
Measuring the performance and energy consumption

of AES in wireless sensor networks

Cristina Panait

Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest

Email: cristina.panait19@gmail.com

Dan Dragomir

Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest

Email: dan.dragomir@cs.pub.ro

Abstract—With WSN deployments increasing in popularity,
securing those deployments becomes a necessity. This can be
achieved by encrypting inter-node communications and/or using
message authentication codes. AES is a well studied symmetric
cipher, with no known practical vulnerabilities, that can be used
to solve both problems. We provide an optimized implementation
of AES, with four modes of operation (ECB, CBC, CFB and
CTR), that uses the hardware accelerator available on the
ATmega128RFA1 microcontroller, and compare it with the best
known software implementation. We show that our hardware
AES implementation is both faster and more energy efficient than
a software implementation. This is not the case for previous sensor
nodes and implementations, which show an improved execution
speed, but with a higher energy consumption.

I. INTRODUCTION

AS A general definition, a wireless sensor network is
composed of a set of nodes which communicate through

a wireless medium in order to perform certain tasks. A couple
of examples where WSNs can be deployed, as stated in [1],
are: fire extension detection, earthquake detection, environment
surveillance for pollution tracking, intelligent building man-
agement, access restriction, detection of free spaces in parking
lots and so on. Advantages brought by WSNs are enhanced
flexibility and mobility, mainly because nodes are generally
powered from an on-board battery and thus do not depend
on their surroundings. This, however, is also their biggest
weakness. The lifetime expectancy of a node depends on its
usage. The constraints mainly come from the limited energy
source, as data processing and transmission can be energy
intensive.

The particular characteristics of these types of networks
make the direct implementation of conventional security mech-
anisms difficult. The imposed limitations on minimizing data
processing and storage space and reducing bandwidth need to
be addressed. The major constraints for WSNs, as presented
in [2], [3] and [4], are: energy consumption (which can
lead to premature exhaustion of the energy source and to
the denial of service), memory limitations (flash, where the
application source code is stored, and RAM, where sensed
data and intermediary computing results are stored), unreliable
communication (the routing protocols used, collisions), latency
(which can lead to synchronization issues and algorithms that
cannot act correctly) and unattended nodes (an attacker could
have physical access to the nodes).

The concept behind WSNs and their applications presents
an increased risk to a series of attacks which can affect the

network’s functionality. In this paper we analyze algorithms
that provide confidentiality for WSNs. We focus our analysis
on AES-128, as it is a well studied cipher with no known
practical vulnerabilities, has a speed comparable with other
symmetrical encryption algorithms and is supported on multi-
ple WSN platforms through a hardware acceleration module.

In section II we discuss some of the related work. Sec-
tions III and IV present the algorithm design and modes of
operation and the implementation with two methods, software
and hardware. Then, in section V, we make a comparative
analysis of the solutions, based on execution time and energy
consumption, and select the encryption methods suitable for
ATmega128RFA1-based platforms, taking also into considera-
tion the provided security. Finally, we present the conclusions
of our work.

II. RELATED WORK

The problem of measuring the cost of encryption on
wireless sensor node hardware has been addressed previously.
In [5] Lee et al. analyze a range of symmetric-key algorithms
and message authentication algorithms in the context of WSNs.
They use the MicaZ and TelosB sensor nodes and measure
the execution time and energy consumption of different algo-
rithms. For AES they provide measurements for a hardware
assisted implementation and conclude that it is the cheapest
when either time or energy is considered. They do not however
study this implementation on different plaintext lengths and
instead rely on datasheets to extend to lengths longer than one
block. However, this conclusion is not backed by Zhang et al.
in [6] which compares different AES implementations on the
MicaZ nodes. They conclude that hardware assisted encryption
is faster, but also consumes more energy due to the external
chip which handles the computation in hardware.

Compared to their work, we study only AES-128 which is
a well known cipher also adopted by the National Institute
of Standards and Technology (NIST) and which has been
proposed as a viable alternative ([7]) to other less studied
ciphers in WSN applications. This choice is also supported by
the fact that multiple 802.15.4 transceivers offer a hardware
accelerator for AES operations. We study the newer Sparrow
v3.2 sensor nodes based on the ATmega128RFA1, which
integrates the microcontroller with the radio transceiver and
hardware encryption module, and show that AES-128 can
be efficiently implemented reducing both execution time and
energy consumption. We also provide hybrid implementations
for modes of operation that are not natively supported by the

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1261–1266

DOI: 10.15439/2015F322

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1261

hardware and show that they can still be efficiently imple-
mented with the available primitives.

In [7] Law et al. conduct a thorough survey of the costs
of different block ciphers, when implemented on sensor node
hardware. They conclude that Rijndael (AES) is the second
most efficient cipher, being surpassed only by Skipjack. How-
ever, their analysis is based on older hardware and does not
consider any hardware accelerated implementations.

In [8] de Meulenaer et al. study the problem of key ex-
change and measure the cost of two key agreement protocols:
Kerberos and Elliptic Curve Diffie-Hellman. They measure the
energy consumption of the two protocols on MicaZ and TelosB
sensor nodes and conclude that the listening mode is the prin-
cipal factor in the energy efficiency of key exchange protocols,
with Kerberos being the more efficient protocol. Compared to
their work, we concentrate on encryption algorithms, and more
specifically on AES, with key distribution left for future work.

III. DESIGN

AES is a block cipher encryption algorithm that uses
symmetrical keys for encrypting a block of plaintext and
decrypting a block of ciphertext [9]. The algorithm uses a
series of rounds consisting of one or more of the following
operations: byte-level substitution, permutation, arithmetical
operations on a finite field and XOR-ing with a given or
calculated key [10]. As a general rule, the operations are
handled bytewise.

AES receives as input a plaintext of 16 bytes and the
encryption key, which has a variable dimension of 16, 24
or 32 bytes. The input text is processed into the output text
(ciphertext) by using the given key and applying a number of
transformations. Encryption and decryption are similar, except
for the fact that decryption needs an extra step —it first runs
a full encryption in order to obtain the modified key needed
for decrypting data.

In [11], Schneier divides symmetrical encryption algo-
rithms in two basic categories: block ciphers and stream
ciphers. A block cipher encrypts a block of plaintext producing
a block of encrypted data, whilst a stream cipher can encrypt
plaintexts of varying sizes. This makes block ciphers prone
to security issues, if used to encrypt plaintexts longer than
the block size, in a naı̈ve way, mainly because patterns in the
plaintext can appear in the ciphertext.

A more secure way to encrypt data with a block cipher
can be achieved by combining the encryption algorithm with
a few basic operations, in a mode of operation. It is worth
mentioning that the operations are not directly securing data.
This is the responsibility of the block cipher. Still, they should
not compromise the security provided by the cipher.

A. Electronic Code Book (ECB)

The ECB mode of operation receives blocks of plaintext,
respectively ciphertext, and a key and produces corresponding
blocks of ciphertext, respectively plaintext. One property of
this mode of operation is that two blocks of plaintext, en-
crypted with the same key, will result in two identical blocks
of ciphertext. ECB is the most simple mode of operation.
However, one major drawback is that it does not hide data

patterns, meaning that identical ciphertext blocks imply the
existence of identical plaintext blocks.

B. Cipher Block Chaining (CBC)

The CBC mode of operation takes as input parameters
the plaintext, respectively the ciphertext, the key and an
initialization vector (IV). One property of CBC is that two
encrypted blocks are identical only if their respective plaintexts
have been encrypted using the same key and the same IV.
Unlike ECB, CBC has link dependencies, as its basic chaining
mechanism makes the ciphertext blocks dependent on previ-
ously encrypted data. This, coupled with a randomly chosen
IV, ensures that identical plaintext blocks will be encrypted to
different ciphertext blocks.

C. Cipher Feedback (CFB)

The CFB mode of operation is very similar to CBC regard-
ing its input parameters and the operations it performs. The
main difference between them lies in the fact that CBC works
as a block cipher, while CFB can be used as a stream cipher.
Unlike CBC, CFB can encrypt variable-length blocks (which
are not restricted to 16 bytes). The properties of this mode of
operation are similar with the ones of CBC. One key difference
between the two can be observed at the implementation level:
CFB uses only the encryption primitive of the underlying block
cipher, both for encrypting and for decrypting data.

D. Counter (CTR)

The CTR mode of operation also produces a stream cipher.
The IV used in CBC and CFB is now associated with the
starting value of a counter, which is incremented and used to
encrypt each block. In this mode, the output from a previous
block is not used for obtaining the input to the current block. In
order for the described system to work, a generator is needed
on both sides of the communication. The generators have to
remain synchronized in order to produce the same stream of
data on both sides. A disadvantage of this mode of operation is
the possible desynchronization of the communicating entities.
This results in the incorrect decryption of all subsequently
received data.

IV. IMPLEMENTATION

A practical example would be a wireless sensor network,
which transmits data gathered from three types of sensors:
temperature, humidity and luminosity. Because of privacy
and integrity concerns all data must be encrypted during
transmission. The working platform for this scenario is based
on the Sparrow v3.2 node [12]. Its technical specifications are:

• CPU: ATmega128RFA1, 16MHz

• Memory: 128KB flash, 16KB RAM

• Bandwidth: up to 2Mbps

• Programming: C/C++

The ATmega128RFA1 microcontroller is actually a SoC
(System on Chip) which incorporates a radio transceiver com-
patible with the IEEE 802.15.4 standard [13]. It offers, among
other things, a relatively low energy consumption (mostly in

1262 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

sleep states), a FIFO buffer of 128 bytes for receiving and
transmitting data, a partial hardware implementation of the
MAC protocol and support for AES-128.

This microcontroller facilitates secured data transmissions
by incorporating a hardware acceleration module which imple-
ments the AES algorithm. The module is capable of encrypting
and decrypting data in a fast track way, as most of the functions
are implemented directly in hardware. It is compatible with
the AES-128 standard (the key is 128 bits long) and supports
encryption and decryption for ECB mode, but only encryption
for CBC mode. The input to these operations consists of the
plaintext/ciphertext block and the encryption key. Note that
for decryption, the extra round needed by AES to compute
the decryption key is performed automatically. Other modes
of operation are not supported by the hardware.

As we already stated in the previous sections, energy
consumption is the main issue and challenge for WSNs. In
order to obtain the best approach for ensuring confidentiality
with a minimum energy use, we implemented and compared
AES-128, coupled with the ECB, CBC, CFB and CTR modes
of operation. All four modes have both a hardware and a
pure software implementation. Since only ECB has a full
hardware implementation, for the other modes we used a
hybrid approach, combining the hardware part from ECB
with software implementations for the remaining operations.
We also refer to these hybrids as hardware implementations.
For the pure software implementation we used an optimized
version of AES, called TableLookupAES [6].

V. EVALUATION

A. Experimental setup

To measure the energy consumption of our implementation,
we perform two kinds of measurements: the time required
(t) and the current drawn by the node (I) while encrypt-
ing/decrypting. Using the formula E = P · t, where P = U · I
is the power required by the node, we can compute the energy
consumed by the algorithm, be it implemented in software, in
hardware or using a hybrid approach. We ensure a constant
voltage U using a voltage regulator, as explained in the next
subsection.

In certain applications, the latency of encrypting/decrypting
a given payload might be more important than the energy
consumed. For this reason, this section also presents the timing
results of the different solutions, independent of the energy
measurements. As we later show, the current drawn by the
node using both software and hardware security approaches is
practically the same. Thus, the time taken is a sufficient metric
for relative comparisons between the different solutions.

1) Current measurement: For the purpose of measuring the
energy consumption of the Sparrow sensor node during our
experiments, we built a current sensing circuit based on the
INA 193 current shunt monitor.

Fig. 1 presents the circuit we designed. Power is provided
by a 3.3V voltage regulator, which ensures a constant volt-
age regardless of the current drawn by the circuit. A shunt
resistor connected in series with the Sparrow node acts as a
current sensor. The voltage drop on the resistor is directly
proportional with the current drawn by the circuit. This has

Fig. 1. Current measurement setup

two implications. On the one hand, the chosen resistor value
must be small enough not to disturb the rest of the circuit
(e.g. by incurring a big voltage drop). On the other hand,
the same value has to be big enough so that the expected
currents register a voltage drop that can be sensed with enough
precision. In order to improve the measurement precision and
sensitivity, without the drawbacks of a big resistor value, we
employ a INA 193 current shunt monitor, which provides a
constant gain of 20V/V on the input voltage drop, and a 4.99Ω
precision resistor with a tolerance of 0.01%. The output of
the current sensing circuit is connected to a Metrix OX 5042
oscilloscope which we used to monitor the current drawn by
the node during the different encryption/decryption operations.
Determining the current is as simple as dividing the voltage
shown on the oscilloscope by the current shunt monitor gain
(20V/V) and the shunt resistor value (4.99Ω).

2) Time measurement: Using the oscilloscope, we also
measure the time required for each encryption/decryption oper-
ation. The oscilloscope has a function that accurately measures
pulse duration. We create a pulse lasting for the duration of
the operation by setting a GPIO pin before the start of the
operation and clearing it after it ends. Using this method,
we can measure the duration of an operation with minimal
overhead: 1 bit set instruction and 1 bit clear instruction, each
taking 2 cycles.

Although the proposed measurement scheme is precise, it
has the disadvantage of requiring manual intervention. The
available oscilloscope cannot be interfaced with a PC, so a
measurement point is obtained by uploading a program which
encrypts a hardcoded message length in a loop, reading the
information from the oscilloscope and repeating the process
for all message lengths.

In order to automate the time measurements, we resorted
to a software implementation running along side the encryp-
tion/decryption operation, that measures the time required.
To keep overhead to a minimum, our solution employs the
hardware timer module available on the ATmega128RFA1 to
count the number of cycles taken by the operation. Each
operation is measured by sampling a counter before and after
the operation and taking the difference of the two values.
The count is then converted to a time value given that the
microcontroller operates at 16MHz.

This time measurement solution allowed us to automate
the whole process of evaluating the algorithms for different
message sizes. A small overhead can be observed between the
software based time measurement and the oscilloscope based

CRISTINA PANAIT, DAN DRAGOMIR: MEASURING THE PERFORMANCE AND ENERGY CONSUMPTION 1263

one, but the relative difference between the algorithms is un-
affected. If absolute numbers are required, the software-based
measurements can be corrected by noticing that the overhead
increases linearly with the message size when compared with
the oscilloscope measurements.

B. Results

We conducted multiple experiments, to evaluate both
the time taken and the energy consumed by AES encryp-
tion/decryption operations. We measured our hardware as-
sisted implementation against the pure software implementa-
tion based on look-up tables.

1) Time experiments: We started of with measuring the
difference between the optimized software implementation and
our hardware assisted implementation for each of the 4 studied
modes of operation. For each type of implementation and
operation mode, we measured the time taken by an encryption
operation and a decryption operation on varying message
lengths. We used message lengths from 1 byte to 127 bytes,

which is the maximum packet size allowed by the transceiver
and the 802.15.4 standard.

As can be seen in figure 2, the hardware assisted imple-
mentation easily outperforms the optimized software imple-
mentation. The staircase shape of the graph is easily explained
by the requirement of every block cipher, including AES, to
operate on multiples of the block size. Plaintext sizes that are
not a multiple of the block size need to be padded, thus still
incurring the cost of an entire block.

The difference in performance varies between ∼6.5x for
the ECB mode, which is fully supported in hardware, down to
∼3.8x for the CFB and CTR modes, which are only partially
supported in hardware through the AES single block encryp-
tion primitive. The difference in performance between the
optimized software implementation and our hardware assisted
implementation is summarized in table I.

For the ECB and CBC modes we can also observe (figures
2a and 2b) the extra preparation step needed by the single
block decryption primitive, which makes decryption slightly

0

500

1000

1500

2000

2500

3000

3500

4000

0 16 32 48 64 80 96 112 128

E
x
ec

u
ti

o
n

ti
m

e
(µ

s)

Size (bytes)

SW encryption

SW decryption

HW encryption

HW decryption

(a) ECB mode

0

500

1000

1500

2000

2500

3000

3500

4000

0 16 32 48 64 80 96 112 128

E
x
ec

u
ti

o
n

ti
m

e
(µ

s)

Size (bytes)

SW encryption

SW decryption

HW encryption

HW decryption

(b) CBC mode

0

500

1000

1500

2000

2500

3000

3500

4000

0 16 32 48 64 80 96 112 128

E
x
ec

u
ti

o
n

ti
m

e
(µ

s)

Size (bytes)

SW encryption

SW decryption

HW encryption

HW decryption

(c) CFB mode

0

500

1000

1500

2000

2500

3000

3500

4000

0 16 32 48 64 80 96 112 128

E
x
ec

u
ti

o
n

ti
m

e
(µ

s)

Size (bytes)

SW encryption

SW decryption

HW encryption

HW decryption

(d) CTR mode

Fig. 2. Comparison between software and hardware AES implementations

1264 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

encryption decryption

ECB 4.61x - 6.49x 5.59x - 6.02x
CBC 5.51x - 6.28x 4.86x - 5.28x
CFB 3.87x - 5.29x 3.86x - 5.34x
CTR 3.87x - 5.17x 3.85x - 5.17x

TABLE I. EXECUTION SPEED-UP HARDWARE VS. SOFTWARE

more time consuming than encryption. No difference can be
observed (figures 2c and 2d) between encryption and decryp-
tion for the CFB and CTR modes, because they only use the
encrypt primitive of AES for both encryption and decryption,
albeit with some extra software processing.

Figure 3 compares the hardware assisted implementations
of the 4 modes against each other during encryption and
decryption. For encryption, ECB has the lowest runtime for all
sizes, which was to be expected, as it does no extra operations
on the output of the encrypt primitive to mask patterns in the
plaintext. CBC is slightly worse, as it adds a XOR operation,
which is implemented by the hardware accelerator, but better
than CFB and CTR, which have no hardware support, except
for the encryption primitive. For decryption, CFB and CTR
have a slight advantage over ECB and CBC for small sizes,
as they only use the encrypt primitive, which has a smaller
setup time than the decrypt primitive. This advantage is lost at
around 32 bytes with respect to ECB and at around 64 bytes
with respect to CBC. From the plots we can also observe that
the extra software processing done on top of the AES encrypt
primitive by CFB and CTR is similar in overhead, for both
encryption and decryption.

If we look at the cumulated time of both encryption and
decryption, CFB and CTR still hold an advantage up to 32
bytes with respect to CBC. Thus, for small message sizes,
as it usually happens in WSNs, it might be more efficient to
use the CFB or CTR modes even if they are not completely
accelerated in hardware.

2) Energy experiments: For energy consumption we con-
centrated our efforts on determining the cost of using AES

in CFB mode. We chose this mode based on the fact that
the timing measurements showed it to be the best encryp-
tion/decryption mode for small message sizes, similar to those
that are commonly found in WSNs. We only performed mea-
surements for message encryption, as decryption is identical
in terms of the code which is ran. We measured the cost of
doing the encryption in software as well as the cost of using
our hardware accelerated implementation. For completeness,
we also measured the cost of an empty processing loop to
compare against the two encryption implementations.

In our experiments, we used the measurement circuit
described in subsection V-A1 to measure the base and peak
currents during encryption, as well as the voltage and duration
of the operation, as reported by the oscilloscope. As with
the timing measurements, we performed the experiment for
different message size, from 1 byte to 127 bytes. The oscillo-
scope was configured to report the mean over 16 samples in
order to obtain the average energy consumption of the device.
An instantaneous energy consumption is hard to obtain and
is irrelevant when considering the long time operation of the
node.

Using the raw current and voltage measurements, we plot
the average power drawn with respect to the encryption size.
As can be seen in figure 4a, the software and the hardware
solutions draw equal amounts of power. Furthermore, this
average power is independent of the plaintext size and is only
slightly higher than the average power drawn by the empty
processing loop.

If we plot the average energy consumed by the encryption
operation (figure 4b), we see a linear increase in energy
consumption with increasing plaintext size. Using the timing
measurements performed in the previous subsection and the
average power values from figure 4a, we can also derive the
average energy consumption for every mode, operation and
plaintext size, not just for encryption in CFB mode. This can
be done by adjusting for the overhead induced by the software
timer, using a correction factor deduced from correlating the
oscilloscope timings with the internal timer timings.

0

200

400

600

800

1000

0 16 32 48 64 80 96 112 128

E
x
ec

u
ti

o
n

ti
m

e
(µ

s)

Size (bytes)

ECB

CBC

CFB

CTR

(a) Encryption

0

200

400

600

800

1000

0 16 32 48 64 80 96 112 128

E
x
ec

u
ti

o
n

ti
m

e
(µ

s)

Size (bytes)

ECB

CBC

CFB

CTR

(b) Decryption

Fig. 3. Comparison between modes of operation with hardware acceleration

CRISTINA PANAIT, DAN DRAGOMIR: MEASURING THE PERFORMANCE AND ENERGY CONSUMPTION 1265

16

17

18

19

20

21

22

23

24

0 16 32 48 64 80 96 112 128

P
o
w

er
(m

W
)

Size (bytes)

Software

Hardware

Empty Loop

(a) Average power consumption

0

10

20

30

40

50

60

0 16 32 48 64 80 96 112 128

E
n
er

g
y

(µ
J)

Size (bytes)

Software

Hardware

(b) Average energy consumption

Fig. 4. Power and energy consumption of AES encryption in CFB mode

VI. CONCLUSION

In this paper an evaluation of the cost of adding AES-
128 encryption to WSN communications has been presented.
Both the time penalty as well as the more important (from the
point of view of a WSN) energy penalty have been analyzed,
for multiple modes of operation: ECB, CBC, CFB and CTR
and for two implementations: a pure software implementation,
based on the optimized table lookup AES and a hardware ac-
celerated implementation, that uses the AES hardware module
of the ATmega128RFA1 microcontroller.

We showed how the AES hardware module in the
ATmega128RFA1 microcontroller can be used to implement
other modes of operation than the ones supported natively. Our
solution uses a hybrid approach that runs some operations in
hardware and emulates the missing ones in software. Using
this approach, we implemented CBC decryption, as well as
two full modes of operation for AES, CFB and CTR, which
do not have direct hardware support.

We presented a methodology of accurately measuring the
power consumption using low cost components and a way
of determining the encryption/decryption duration using only
the wireless node itself. We compared the different modes of
operation and concluded that except for the unsecure ECB
mode, CFB and CTR are better overall alternatives for the
small message sizes (below 32 bytes) usually exchanged in
WSNs. This is true even though the hardware accelerator has
native support for the CBC mode and it relates to the way
decryption works for CBC.

We also built on the work of Zhan [6] and showed that
the newer ATmega128RFA1 microcontroller with an integrated
transceiver, used in the Sparrow v3.2 node, can reduce both the
duration and the energy consumption of AES operations. This
is in contrast to work done on previous sensor nodes, that used
a separated microcontroller and transceiver and which had a
higher energy cost when running the encryption in hardware
as opposed to using a pure software implementation.

REFERENCES

[1] H. Karl and A. Willig, Protocols and architectures for wireless sensor

networks. John Wiley & Sons, 2007. ISBN 978-0-470-09510-2

[2] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and approaches
for distributed sensor network security (final),” DARPA project report,
NAI Labs, Cryptographic Technologies Group, Trusted Information
System, Tech. Rep. 1, 2000.

[3] Y. Wang, G. Attebury, and B. Ramamurthy, “A survey of security issues
in wireless sensor networks,” 2006. doi: 10.1109/COMST.2006.315852

[4] J. Sen, “Routing security issues in wireless sensor networks: attacks
and defenses,” in Sustainable Wireless Sensor Networks, W. Seah and
Y. K. Tan, Eds. InTech, 2010. doi: 10.5772/663 pp. 279–309.

[5] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wireless
sensor networks,” Computer Networks, vol. 54, no. 17, pp. 2967–2978,
2010. doi: 10.1016/j.comnet.2010.05.011

[6] F. Zhang, R. Dojen, and T. Coffey, “Comparative performance and
energy consumption analysis of different aes implementations on a wire-
less sensor network node,” International Journal of Sensor Networks,
vol. 10, no. 4, pp. 192–201, 2011. doi: 10.1504/IJSNET.2011.042767

[7] Y. W. Law, J. Doumen, and P. Hartel, “Survey and benchmark
of block ciphers for wireless sensor networks,” ACM Transactions

on Sensor Networks (TOSN), vol. 2, no. 1, pp. 65–93, 2006. doi:
10.1145/1138127.1138130

[8] G. De Meulenaer, F. Gosset, O.-X. Standaert, and O. Pereira, “On the
energy cost of communication and cryptography in wireless sensor
networks,” in Networking and Communications, 2008. WIMOB’08.

IEEE International Conference on Wireless and Mobile Computing,.
IEEE, 2008. doi: 10.1109/WiMob.2008.16. ISBN 978-0-7695-3393-3
pp. 580–585.

[9] J. Daemen and V. Rijmen, “The block cipher rijndael,” in Smart Card

Research and Applications. Springer, 2000. doi: 10.1007/10721064 26
pp. 277–284.

[10] W. Stallings, Cryptography and Network Security - Principles and

Practice, Fifth Edition. Pearson Education, 2011. ISBN 978-0-13-
609704-4

[11] B. Schneier, Applied cryptography: protocols, algorithms, and source

code in C. John Wiley & Sons, 1996. ISBN 978-0471117094

[12] A. Voinescu, D. Tudose, and D. Dragomir, “A lightweight, versatile
gateway platform for wireless sensor networks,” in Networking in

Education and Research, 2013 RoEduNet International Conference 12th

Edition. IEEE, 2013. doi: 10.1109/RoEduNet.2013.6714202 pp. 1–4.

[13] 8-bit AVR Microcontroller with Low Power 2.4GHz Transceiver for

ZigBee and IEEE 802.15.4, ATmega128RFA1, Atmel.

1266 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

