processes

in a concurrent model, which requires a continuously

enabled action eventually happens.

As a final remark, all the models in the Fig. from 2 to 4

can be implemented in a concurrent programming language

(e.g., Java) using busy-waiting.

IV. MODEL CHECKING STARVATION-FREE MUTUAL

EXCLUSION ALGORITHMS BASED ON WEAK SEMAPHORES

If S is a fair binary semaphore initialized to 1, the usual

pattern for achieving mutual exclusion among N (>2)

competing processes accessing some shared data is the

following:

process(p)=loop NCS; P(S); CS; V(S); endloop.

LIBERO NIGRO, FRANCO CICIRELLI: MODELLING AND VERIFICATION OF STARVATION-FREE ALGORITHMS 775

A problem which has received the attention of many

researchers consists in the possibility of building a sound fair

semaphore using only a minimal number of weak

semaphores. Starting from late seventies some starvation-

free mutual exclusion algorithms were proposed, though

without an adequate proof of their correctness. Recently, in

[4] a very interesting proof system based on the PVS

theorem prover was defined and used to establish the

correctness of three fundamental algorithms proposed in [5]-

[7].

This paper claims that the approach and the results

described in [4] are still unsatisfactory and that some

properties exist to be discovered about those and other

algorithms. A fundamental step in [4] was the identification

of an abstract algorithm which facilitates the interpretation

and analysis of the three mentioned algorithms.

The abstract algorithm is founded on the elevator

metaphor: “While there are interested processes they enter
the elevator at the first floor. When there are no processes

arriving anymore, the elevator goes to the second floor and

lets its occupants into CS, one by one. When the elevator is

empty, it goes down again. When the elevator is not at the

first floor, arriving processes have to wait. After CS, the

processes go down by stairs.”
The abstract algorithm uses 4 integer variables: ne, nm,

se and sm. The first two variables model respectively the
number of processes at the first floor waiting for the
elevator, and the number of occupants within the elevator.
The last two variables model respectively the doors at the
first and second floor. Initially all variables are set to 0
except for the se which is set to 1. The abstract algorithm is
reproduced in Fig. 6 where atomic actions are enclosed
within <…>.

process(p)=
loop
 NCS;
 <ne++>
 <await se greater-than 0; nm++; ne--;
 if ne==0 then sm++; se--; endif;>
 <await sm greater-than 0; sm--; nm--;>
 CS;
 <if nm greater-than 0 then sm++; else se++; endif;>
endloop.

Fig. 6 Mutual exclusion abstract algorithm

Correctness of the abstract algorithm can be verified in

UPPAAL by deriving a corresponding native model like that

shown in Fig. 7. Such a model only depends on the

concurrency model of UPPAAL and in particular on the

atomic actions labelling the various edges. The model

consists of two TA: the Process(const pid p) (see

Fig. 7) and the Synch(ronizer (see Fig. 8). The Process

automaton embodies the mutex algorithm and is instantiated

N (e.g., N=4) times.

Fig. 8 The Synch automaton

All these instances share the algorithm variables, declared

globally. Only one instance instead exists for the

synchronizer. Each process instance p uses a clock x[p] to

measure the waiting time before entering the critical section

and the duration of the critical section.

The synchronizer is always ready to send a signal over the

urgent unicast channel synch. Such a signal is a key to

ensure progress to the model in Fig. 7 where some normal

locations without clock invariants like start and end, are

used.

Also the NCS location is without clock invariant, to mirror

the fact that the non-critical section lasts an arbitrary number

(also 0) of time units.

The entry protocol of the mutex algorithm is played from

the start to the end location. The exit protocol is coded

on the arcs outgoing the CS location.

The following queries were used for property checking of

the abstract algorithm.

1) A[] !deadlock satisfied

2) A[] forall(i:pid) forall(j:pid)

 Process(i).CS && Process(j).CS

 imply j==i satisfied

3) Process(0).start --> Process(0).CS

 not satisfied

4) A[] forall(i:pid) Process(i).end

 imply x[i]<=2*(N-1)*D satisfied

5) A[] forall(i:pid) Process(i).end

 imply x[i]<=2*(N-1)*D-1 not satisfied

Queries 1) and 2) check safety properties. Query 3)

verifies a liveness property. Queries 4) and 5) check a

bounded liveness property.

Satisfaction of query 1) guarantees the model has no

deadlock (predefined keyword in UPPAAL). Query 2) ensures

only one process at a time can be in the critical section.

Query 3) checks if any process which finds itself in the

start location eventually reaches the CS (critical section)

location. Noteworthy, this property is not satisfied. Queries

4) and 5) check about the waiting time of each process

Fig. 7 UPPAAL Process automaton

776 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

before entering CS (whose duration is supposed to be at

most D time units).

Note that clock x[p] is reset on entering start and on

exiting end. It is confirmed that every process p has an

overtaking factor of 2, i.e., its blocking time is determined

by all the other processes which enter two times their CS

before p can enter its CS.

Absence of liveness (query 3) is a direct consequence of

the fact that the model has a zeno-cycle, i.e., it is possible for

any process to (re)enter the CS an infinite number of times

before any other process can enter its CS, by consuming 0

time. The zeno-cycle mirrors the fact that the critical section

as well as the non-critical section can have a 0 duration,

and that nothing forbids (non-determinism) the same process

to always get the synch signals.

The zeno-cycle can be eliminated by guaranteeing the

critical section necessarily consumes a finite (although very

small) duration (the guard x[p]>0 can be added to both

edges exiting from the CS location). However, the existence

of the zeno-cycle does not prevent the model checker to

determine the worst-case waiting time of processes, in which

case UPPAAL considers scenarios (behaviors) on the state

graph where time is really advancing.

It should be noted that the presence of a zeno-cycle

naturally expresses an intrinsic feature of the

algorithm/model design. A different design can be without

any zeno-cycle, independently from any consideration about

timing.

The following invariants also hold for the model of Fig. 7:

A[] se==1 imply sm==0,

A[] sm==1 imply se==0,

which express functionality concerns of the abstract

algorithm.

In [4] it is shown as some classic starvation-free mutual

exclusion algorithms based on weak semaphores can be

regarded as different interpretations of the abstract

algorithm, where atomic operations are achieved by using a

few unfair binary semaphores.

For brevity, in the following only the Morris algorithm [5]

will be detailed. For the other studied algorithms, though,

the experimental analysis will be synthetically reported.

A. Morris Algorithm

Fig. 9 recapitulates the Morris algorithm which can be

viewed as a concrete instance of the abstract algorithm of

Fig. 6. The Morris algorithm uses three weak semaphores:

sb, protecting specifically the ne counter holding the

number of processes awaiting the elevator at the first floor,

se and sm respectively controlling the door at the first and

the second floor. They act as a split binary semaphore.

Initially, sb and se are set to 1, sm to 0.

The initial values of the other variables are as in the

abstract algorithm.

process(p)=

 loop

 NCS;

 P(sb); ne++; V(sb);

 P(se); nm++; P(sb); ne--;

 if ne>0 then V(sb); V(se);

 else V(sb); V(sm); endif;

 P(sm); nm--; CS;

 if nm>0 then V(sm); else V(se); endif;

 endloop.

Fig. 9 The Morris mutual exclusion algorithm

In Fig. 10 it is depicted an UPPAAL Process automaton

corresponding to the algorithm in Fig. 9.

In this case, the use of urgent semaphore channels avoids

the recourse to other channels like synch of Fig. 8 in order

to guarantee model progress. The model in Fig. 10 was

model checked using the same queries 1) to 5) previously

discussed for the abstract algorithm, and using for the se

and sm semaphores the PlainBinarySemaphore

template (Fig. 2) and separately checking the model

behavior when the sb semaphore is implemented

respectively as a plain, polite, or buffered binary semaphore,

i.e., passing from the weakest to the strongest unfair

semaphore.

In [4] a proof system was built to demonstrate that the

Morris algorithm is correct, i.e., it is without deadlock, it

ensures mutual exclusion and it guarantees a bounded

waiting time (with an overtaking factor of 2) for the blocked

processes, for the sole case sb-buffered semaphore, se, sm-

plain semaphores. From our analysis based on model

checking it emerged that the Morris algorithm, even with sb

being a buffered semaphore, always has a zeno-cycle which

means, under the hypothesis of zero time duration of any

action in the algorithm, that the overtaking factor for a

blocked process is unbounded. Only when the critical

section is supposed to consume even a very small time

duration, the zeno-cycle disappears. Moreover, in the

presence of timing of the critical section, the overtaking

factor is effectively 2 as for the abstract algorithm but for

any implementation of the sb semaphore. In other words,

model checking the Morris algorithm, in the presence of

Fig. 10 UPPAAL Process model corresponding to the Morris algorithm

of Fig. 9

LIBERO NIGRO, FRANCO CICIRELLI: MODELLING AND VERIFICATION OF STARVATION-FREE ALGORITHMS 777

timing, confirmed that the algorithm is correct with three

plain binary semaphores, contrary to what is stated in [4]

and [12].

The study of the Morris algorithm suggested to us the

design of a simple variation of the algorithm based on two

plain semaphores (the se and sm semaphores of the Morris

algorithm), N bits and the nm counter. The algorithm is

proposed in Fig. 11 and modelled in UPPAAL as in Fig. 12. It

avoids the sb semaphore and uses instead an array e of N

booleans, each element being associated to a distinct

process.

process(p)=

 loop

 NCS;

 e[p]=true;

 P(se); nm++; e[p]=false;

 if ne() then V(se);

 else V(sm); endif;

 P(sm); nm--; CS;

 if nm>0 then V(sm); else V(se); endif;

 endloop.

Fig. 11 Proposed variation of the Morris algorithm

The array e replaces the ne counter of the abstract

algorithm. Each process p sets e[p] to true when it starts

waiting for the elevator at the first floor, and resets it to false

when it enters the elevator, at which time the nm counter is

incremented. Since each process manages its own element in

the array e, no interference can ever occur on e. The test

about the existence of other processes which want to enter

the elevator at the first floor, previously based on the counter

ne, it is now based on checking if there are some true

elements in the array e (the check is actually delegated to a

function ne() which returns true if some element in the

array is true, false otherwise). Of course, a true value in e

can be found in the current test or it will be sensed the next

time.

Model checking the model in Fig. 12 confirmed that all

the five queries proposed for the abstract algorithm are now

satisfied. Also the liveness property (query 3) now holds,

i.e., the new algorithm is without any zeno-cycle, and

correctly operates even when timing is ignored.

B. Algorithms Comparison

During the development of the modelling and verification

approach described in this paper, besides the Morris

algorithm, other starvation-free mutual exclusion algorithms

based on weak semaphores were studied. Model checking

results summarized in the Table 1 confirm known results in

the literature and in some cases are more detailed. In the

column of the semaphore types, the weakest admissible

types for the algorithm are shown. More stronger versions

could, but unnecessarily, be used. For instance, the sb (as in

the Morris algorithm) semaphore of the Udding algorithm

must be buffered. The other two semaphores can be plain.

The Udding algorithm is no longer starvation-free if sb is

implemented with a polite semaphore.

Analysis results concerning the Martin & Burch algorithm

[6] coincide with those formally identified in [4]. The Haldar

& Subramanian algorithm which relies on two semaphores

and 2 bits [8] was also investigated in [13]. The weak

semaphore type the authors assumed corresponds to a

buffered one and the overtaking factor was indicated as

TABLE I.

MODEL CHECKING RESULTS OF MUTUAL EXCLUSION ALGORITHMS.

Algorithm No of weak

semaphores

Semaphore types Zeno-cycle Overtaking

factor

Morris 3 3 plain yes 2

Morris variation proposed in this paper 2 2 plain no 2

Udding 3 1 buffered – 2 plain yes 2

Martin & Burch 2 1 polite – 1 plain yes 2

Haldar & Subramanian 2 2 polite yes lesser than 2

Fig. 12 Variation of the Morris algorithm based on two plain semaphores, N bits and the sole nm counter

778 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

being 2. However, the model checking approach developed

in this work has shown that two polite semaphores suffice

and that the waiting time of a process interested in entering

its critical section is exactly 2*(N-1)*D-D, i.e., one

critical section lesser than the other algorithms.

As it emerges from Table 1, the Morris variation

algorithm proposed in this paper outperforms classic known

algorithms. With respect to the Haldar & Subramanian

algorithm, our algorithm uses only 2 binary semaphores of

the weakest type (plain) although it uses some more memory

(N bits plus the nm counter vs. 2 bits of the Haldar &

Subramanian algorithm). Moreover, the proposed algorithm

is the only one which is without zeno-cycles.

V. CONCLUSIONS

The Dijkstra conjecture [9] about the impossibility of

building a fair semaphore using a few weak semaphores was

confuted by the development of algorithms proposed by

Morris [5], Martin & Burch [6], Udding [7] etc. However the

correctness proof of such algorithms was only partially

provided, also considering the methodological approach

proposed in [12] or the proof framework developed in [4]

which does not allow a full analysis of mutual exclusion

algorithms in the presence of the timing dimension.

In this paper an original proving framework based on

timed automata (TA) and the UPPAAL toolbox is proposed

which permits modelling and full verification of the

properties of starvation-free mutual exclusion algorithms

based on weak semaphores, also in the presence of the

timing dimension.

The approach models the three known types of weak

semaphores: plain (the weakest type), polite and buffered

(the strongest type). It is worthy of note that in its

description, the Dijkstra conjecture implicitly refers to the

use of buffered semaphores.

A key factor of the proposed approach is its modelling

and analysis flexibility, being it possible to transparently

replace a semaphore type with another one thus enabling a

thorough study of a given algorithm.

The application of the approach confirms known

properties of classic algorithms, but has the potential to

discover subtle features of the considered algorithms such as

the existence of a zeno-cycle or of a time-sensitive behavior

which influences the kind of weak semaphores which can be

actually used. All known algorithms suffer of a zeno-cycle,

in the light of which the overtaking factor of a waiting

process is (theorically) unbounded. However, when the

critical section consumes an even infinitesimal time, the

bounded waiting time and overtaking factor of the classic

algorithms is effectively guaranteed. In this hypothesis the

Morris algorithm is correct with three plain semaphores.

As part of this work, a variation of the Morris algorithm

was designed which intrinsically eliminates any zeno-cycle,

rests only on two plain semaphores and replaces a counter of

the Morris algorithm with N bits. This new algorithm too

was proved to be correct.

The paper contribution enables the implementation of

light-weight starvation-free semaphores which can be

exploited in general concurrent systems including cyber

physical systems.

Prosecution of the research is geared at:

• Modelling and analysis of other mutual exclusion

algorithms designed in terms of weak semaphores.

• Implementing weak semaphores and fair semaphores

corresponding to mutual exclusion algorithms, in a

concurrent programming language, e.g., Java.

• Experimenting with the use of weak semaphores in

practical systems programming and in the development

of cyber physical systems.

• Exploiting light-weight starvation-free semaphores in

distributed shared memory systems, e.g., based on Java

and the Terracotta middleware [14] which provides the

vision of a “network heap” where shared data can be

accessed by threads belonging to distributed JVMs.

REFERENCES

[1] S. Srbljic, D. Skvorc, M. Popovic, “Programming languages for end-
user personalization of Cyber-Physical Systems”, Automatika, Vol.

53, No. 3, pp. 294-310, 2012.

 [2] G. Behrmann, A. David, K.G. Larsen, “A tutorial on UPPAAL”, In:
Formal Methods for the Design of Real-Time Systems, M. Bernardo

and F. Corradini Eds., Lecture Notes in Computer Science, Vol. 3185,

Springer-Verlag, pp. 200-236, 2004.
[3] E.M. Clarke, O. Grumberg, D.A. Peled, Model checking, MIT Press,

2000.

[4] W.H. Hesselink, M. IJbema, M. “Starvation-free mutual exclusion
with semaphores”, Formal Aspects of Computing, DOI

10.1007/s00165-011-0219-y, 2011.

[5] J.M. Morris, “A starvation-free solution to the mutual exclusion

problem”, Inf. Proc. Lett., Vol. 8, pp. 76-80, 1979.

[6] A.J. Martin, J.R. Burch, “Fair mutual exclusion with unfair P and V
operations”, Inf. Proc. Lett., Vol. 21, pp. 97-100, 1985.

[7] J.T. Udding, “Absence of individual starvation using weak

semaphores”, Inf. Proc. Lett., Vol. 23, pp. 159-162, 1986.

[8] S. Haldar, D.K. Subramanian, “An efficient solution of the mutual
exclusion problem using unfair and weak semaphores”, ACM SIGOPS

Operating Systems Review, Vol. 22, pp. 60-66, 1988.

[9] E.W. Dijkstra, “A strong P/V-implementation of conditional critical
regions”, Tech. Rep., Tech. Univ. Eindhoven, EWD 651,
www.cs.utexas.edu/users/EWD, 1977.

[10] R. Alur, D.L. Dill, “A theory of timed automata”, Theoretical
Computer Science, Vol. 126, pp. 183-235, 1994.

[11] F. Cicirelli, A. Furfaro, L. Nigro, “Model checking time-dependent

system specifications using time stream Petri nets and UPPAAL”, Appl.
Math. Comp., Vol. 218, pp. 8160-8186, 2012.

[12] E.W. Stark, “Semaphore primitives and starvation-free mutual

exclusion”, J. of ACM, Vol. 29, pp. 1049-1072, 1982.
[13] H.P. Hofstee, K.R. Leino, L.A. van de Snepscheut, “Proof of mutual

exclusion algorithm by Haldar and Subramanian”, HPH11-0,

California Institute of Technology, 18 December 1991.

[14] F. Cicirelli, A. Furfaro, A. Giordano, L. Nigro, “Performance of a

multi-agent system over a multi-core cluster managed by Terracotta”,
In Proc. of Symp. on Theory of Modeling & Simulation: DEVS

Integrative M&S Symp., pp. 125-133, 2011.

LIBERO NIGRO, FRANCO CICIRELLI: MODELLING AND VERIFICATION OF STARVATION-FREE ALGORITHMS 779

