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Abstract—Visibly pushdown automata are pushdown automata
whose pushdown operations are determined by the input symbol,
where the input alphabet is partitioned into three parts for
push, pop and local pushdown operations. It is well known
that nondeterministic visibly pushdown automata can be deter-
minised. In this paper a new algorithm for the determinisation
of nondeterministic visibly pushdown automata is presented.
The algorithm improves the existing methods and can result in
significantly smaller deterministic pushdown automata. This is
achieved in a way that only necessary and accessible states and
pushdown symbols are computed and constructed during the
determinisation.

Index Terms—Pushdown automata, visibly pushdown au-
tomata, deterministic pushdown automata, determinisation of
visibly pushdown automata.

I. INTRODUCTION

P
USHDOWN automata, which accept context–free formal
languages, are one of the fundamental models of com-

putation of the Theory of formal languages and automata
[8]. Every nondeterministic finite automaton, which accepts a
regular language, can be determinised and the theory of the de-
terminisation of finite automata is simple and well–researched:
states of an equivalent deterministic finite automaton represent
so–called deterministic subsets of states of a given nondeter-
ministic finite automaton [8]. The general determinisability
does not hold for the case of all types of nondeterministic
pushdown automata. The class of deterministic context–free
languages is a proper subclass of context–free languages, ie
for some nondeterministic pushdown automata their equivalent
deterministic versions do not exist. Generally, it is not known
how to decide for a given nondeterministic pushdown au-
tomaton whether there exists a deterministic equivalent or not.
There is a lack of results in the theory of the determinisation
of nondeterministic pushdown automata, although such results
would be usable, eg when constructing practical deterministic
algorithms from nondeterministic pushdown automata.

Visibly pushdown automata [3] are an important and well
motivated subclass of pushdown automata, where pushdown
operations are determined by the input symbol: the input
alphabet is partitioned into three parts Ac, Ar and Al for push,
pop and local pushdown operations, respectively. This relates
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to function calls, for example. A function call is represented by
push operation, local operations executed in the context of the
called function are represented by local transitions, and, finally,
the return from the function is represented by pop operation.
The push, pop and local operations are sometimes referred
as call, return and internal operations. Visibly pushdown
automata are widely used, researched and known to be used
in many practical applications, such as XML processing for
example [1], [2], [5], [6], [7], [11].

It is well known that nondeterministic visibly pushdown
automata can be determinised [3], [12]. These determinisations
use principles that are also used in the well-known deter-
minisation of finite automata: states of the equivalent deter-
ministic automata are represented by so-called deterministic
subsets [8]. Alur and Madhusudan [3] presented the proof
of the determinisability of a given nondeterministic visibly
pushdown automaton with n states by creating a cartesian
product consisting of all possible states and then creating
deterministic subsets, which resulted in 2n

2+n states of the
deterministic version of the pushdown automaton. This was
improved in [12], where the upper bound for the number of
states was lowered from 2n

2+n to 2n
2

and the upper bound
for the number of pushdown store symbols was lowered from
|Ac|2n

2+n to |Ac|2n
2

.

In this paper a new algorithm of the determinisation of
nondeterministic visibly pushdown automata is presented. The
algorithm improves the existing methods and can result in sig-
nificantly smaller deterministic pushdown automata in many
practical examples. Only necessary and accessible states and
pushdown symbols of the deterministic pushdown automaton
are computed and constructed during the determinisation,
which is done by analysing which states are used in transitions
on the same level of the nesting of pushdown operations and
which pushdown store symbols can appear at the top of the
pushdown store for each state.

The paper is organized as follows. Section 2 defines basic
notions. Section 3 contains information on related works.
Section 4 presents the new incremental algorithm for visibly
pushdown automata determinisation. An example of the use
of the presented algorithm is presented in Section 5. Finally,
the conclusion of the paper is in Section 6.
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II. BASIC NOTIONS

Basic notions are defined as in standard texts, such as [8].

A. Alphabet, string

An alphabet A is a finite nonempty set of symbols.
A string s is a sequence of n symbols a1a2a3 . . . an from a

given alphabet, where n is the length of the string. A sequence
of zero symbols is called empty string. Empty string is denoted
by symbol ε and its length is 0.

B. Language

A∗ denotes the set of all strings over an alphabet A includ-
ing the empty string. Set A+ is defined as A+ = A∗ \ {ε}.
A language L over an alphabet A is a set L ∈ A∗. Similarly,
for string x ∈ A∗, symbol xm, m ≥ 0, denotes the m-
fold concatenation of x with x0 = ε. Set x∗ is defined as
x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}.

C. Pushdown automata

A nondeterministic pushdown automaton (nondeterministic
PDA) is a seven-tuple M = (Q,A,G, δ, q0, Z0, F ), where Q
is a finite set of states, A is an input alphabet, G is a pushdown

store alphabet, δ is a mapping from Q× (A∪ {ε})×G∗ into
a set of finite subsets of Q × G∗, q0 ∈ Q is an initial state,
Z0 ∈ G is the initial pushdown store symbol, and F ⊆ Q is
the set of final (accepting) states.

Triplet (q, w, x) ∈ Q×A∗×G∗ denotes the configuration of
a pushdown automaton. Top of the pushdown store x is written
on its left hand side. The initial configuration of a pushdown
automaton is a triple (q0, w, Z0) for the input string w ∈ A∗.

The relation ⊢M⊂ (Q × A∗ × G∗) × (Q × A∗ × G∗)
is a transition of a pushdown automaton M . It holds that
(q, aw, αz) ⊢M (p, w, βz) if (p, β) ∈ δ(q, a, α), where
z, α, β ∈ G∗. The k-th power, transitive closure, and transitive
and reflexive closure of the relation ⊢M is denoted ⊢k

M , ⊢+
M ,

⊢∗
M , respectively.
A pushdown automaton M is a deterministic pushdown

automaton (deterministic PDA), if it holds:

∀q ∈ Q, ∀a ∈ A, ∀z ∈ G, δ(q, ε, z) = ∅ : |δ(q, a, z)| ≤ 1,

∀a ∈ A, |δ(q, ε, z)| ≥ 1 : δ(q, a, z) = ∅.

D. Visibly pushdown automata

Visibly pushdown automata are defined as in [3], [12].
Let A = Ac ∪ Ar ∪ Al be a partition of A. The intuition

behind the partition is: Ac is the finite set of call (push)
symbols, Ar is the finite set of return (pop) symbols, and
Al is the finite set of local symbols.

A visibly pushdown automaton (VPA) M over A is a seven-
tuple (Q,A,G, δ,Q0,⊥, F ), where Q is a finite set of states,
A = Ac ∪ Ar ∪ Al, G is a finite pushdown store alphabet,
a special symbol ⊥∈ G represents the bottom-of-pushdown-
store, which can be popped from the pushdown store unlimited
number of times, δ = δc ∪ δr ∪ δi is the transition mapping,
where (Q,G \ {⊥}) ∈ δc(Q,Ac, ε), (Q, ε) ∈ δr(Q,Ar, G),
and (Q, ε) ∈ δi(Q,Al, ε), Q0 ⊆ Q is a set of initial states,
⊥∈ G is initial pushdown store symbol, and F ⊆ Q is a set
of final (accepting) states.

III. RELATED WORKS

Visibly pushdown automata were introduced in [3]. More-
over, it was shown that any nondeterministic visibly pushdown
automaton can be transformed into an equivalent deterministic
one. The determinisation principle is similar to the the deter-
minisation principle of finite automata [8].

In [3], states of the resulting deterministic visibly pushdown
automaton consist of two components (S,R). Component
R ∈ P(Q) is an element of powerset of the states of the
original automaton. Component S = P(Q×Q) is a powerset
of pairs of states of the original nondeterministic pushdown
automaton that keeps tracking beginning states on path from
push transitions to all states listed in R component. We note
that, given the union of states in second parts of pairs in S
component is equal to R component, the R component can
be omitted but for keeping the automata hierarchy simple we
maintain this R component in the following definition as a
connection to finite automata [12], where the states of the
determinized automata correspond to the R component.

Let M = (Q,A,G, δ,Q0,⊥, F ) be a nondeterministic VPA.
For A = Ac∪Ar∪Al, an equivalent deterministic VPA M ′ =
(Q′, A,G′, δ′, q′0,⊥, F ′) can be constructed as follows: Q′ =
2Q×Q × 2Q, q′0 = (IdQ0

, Q0) where IdX = {(x, x)|x ∈ Q},
F ′ = {(S,R)|R∩F 6= ∅}, G′ = 2Q×Q × 2Q ×Ac ∪ {⊥}, the
transition relation δ′ = δ′l ∪ δ′c ∪ δ′r is given by:

Local: For every
l ∈ Al, ((S

′, R′), ε) ∈ δ′l((S,R), l, ε) where

S′ = {(q, q′)|∃q′′ ∈ Q : (q, q′′) ∈ S,

(q′, ε) ∈ δl(q
′′, l, ε)},

R′ = {q′|∃q ∈ R : (q′, ε) ∈ δl(q, l, ε)}.

Push: For every
c ∈ Ac, ((IdR′ , R′), (S,R, c)) ∈ δ′c((S,R), c, ε) where

R′ = {q′|∃q ∈ R : (q′, γ) ∈ δc(q, c, ε)}.

Pop: For every r ∈ Ar,

• if the pushdown store is empty : ((S′, R′), ε) ∈
δ′r((S,R), r,⊥) where S′ = {(q, q′)|∃q′′ ∈ Q :
(q, q′′) ∈ S, (q′, ε) ∈ δr(q

′′, r,⊥)} and R′ =
{q′|∃q ∈ R : (q′, ε) ∈ δr(q, r,⊥)}.

• otherwise: ((S′′, R′′), ε) ∈ δr((S,R), r, (S′, R′, c)),
where























R′′ = {q′|∃q ∈ R′ : (q, q′) ∈ U},
S′′ = {(q, q′)|∃q3 ∈ Q : (q, q3) ∈ S′, (q3, q

′) ∈ U},
U = {(q, q′)|∃q1 ∈ Q, q2 ∈ R : (q1, q2) ∈ S,

(q1, γ) ∈ δc(q, c, ε),
(q′, ε) ∈ δr(q2, r, γ)}.

The equivalent deterministic automaton has at most 2n
2+n

states and at most |Ac|2n
2+n pushdown store symbols. The

size of the transition relation can be at most |Al|(2n
2+n)

2
+

|Ac|(2n
2+n)

3
+ |Ar ||Ac|(2n

2+n)
3
.

In 2009 an improved upper bound of the number of states
has been found by Nguyen Van Tang [12]. In that paper
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two optimizations for Alur-Madhusudan’s determinisation of
visibly pushdown automata were introduced. First, the set of
summaries S component of a state pair for some special cases
concerning initial states was minimized. Second, R component
of the state pair was removed. By removing R component of
determinised visibly pushdown automaton the upper bound for
the number of states was lowered from 2n

2+n to 2n
2

and there
were at most |Ac|2

n2

pushdown store symbols. The optimiza-
tion is based on the observation that information stored in R
component of a state pair is already contained in S component
of the state pair [12]. However, that determinisation algorithm
is still not practical. As pointed by Nguyen Van Tang in its
implementation of visibly pushdown automata determinisation
library, named VPAlib, the determinisation was performed in
an exhaustive way. Therefore, their determinisation easily gets
stuck with visibly pushdown automata of small size [12].

IV. DETERMINISATION ALGORITHM

This section presents our new algorithm for the determin-
isation of nondeterministic visibly pushdown automata. The
algorithm improves the original determinisation algorithm [3],
[12]. As stated in the Introduction our algorithm computes and
constructs only necessary and accessible states and pushdown
symbols of the deterministic pushdown automaton. The basic
idea of this improvement is analysing and tracking pushdown
symbols that can appear on the top of the pushdown store
for a particular state. With this information the explored
pop transitions for the state can be reduced to only those
that correspond to the possible pushdown store top symbols.
Also, it is shown below that this information on the possible
pushdown store top symbols for a state has certain interesting
properties, which can be exploited for an effective way of
calculation and storing this information for all states in the
automaton.

We will use Tq to denote pushdown store top symbols. The
pushdown store top symbols of state q, Tq ⊆ G′ are the set
of all pushdown store symbols that could appear at the top of
the pushdown store for a state q ∈ Q′.

We will also use symbol λ for a local connection: State q′

is locally connected to q′′ if there is a sequence of transitions
from state q′′ to state q′, the pushdown store depth in both
states is the same and the pushdown store depth for all other
states along the sequence of transitions is greater than the
pushdown store depth in q′′. This relation between two states is
not symmetric but is transitive. See Figure 1 shows an example
of various local connections. Note that for example the path
1 → 7 → 8 is not a local connection. The notation a|α 7→ β
denotes a transition that reads symbol a ∈ A and replaces
α ∈ G′∗ with β ∈ G′∗ on the top of the pushdown store. This
notation will be used in figures throughout the paper.

It can be easily seen that the pushdown store top symbols
are shared between locally connected states.

With local connection from q′ to q and local connection
from q to q′′, the q′ is locally connected to q′′ by transitive
closure. If Tq is the set of pushdown store top symbols of state
q, then Tq′ ⊆ Tq and Tq ⊆ Tq′′ and also Tq′ ⊆ Tq′′ .

The local closure of state q is λ∗(q). See Figure 2 as an
example of a local closure. See Figure 1 and note that the
path 1 → 7 → 8 mentioned before is in fact a local closure.

Closing all states under the λ∗(q) connects all Tq . See
Figure 3.

We define these notions formally:
Definition 1: A local connection λ(q) of state q.

Given a deterministic visibly pushdown automaton M ′ =
(Q′, A,G′, δ′, q′0,⊥, F ′), where A = Ac ∪ Ar ∪ Al, states
q, q′ ∈ Q′, then λ(q) = {q′ : (q, uw, γ0) ⊢k (q′, w, γk), u ∈
A∗, w ∈ A∗, γ0, γk ∈ G′∗, 1 ≤ k, |γ0| = |γk|, |γ0| < |γi|, 1 ≤
i < k}.

Definition 2: A local connection closure λ∗(q) of state q.
The local connection closure λ∗ is defined by these equalities:

λ0(q) = q, (1)

λi+1(q) =
⋃

∀q′∈λi(q)

λ(q′), (2)

λ∗(q) =
⋃

i≥0

λi(q). (3)

Definition 3: A set of pushdown store top symbols Tq of
state q. Given a deterministic visibly pushdown automaton
M ′ = (Q′, A,G′, δ′, q′0,⊥, F ′), where A = Ac ∪ Ar ∪ Al,
states q, q′, q′′ ∈ Q′, then Tq = {g : (q′, g) ∈ δ(q′′, c, ε), c ∈
Ac, g ∈ G′, q′ ∈ λ∗(q)}.

Due to convenient properties of λ∗(q), Tq can be stored
in a space optimal way. Given q, q′ ∈ Q′, then ∀q′ ∈ λ∗(q)
holds that Tq′ ⊆ Tq , ie parts of Tq can be shared between
locally connected and locally closed states. See Figure 4 as an
example of this process.

Further, we show by induction on the length of an input
sentence that pushdown store top symbols are given by the
λ∗(q) and states that are source and target of the appropriate
push and pop transition.

Step one:

ε :⊥∈ Tq′
0
. (4)

Then, assume that pushdown store top symbols are given by
the local closure for first i symbols of input word. Symbol a is
a (i+1)-th symbol of input word. Given q1, q2, q3, s1, s2, s3 ∈
Q′, a ∈ Ac, then we have three distinct cases:

λ(r1) ={q1 : (q1, aw, γ) ⊢ (r1, w, γ)}, (5)

Tr2 ={(q2, a) : (q2, aw, γ) ⊢ (r2, w, (q2, a)γ)}, (6)

λ(r3) ={q2 : (q3, aw, (q2, a)γ) ⊢ (r3, w, γ)}. (7)

Notice that γ does not change between states q1 and r1.
Pushdown store top symbol (q2, s) was pushed in state q2 and
popped in state q3 so γ does not change between states q2
and r3 either. Pushdown store top symbols are given by the
λ∗(q) and states that are source and target of appropriate push
and pop transition for first i + 1 symbols of input word. The
induction holds for i+ 1.

More informally: The deterministic automaton is con-
structed from the initial state. The deterministic subset of the
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1

2

3

7

5

6

8

4

c1|ε 7→ (1, c1)

c2|ε 7→ (2, c2)

c2|ε 7→ (4, c1)

c3|ε 7→ (3, c3)

l1|ε 7→ ε l2|ε 7→ ε

l3|ε 7→ ε

l4|ε 7→ ε

c2|ε 7→ (4, c1)

r3|(3, c3) 7→ ε

r2|(2, c2) 7→ ε

r1|(1, c1) 7→ ε

r1|(4, c1) 7→ ε

Fig. 1. Various λ relations of state 8 to state 1.

0 1

2 3

4 5

6 7

8 9
l1|ε 7→ ε

c1|ε 7→ (1, c1)

r1|(1, c1) 7→ ε

l2|ε 7→ ε

c2|ε 7→ (5, c2)

r2|(5, c2) 7→ ε

l3|ε 7→ ε

λ1

λ2
λ3

λ4

λ5

Fig. 2. The λ
∗ relation computed for state 9.

0 1

2 3

4 5

6 7

8 9
l1|ε 7→ ε

c1|ε 7→ (1, c1)

r1|(1, c1) 7→ ε

l2|ε 7→ ε

c2|ε 7→ (5, c2)

r2|(5, c2) 7→ ε

l3|ε 7→ ε

Fig. 3. The λ
∗ relation computed for all states.

initial state is created from all initial states of the original
automaton. Initial pushdown store symbol ⊥∈ Tq′

0
forms the

pushdown store top symbols set.

In every iteration, all local and push transitions are explored
for the known states. Base set of possible pushdown store top
symbols Tq of the pushdown store for given state q ∈ Q′ is
given by push transitions. Then, we track pushdown store top
symbols for each state.

Any two states q, q′, where a local transition exists from
state q′ to state q, share part of Tq′ in form of that everything
from Tq′ is in Tq .

Any two states q, q′, where a pop transition popping symbol

(q′, r) exists from state x to state q, share part of Tq′ in form
of that everything from Tq′ is in Tq . Given q, q′, q′′ ∈ Q′, l ∈
Al, c ∈ Ac, r ∈ Ar, then for T the following properties hold:

⊥∈ Tq′
0
, (8)

∀(q, ε) ∈ δ(q′, l, ε) ⇒Tq′ ⊆ Tq, (9)

∀(q, ε) ∈ δ(q′′, r, (q′, c)) ⇒Tq′ ⊆ Tq, (10)

∀(q, (q′′, c)) ∈ δ(q′′, c, ε) ⇒(q′′, c) ⊆ Tq. (11)

The algorithm of the determinisation is formally described
by Algorithm 1. Given q, q′′ ∈ Q′, its main part can be written
in an abstract way as follows:
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0 1

2 3

4 5

6 7

8 9
l1|ε 7→ ε

c1|ε 7→ (1, c1)

r1|(1, c1) 7→ ε

l2|ε 7→ ε

c2|ε 7→ (5, c2)

r2|(5, c2) 7→ ε

l3|ε 7→ ε

Fig. 4. Connecting Tq between locally connected states.

1) create the initial state,
2) while ∄(q′, ε) ∈ δ(q, r, γ), where r ∈ Ar and γ ∈ Tq,

do create pop transition (q, r, γ),
while ∄(q′, ε) ∈ δ(q, l, ε), where l ∈ Al, do create local
transition (q, l, ε),
while ∄(q′, γ) ∈ δ(q, c, ε), where c ∈ Ac, do create push
transition (q, c, ε),

3) set final states.
Only a pair of states (q′, q), where q′ ∈ λ∗(q), can appear

as an element in S component. As it is described in II, the
new pairs of S component are only created from push and
local transitions. The push transitions only yield elements of
S component based on identity. On the other hand, the local
transitions yield exactly the pairs that conform to local closure,
because they connect appropriate targets of push and sources
of pop operations.

Let L be the set of all distinct pairs of locally closed states
of the nondeterministic automaton. Then, 2|L| is the maximum
number of states of the deterministic automaton. The |L| is at
most n2 when all states in the nondeterministic automaton are
locally closed.

V. EXAMPLE

In this section the determinisation of a simple nondeter-
ministic visibly pushdown automaton is demonstrated. For the
sake of clarity, the component R of states and pushdown store
symbols is omitted, because the information it holds is already
contained in the component S (it is the second value of each
pair), as it was described in [12].

Example 5.1: The nonderterministic visibly pushdown au-
tomaton a1 is shown in Figure 6.

Let a1 = (Q,Ac ∪ Ar ∪ Al, G, δ,Q0,⊥, F ) be a nonde-
terministic visibly pushdown automaton. An equivalent deter-
ministic visibly pushdown automaton d1 = (Q′, Ac ∪ Ar ∪
Al, G

′, δ′, q′0,⊥, F ′) can be constructed as follows.
The initial state is constructed as powerset of all identity

pairs of initial states of automaton a1, so q′0 = {(0, 0)}.
The push and the local transitions can be easily deduced

from determinisation rules from Section IV. All transitions
are shown in Figure 5.

In each push transition, the pushdown store top symbol is
tracked for target state of the push transition. When a local

transition occurs, all pushdown store top symbols are shared
from a source state of the local transition to a target state of
the local transition and all other locally connected states. The
tracking of all locally connected states could be achieved by
creating virtual transitions serving as a transitive closure.

Then, the pop transitions are created based on known input
symbols (from the nondeterministic automaton) and tracked
pushdown store top symbols. The transitions are created
according to the determinisation rules from Section IV.

For an illustration of the determinisation see Figure 5. The
pushdown store top symbols are tracked as follows. Push,
local and pop transitions are marked green, gray and red,
respectively. Arrows describe movements of tracked tops of
the pushdown store. Dashed arrows represents source of top
pushdown store symbols that are shared with target state when
local transition occur.

The resultant deterministic PDA d1 is shown in Figure 7.
The resultant deterministic PDA can be also reproduced by

running Algorithm 1.
Given the nondeterministic pushdown automaton from the

example above, the VPAlib algorithm [9] constructs a de-
terministic pushdown automaton with 45 states and 1206
transitions. We note that 45 (states) is not a power of 2,
which is caused by the fact that the implementation of VPAlib
library does not consider states in which components R or S
are empty sets (in this way, it performs another optimization
of the determinisation algorithm [12]). For comparison, our
algorithm constructs an equivalent deterministic pushdown
automaton with only 3 states and 8 transitions. This is a signifi-
cant improvement over the previously existing determinisation
algorithms.

VI. CONCLUSION

A new incremental algorithm of the determinisation of non-
deterministic visibly pushdown automata has been described.
The algorithm creates only necessary states and pushdown
symbols by analysing and tracking which states are achievable
by computing transitions on the same levels of pushdown
operations nesting. Possible tops of the pushdown store are
stored for each state when a pop transition is in progress and
then they are shared through local transitions with states on
the same levels of the nesting. The behavior of the algorithm
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Determinisation algorithm.
Input : A nondeterministic visibly pushdown automaton Mn(Q,Ac ∪ Al ∪ Ar, G, δ,Q0,⊥, F ).
Output: An equivalent deterministic visibly pushdown automaton Md(Q

′, Ac ∪ Al ∪ Ar, G
′, δ′, q′0,⊥, F ′).

Method:

set q′0 = {(x, x) : x ∈ Q0}, Q′ = {q′0}, G
′ = ∅, δ′ = ∅, F ′ = ∅;

create queue Dirty = ((q′0,⊥)), // the set of pairs (state, pushdown store symbol);
create set Clean = ∅, // the set of states;
while Dirty is not empty do

(state, symbol) = dequeue Dirty;
create set States = ∅;
if state /∈ Clean then

forall the l ∈ Al do

forall the (q, q2) ∈ state do

state2 = {(q, q1) : (q1, ε) ∈ δ(q2, l, ε)}; if state2 = ∅ then continue;
add state2 to Q′; add (state2, ε) to δ′(state, l, ε); add state2 to States;
update Tx, x ∈ λ∗(state2);

end

end

forall the c ∈ Ac do

forall the (q, q2) ∈ state do

state2 = {(q1, q1) : (q1, g) ∈ δ(q2, c, ε)}; if state2 = ∅ then continue;
add state2 to Q′; add (state, c) to G′;
add (state2, (state, c)) to δ′(state, c, ε); add state2 to States;
update Tx, x ∈ λ∗(state2);

end

end

add state to Clean;
end

forall the r ∈ Ar do

if symbol is ⊥ then

forall the (q, q2) ∈ state do

state2 = {(q, q1) : (q1, ε) ∈ δ(q2, r,⊥)}; if state2 = ∅ then continue;
add state2 to Q′; add (state2, (state, ε)) to δ′(state, r, symbol); add state2 to States;
update Tx, x ∈ λ∗(state2);

end

else
create set Update = ∅;
forall the (q1, q2) ∈ state do

pairs = {(q, qI) : (qI , g) ∈ δ(q2, r, g), (q1, ε) ∈ δ(q, c, g), c = second(symbol)};
add pairs to Update;

end

forall the (q, q3) ∈ first(source) do

state2 = {(q, q2) : (q3, q2) ∈ Update}; if state2 = ∅ then continue;
add state2 to Q′; add (state2, (state, ε)) to δ′(state, r, symbol); add state2 to States;
update Tx, x ∈ λ∗(state2);

end

end

end

forall the s ∈ States do

forall the g ∈ Tstate \ Ts do enqueue (s, g) to Dirty ;
end

end

forall the q ∈ Q′ do

if exists (q1, q2) ∈ q such that q2 ∈ F then add q into F ′ ;
end

Algorithm 1: Determinisation
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Fig. 5. Construction of deterministic automaton d1.

State q {(0, 0)} {(0, 0), (1, 1)} {(0, 1)}

Pushdown store ⊥ ⊥, (a, {(0, 0)}), (a, {(0, 0)}),

top symbols Tq (a, {(0, 0)}), (a, {(0, 0), (1, 1)}) (a, {(0, 0), (1, 1)})

1. a|ε 7→ (a, {(0, 0)}) {(0, 0), (1, 1)}

2. c|ε 7→ ε {(0, 1)} {(0, 1)}

3. a|ε 7→ (a, {(0, 0), (1, 1)}) {(0, 0), (1, 1)}

4. d|(a, {(0, 0), (1, 1)}) 7→ ε {(0, 1)}

5. d|(a, {(0, 0)}) 7→ ε {(0, 1)}

4. b|(a, {(0, 0), (1, 1)}) 7→ ε {(0, 1)}

6. b|(a, {(0, 0)}) 7→ ε {(0, 1)}

0 1

a|ε 7→ A b|A 7→ ε

d|B 7→ ε

a|ε 7→ B

c|ε 7→ ε

Fig. 6. The nondeterministic visibly pushdown automaton a1 from Exam-
ple 5.1.

(0, 0) (0, 1)

(0, 0), (1, 1)

a|ε 7→ (a, {(0, 0), (1, 1)})

b|(a, {(0, 0), (1, 1)}) 7→ ε

b|(a, {(0, 0)}) 7→ ε

c|ε 7→ ε

a|ε 7→ (a, {(0, 0)})

c|ε 7→ ε
d|(a, {(0, 0)}) 7→ ε

b|(a, {(0, 0), (1, 1)}) 7→ ε

Fig. 7. The resultant deterministic PDA d1 from Example 5.1 created by
determinisation of automaton a1.

is inspired by the behavior of the incremental construction of
the deterministic finite automaton.

The algorithm has been implemented as a part of an
experimental automata library [13].

Although the number of states of the deterministic automa-
ton for the worst case is still 2n

2

for a given nondeterministic
visibly pushdown automaton with n states, it has been shown
that the upper bound of the number of states of the deter-
ministic automaton is dependant on the number of distinct
pairs of locally connected states. For those and other reasons
in many practical cases our algorithm provides significantly
smaller deterministic automata than the previously existing
determinisation algorithms.

Furthermore, a similar approach can be adapted for the
determinisation of Height-deterministic pushdown automata
[10].

Further information can be found on [4].
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