
 

 

 

 

 

Abstract—Data mining (DM) is a collection of 

algorithms that are used to find some novel, useful and 

interesting knowledge in databases. DM algorithms are 

based on applied fields of mathematics and informatics, 

such as mathematical statistics, probability theory, 

information theory, neural networks.  Some methods of 

these fields can be used to find hidden relation between 

data, what can be used to create models that predict 

some behavior or describe some common properties of 

analyzed objects. In this paper, we combine methods of 

DM with tools of reliability analysis to investigate 

importance of individual database attributes. Results of 

such investigation can be used in database optimization 

because it allows identifying attributes that are not 

important for purposes for which the database is used. 

Our approach is based on some coincidence between the 

key terms of DM and reliability analysis. 

I. INTRODUCTION 

NE of the current problems of modern medicine is 

processing and analysis of a huge amount of data that 

are generated by medical systems. This calls for design of 

automatic or semi-automatic process that could be used to 

find useful and understandable knowledge from data. This 

process is known as a Knowledge Discovery in Databases 

(KDDs) and it involves an (semi-)automatic, exploratory 

analysis and modeling of large data repositories to identify 

valid, novel, useful, and understandable patterns from large 

and complex datasets [1]. 

The main idea of a KDD is to transform a huge amount of 

row data into useful information and knowledge that can be 

very easy interpreted. In general, data represent basic facts 

and statistics without any context. As an example, let us 

consider numbers “100” or “22.3” or simple value “no”. 
When we add a context to the data, then we get information. 

For example, a patient with plasma glucose concentration at 

2 hours in an oral glucose tolerance test of 100 and body 

mass index (patient’s body mass in kg divided by the square 
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of its height in m) of 22.3 does not suffer diabetes. So, the 

basic difference between data and information is in its 

information value, i.e. data have no information value 

themselves in compare to information. 

If we have enough information from some domain, then it 

can be possible to identify some general facts that 

characterize the domain. These general facts are known as 

knowledge. For example, let us consider the example of 

relation between plasma glucose concentration, body mass 

index and diabetes of a patient. If we have such information 

about many patients, then, for example, we can derive that 

there is a little probability that patients with plasma glucose 

concentration under 127 and body mass index under 24.6 

suffer diabetes. This knowledge can be identified in dataset 

[2] that contains 768 records about the diabetes incidence in 

the Pima Indian population living near Phoenix in Arizona. 

The relation between data, information and knowledge is 

very often described by the knowledge pyramid (Fig. 1). It 

expresses that a huge amount of data can be transformed into 

information by adding a context and, then, analysis and 

aggregation of information can lead in the discovery of 

general patterns in data that represent knowledge about the 

studied domain. One of the most popular terms for the 

second phase is Data Mining (DM). 

 

Fig.  1 Knowledge pyramid 

II. KNOWLEDGE DISCOVERY PROCESS AND DATA MINING 

In general, DM is a collection of methods focused on 

building model and finding patterns or trends in data. When 

DM is used in a process in which their outcome is evaluated, 

so that we can think about the product as being a new 

package of information, then we speak about a knowledge 

discovery process [3].  
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A knowledge discovery process or KDD is a very 

complex non-linear process that involves not only data 

analysis but also its preparation as well as knowledge 

interpretation and using the discovered knowledge. A KDD 

involves six important steps that are [3], [4]: understanding 

the problem domain, understanding the data, preparation of 

the data, data mining, evaluation of the discovered 

knowledge and using the knowledge. The term non-linear 

means that, in any step, there can be identified some 

problems that cause need to return to some of the previous 

steps and repeat the whole process from that step. 

A KDD is not a one-pass process [3], and its every 

iteration gives a different view on the data. For example, in 

the preprocessing phase, we can identify quite a lot of 

missing data, so their prediction could become the goal of 

the first iteration of the KDD. In the second iteration, we can 

focus on the creation of a model that could be used to predict 

patient’s diagnosis from that data (predictive DM) or to 
identify patients with similar relations between their 

symptoms and diagnosis (descriptive DM). 

A. Understanding the Medical Problem Domain 

At the beginning of a KDD, we need to identify what type 

of knowledge should be found in the data. This requires 

understanding the problem domain. In case of medical data, 

the domain comes from medical area and, therefore, the main 

goals of this phase are [3]: 

a) translation of medical goals into DM ones, and 

b) determination of success criteria from the medical 

and DM point of view. 

B. Understanding the Data 

When we understand the medical problem domain, then 

the data that are available should be analyzed. This analysis 

identifies which data will be used, and which additional 

information will be needed. The main goal of this step is to 

create a dataset for the next steps of KDD. 

The result of this step can be very often interpreted as a 

table with rows and columns. The columns represent 

individual attributes of analyzed data while rows agree with 

individual records (instances/patients). Examples of two 

datasets are in Fig. 2. The first one contains 5 attributes 

related to cancer and it stores information about 14 patients. 

The second table is a sample of dataset focused on the 

diabetes incidence in the Pima Indian population [2]. It has 9 

attributes and 14 records (the all dataset has 768 rows). 

In Fig. 2, we can see that two different types of attributes 

exist – categorical and numerical [5] (Fig. 3). Categorical 

attributes are non-numerical and, usually, they have several 

possible values. They are also known as qualitative because 

they describe an object from qualitative point of view. The 

categorical attributes can be split into two separate groups: 

nominal and ordinal. The basic difference between them is 

that nominal attributes contain data that cannot be ordered, 

i.e. there is define no relation such as “greater/better than” or 
“lower/worse than”, while ordinal ones are defined on data 

that can be ordered in some way. As an example, let us 

consider blood groups (A, B, AB, 0) and pain degree 

(severe, mild, none). There is no reason to assume that blood 

group A is better than 0 but, in case of pain degree, it is clear 

that no pain is better than severe one. 

 
 

 

Fig.  2 Examples of medical datasets 

 

 

Fig.  3 Types of attributes 

 

Numerical attributes are another class. They are expressed 

in the form of numbers. These attributes define object 

properties from quantitative point of view and, therefore, 

they are also known as quantitative attributes. They can be 

subdivided into two groups: discrete and continuous. 

Discrete attributes are often defined on a set of some whole 

numerical values and very often count numbers of some 

events. As an example, let us consider the number of times 

when a woman has been pregnant or the birth year of a 

patient. When the attribute is continuous, then it means there 

is no limitation (except the lower and upper limits) on the 

values that can be taken. Typical examples are patient’s 
height, weight or plasma glucose concentration. 

One of the typical problems of KDD that is related to data 

is how much data is optimal for DM algorithms (Fig. 4). 
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There exists no definitive answer but, in general, more 

records are better because we can avoid the problems of 

underfitting, when the created model is too simple to analyze 

data that do not come from the original dataset. Similarly, 

datasets with less attributes are better than ones with many 

because the discovered knowledge can be interpreted easier. 

 

Fig.  4 Problems of DM related to the number of attributes and records 

C. Preparation of the Data 

When we understand the medical problem domain and the 

data on which KDD will be performed, we can prepare them 

for DM algorithms. This is one of the most important and the 

most time consuming steps of KDD [3]. It consists of two 

phases: data cleansing and data transformation. 

The quality of data is the most important factor on which 

the success of KDD depends. Real databases contain a lot of 

data. However, these data can include incorrect or missing 

values. If there are a lot of such values, then the result of a 

DM algorithm will be a model that is unusable in practice. 

Therefore, data cleansing is very important step. Its main 

task is to enhance data reliability. There exist a lot of 

methods that can be used for this purpose. The simplest ones 

are based on the assumption that most of the data are correct 

and, therefore, incorrect data can be handled simply by its 

removing. More sophisticated methods involve some 

statistical methods to identify and replace incorrect or 

missing values and the most complex ones use supervised 

DM algorithms to predict the correct value of an attribute. 

When the data have required quality, then we can prepare 

them for DM algorithms. This phase involves production of 

new attributes (when given attributes are not very 

appropriate for DM) and reduction of attribute count (models 

created from huge amount of attributes are usually very 

complicated, which results in problems with interpretation of 

gained knowledge; also, such models are usually very 

accurate for data from which they have been produced, but 

inaccurate for new data and, therefore, their deployment can 

be very problematic). 

New attributes can be produced from one or more existing 

attributes. Therefore, we distinguish between one-attribute 

and multi-attribute transformations. Typical examples of 

one-attribute transformations are: normalization (mapping 

continuous data to values in interval <0, 1>), percentages 

(values are related to a specified base value), scores 

(transformation of ordinal data to discrete ones), etc. 

Examples of multi-attribute transformations are ratios 

(quotient of two attributes, e.g. using body mass index 

instead of weight and height), rates (number of event 

occurrences divided by time, e.g. number of cigarettes per 

day), and other linear and nonlinear combinations. 

There exist several approaches for reducing the number of 

attributes. Very often, medical expert knowledge can be 

sufficient to solve this problem. Another alternative is to use 

some methods of mathematical statistic such as principal 

component analysis, kernel principal component analysis, 

independent component analysis [6], etc. 

D. Data Mining 

At the beginning of this phase, the appropriate DM task 

has to be chosen (Fig. 5). There exist two different goals, for 

which DM can be used: description and prediction [7]. 

 

Fig.  5 Basic data mining models 

 

Descriptive methods create models that are used for better 

understanding of given dataset. Typical examples are 

clustering, summarization and visualization [3]. The main 

idea of clustering is to find natural clusters of objects in a 

dataset. Objects are grouped together if they are similar to 

one another and dissimilar from objects in other clusters. 

Summarization is focused on data aggregation that is useful 

if we want to find some global characteristics of the entire 

dataset. The global characteristics allow describing data 

without necessity of knowing exact values of attributes of 

individual objects in dataset. So, they reduce the dataset size 

in terms of attributes or records count. Visualization includes 

techniques that aim is to simplify data understanding. 

Predictive methods are used when the attributes can be 

subdivided into two groups: input and output attributes. In 

this case, DM can be used to discover the relationship 

between inputs and output attribute. (For example, the 

second dataset in Fig. 2 contains 8 input attributes, which 

more or less relates to diabetes, and 1 output attribute that 

identifies whether the patient suffer diabetes or not.) Based 

on the possible values of the output attribute, two types of 

prediction can be recognized: classification and regression 

[7]. The former maps the input space into predefined classes 

or, in general, into a discrete-valued domain, i.e. the output 

attribute is categorical or discrete numerical (Fig. 3). Typical 

algorithms of classification include neural networks (existing 

dataset is used to create and train a neural network that will 

be used to classify new records), decision trees (existing 

dataset is used to create a decision tree that will be capable 

to correct classify new records), instance based learning 

(every new record is classified according to its similarity 
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with records that have already been classified), etc. 

Regression models transform the space of input attributes 

into a real-valued domain, i.e. the output attribute is 

continuous numerical according to Fig. 3, and the typical 

examples are linear and non-linear regression. 

When we identify the appropriate DM task, then we have 

to choose and employ DM algorithm that will be used to 

achieve the goal, e.g. for clustering, we can select from 

statistical methods, support vector clustering, k-means 

clustering, hierarchical clustering, etc. Every algorithm has 

some parameters that have to be set correct to get satisfied 

result, e.g. how many clusters do we want to create, what is 

the minimal size of a cluster. These parameters are usually 

obtained by running the algorithm more times with different 

values of parameters and analyzing the obtained results. 

E. Evaluation of the Discovered Knowledge 

The result of DM phase is a model that can be used to 

describe given data or to predict values of some attributes. 

When we want to interpret the model, then we have to 

understand the results that are described by it. This means 

that we have to be able to interpret the results from the 

medical point of view. This allows us to understand the 

discovered knowledge and identify whether it is novel and 

interesting. If the obtained knowledge is novel, then we can 

check its impact on the medical goal determined at the 

beginning of the KDD and recognize its usefulness in 

medical environment. 

F. Using the Discovered Knowledge 

Finally, when the model is evaluated, then it should be 

incorporated into another system that will use the knowledge 

represented by the model. The success of this step 

determines the effectiveness of the entire KDD because the 

KDD has been unnecessary without further use of the 

discovered knowledge. According to [7], there are many 

challenges in this step, such as losing the “laboratory 

conditions” under which the model has been created. This 

means that the model has been produced from a certain static 

dataset, but the data become dynamic after the model 

deployment. 

The result of KDD is knowledge that can be used for 

description purposes or for prediction. In case of predictive 

model that is created from a dataset containing only 

categorical attributes, the discovered knowledge can be 

represented as a table that enumerates all combinations of 

values of input attributes and defines value of the output for 

each of them. Such kind of table is used also in reliability 

analysis, and it is known as the structure function. This 

indicates that some tools of reliability analysis could be used 

in the analysis of the discovered knowledge. 

III. RELIABILITY ANALYSIS 

Reliability is an important characteristic of systems. Every 

system consists of one or more components (basic parts of 

the system that are assumed to be indivisible into smaller 

elements). One of the principal tasks of reliability analysis is 

investigation of influence of individual system components 

on system activity and identification of components that are 

most important for system proper work. This investigation is 

known as importance analysis. 

A. Binary- and Multi-State Systems  

Before the importance analysis can be performed, a model 

of the system has to be created. As a rule two types of 

models are used in reliability analysis. The first one is known 

as a Binary-State System (BSS). This model is based on the 

assumption that the system and all its components can be in 

one of only two possible states – functioning (labelled by 

number 1) and failure (represented by number 0). The 

dependency between states of individual system components 

and system state is expressed by a special relation that is 

known as structure function. The structure function of a BSS 

has the following form [8], [9]: 

    ,1,01,0:)(),...,( 1  n

nxx x  (1) 

where n is a number of system components, xi is a variable 

denoting state of the i-th component and  x = (x1,…, xn) is a 

vector of states of system components (state vector). The 

structure function of a BSS can be viewed as a Boolean 

function and, therefore, some approaches related to analysis 

of Boolean functions can be used in the analysis of BSSs [9]. 

BSSs have been widely used in reliability analysis, 

especially in the analysis of systems in which any deviation 

from perfect functioning results in failure of the system, e.g. 

nuclear power plants [10], aviation systems [11]. However, 

these models are not very appropriate for systems that can 

operate at different performance levels, i.e. systems that can 

meet their mission also when they are not perfectly 

functioning, e.g. distribution networks [12] or healthcare 

systems [13]. Therefore, models that allow defining more 

than two states in system/components performance are used 

in the analysis of such systems. These models are known as 

Multi-State Systems (MSSs). 

A general MSS permits defining different number of states 

for the system and for its components. If we assume that the 

system has m possible states and its i-th component, for 

i = 1,…, n, can be in one of mi states, then the structure 

function of the MSS corresponds to the next map [14]–[16]: 

      ,1,...,01,...,01,...,0

:)(),...,(

1

1




mmm

xx

n

n



x
 (2) 

where 0 corresponds to completely failure of the system/ 

component while m -1 (mi -1) means that the system (the i-th 

component) is perfectly functioning. 

A special type of MSSs is a homogenous system, in which 

m1 = … = mn = m. The structure function of such system can 

be interpreted as a Multiple-Valued Logic (MVL) function. 

This fact allows us to use some methods of MVL logic in 

reliability analysis of MSSs [16]. 
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The mathematical model of structure function used in 

reliability analysis can be combined with methods of DM to 

perform analysis of medical databases. This analysis can be 

used to identify database attributes that carry no important 

information from the point of view of database purpose. 

For example, let us consider the example of database for 

the analysis of the breast cancer diagnosis from [17]. In this 

example 4 categorical input attributes are used (Table I): A1 

(Gynecological history), A2 (Tumor), A3 (Heredity), and A4 

(Age). Each combination of values of the input attributes is 

connected to output attribute B (Breast Cancer Possibility). 

Let the attributes have the next values: A1 = {A1,1, A1,2, A1,3}, 

A2 = {A2,1, A2,2, A2,3}, A3 = {A3,1, A3,2}, A4 = {A4,1, A4,2}, and 

B = {B1, B2, B3} assuming that these values has the meaning 

presented in Table I.  

TABLE I. 

ATTRIBUTES VALUES 

Attribute Attribute 

Values 

Description of Attribute Values  

A1 A1,1 Gynecological history with high risk 

 A1,2 Gynecological history with medium risk 

 A1,3 Gynecological history with low risk 

A2 A2,1 Yes and confirmed by medical examination 

 A2,2 Yes and non-confirmed 

 A2,3 No 

A3 A3,1 Yes 

 A3,2 No 

A4 A4,1 Younger than 40 years 

 A4,2 40 years or more 

B B1 High Possibility of Breast Cancer  

 B2 Medium Possibility of Breast Cancer 

 B3 Low Possibility of Breast Cancer 
 

In [17], an association rule for breast cancer diagnosis was 

inducted based on the methods of DM. This rule includes 4 

input attributes and one output attribute (Table II). From 

reliability point of view, the input attributes can be 

interpreted as system components and the output attribute is 

considered to be the system state. This implies that the table 

representing the discovered knowledge can be interpreted as 

the structure function of a MSS that depends on 4 variables: 

the 1-st and 2-nd variable has 3 possible values and the 3-rd 

and 4-th have two values. This structure function is defined 

based on all possible values of the input attributes and the 

output attribute is calculated according to the association 

rule derived in [17]. 

In section IV, we will use some approaches of reliability 

analysis to identify input attributes that have the greatest 

influence on the value of the output attribute. These results 

can be used to perform some database optimization since we 

can find attributes that have very little influence on the 

output attribute and, therefore, it might not be necessary to 

store them in the database. 

B. Coherent and Noncoherent Systems 

Based on the properties of the structure function, two 

different classes of systems can be recognized – coherent and 

noncoherent. A system is coherent if a failure/degradation of 

any system component can result only in system failure/ 

degradation. This means that the structure function of 

coherent systems is monotonic (non-decreasing) [8], [14].  

TABLE II. 

STRUCTURE FUNCTION FOR DATABASE OF BREAST CANCER 

DIAGNOSIS 

Variables 

x1 x2 x3 x4 
(x) Variables 

x1 x2 x3 x4 
(x) 

0  0  0  0 1 1  1  1  1 2 

0  0  0  1 1 1  2  0  0 0 

0  0  1  0 1 1  2  0  0 2 

0  0  1  1 1 1  2  0  1 2 

0  1  0  0 2 1  2  1  0 2 

0  1  0  1 0 1  2  1  1 2 

0  1  1  0 2 2  0  0  0 2 

0  1  1  1 0 2  0  0  1 2 

0  2  0  0 2 2  0  1  0 2 

0  2  0  1 2 2  0  1  1 2 

0  2  1  0 2 2  1  0  0 2 

0  2  1  1 2 2  1  0  1 2 

1  0  0  0 1 2  1  1  1 2 

1  0  0  1 1 2  2  0  0 2 

1  0  1  0 1 2  2  0  0 2 

1  0  1  1 1 2  2  0  1 2 

1  1  0  0 2 2  2  1  0 2 

1  1  0  1 0 2  2  1  1 2 
 

A system is noncoherent if its structure function is not 

monotonic. This implies that a noncoherent system admits 

situations in which component failure/degradation can cause 

system repair/improvement [18]. 

The coherency is a typical property of most systems 

studied in reliability engineering. This indicates that many 

tools of reliability analysis are based on the assumption that 

the structure function is monotonic. However, there also 

exist some systems whose structure function cannot be 

monotone, e.g. logic networks [19] or k-to-l-out-of-n 

systems, which are functioning if at least k but not more than 

l components are working [20]. The analysis of such systems 

is more complicated than the analysis of coherent systems 

and, therefore, it has to be done more carefully.  

C. Availability 

The structure function defines system topology, and it 

carries no information about reliability of individual system 

components. Therefore, if we want to analyze not only 

topological properties of the system but also some 

probabilistic characteristics (e.g. system availability or 

unavailability, mean time to failure), the probabilities of 

states of individual system components have to be known: 

     ,,,1,1,,0},{Pr, nimssxp iisi    (3) 

where mi = 2 for BSSs. Please note that in case of BSSs, pi,0 

is known as unavailability of the i-th system component and 

pi,1 as its availability. 

Knowledge of system structure function and probabilities 

(3) can be used to compute three important characteristics of 

the system – the probability that the system is in state j (for 

j = 0,…, m -1), the system availability, which is defined with 

regard to system state j as follows [14], [15]: 
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  ,1,,1},)(Pr{ 
mjjA

j x  (4) 

and the system unavailability, which is defined with regard to 

system state j as the probability that the system cannot fulfill 

a requirement that requires at least level j of system 

performance [14], [15]: 

  .1,,1,1})(Pr{  
mjAjU

jj x  (5) 

Please note, in case of BSSs (m = 2 in definitions (4) and 

(5)), the system availability is defined as the probability that 

the system is in state 1 while the unavailability agrees with 

the probability of system 0-state. Therefore, terms “system 
availability (unavailability)” and “the probability that the 
system is in state 1 (0)” can be used as synonyms in case of 

BSSs. However, this is not true for MSSs, in which these two 

terms represent two different concepts. 

System availability and unavailability are very important 

in reliability analysis. They can be used to estimate mean 

time to system failure or mean time to system repair. 

However, they do not allow identifying components that 

have the greatest influence on system activity. This is very 

important task because its results can be used to optimize 

system reliability or to plan system maintenance. 

D. Importance Analysis 

Importance analysis is a part of reliability engineering. It 

is used to quantify situations in which a change of 

component state results in a change of system state. For this 

purpose, Importance Measures (IMs) are used. There exist a 

lot of IMs [21]. However, in what follows, we will consider 

only two of them – the Structural Importance (SI) and the 

Birnbaum’s Importance (BI). 

The SI and BI have originally been developed for the 

analysis of coherent systems. In [22], the SI of component i 

has been defined as a relative number of situations in which 

the component is critical for system failure/functioning, i.e. 

as a proportion of cases when a failure (repair) of the i-th 

system component results in system failure (repair). In the 

same paper, the BI has been introduced as the probability 

that the component failure (repair) causes system failure 

(repair). These definitions imply that the main difference 

between the SI and BI is that the former analyzes only the 

system structure while the latter takes into account not only 

the structure function but also availabilities (unavailabilities) 

of system components. Therefore, the SI is primarily used to 

analyze topological properties of the system. 

The considered IMs have been generalized for coherent 

MSSs in [16], [23]–[25]. These works have introduced 

several types of the SI and BI depending on whether we are 

interested in: 

a) identification of component states that are the 

most important for a given system state/ 

availability [16], [23], [25], 

b) identifying component states that have the most 

influence on the whole system (not only on a 

specific system state/availability) [24], 

c) finding components that are the most important 

for a given system state/availability, 

d) revealing the total importance of individual 

components for the whole system [25]. 

Finally, works [18], [26] have introduced definitions of 

the SI and BI for noncoherent BSSs. These versions of the SI 

and BI allow quantifying: 

a) dependency of system failure (repair) on a failure 

(repair) of a given component, 

b) dependency of system repair (failure) on a failure 

(repair) of a given component, 

c) the total influence of a given component on the 

system activity. 

According to our knowledge, no generalizations of the 

considered IMs have been proposed for importance analysis 

of noncoherent MSSs. This can be caused by the fact that 

these models are used in reliability analysis very rarely.  

E. Logical Differential Calculus 

Logical differential calculus is a tool used to investigate 

dynamic properties of Boolean and MVL functions [27]. The 

central term of this tool is a Boolean/MVL derivative. There 

exist several types of this derivative. For our purposes, the 

most important is Direct Partial Logic Derivative (DPLD). 

A DPLD of a Boolean function f(x) with respect to 

variable xi can be defined in the following way [27]: 

 
,

other  ,0

),(and),(if  ,1
           

)()(



 



jsfjsf

ssxjjf

ii

i

xx  (6) 

where f(ai, x) = f(x1,…, xi-1, a, xi+1,…, xn) for a  {s, s } and 

s, j  {0, 1}. According to this definition, the DPLD of a 

Boolean function reveals situations in which change of 

Boolean variable xi from value s to s  causes that the 

Boolean function value changes from j to j . 

In the similar way, a DPLD of a MVL function fm(x) with 

respect to variable xi is defined as follows [27]: 
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where fm(ai, x) = fm(x1,…, xi-1, a, xi+1,…, xn) for a  {s, r}; s, 

r, j, h  {0,…, m -1}, s ≠ r, and j ≠ h. Clearly, this derivative 

models consequence of change of the MVL variable from 

value s to r on the value of the considered MVL function 

and, therefore, it can be used to detect situations in which the 

investigated change of the MVL variable results in the 

change of the function value from j to h. 

Since the structure function of a BSS can be interpreted as 

a Boolean function and the structure function of a 

homogenous MSS as a MVL function, DPLDs can also be 

used in reliability analysis of such systems [9], [16]. 

Moreover, the next little modification of definition (6) also 

allows applying them to non-homogenous MSSs: 
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where s, r  {0,…, mi -1}, s ≠ r and j, h  {0,…, m -1}, 

j ≠ h. Please note that this definition is the most general 

definition of a DPLD from which definitions (6) and (7) can 

be obtained simply using the assumption that s, r, j, 

h  {0,1} or s, r, j, h  {0,…, m -1} respectively. Therefore, 

in what follows, we will primarily use this definition. 

In terms of reliability analysis, DPLDs are used to identify 

situations in which a given change of state of the i-th system 

component results in the investigated change of the system 

state. These derivatives can be split into four groups: 

A. j > h and s > r – these derivatives identify 

situations in which component failure/degradation 

results in system failure/degradation, 

B. j < h and s < r – these DPLDs detect situations in 

which component repair/improvement causes a 

repair/improvement of system activity, 

C. j > h and s < r – these derivatives can be used to 

find coincidence between component repair/ 

improvement and system failure/degradation, 

D. j < h and s > r – these DPLDs investigate 

situations in which system repair/improvement is 

caused by failure/degradation of the considered 

component. 

Based on the definition of a coherent system, only DPLDs 

from groups A and B are relevant in the analysis of such 

systems. However, this is not true for noncoherent systems, 

for which the derivatives from all groups can be nonzero. 

F. Importance Measures based on Direct Partial 

Logic Derivatives  

The SI and BI are used to quantify coincidence between 

component state change and change of system state. Based 

on the previous paragraphs, this coincidence can be 

identified based on DPLDs. Therefore, these derivatives can 

also be used to compute the SI and BI [9], [13], [16]. 

Firstly, let us consider a coherent BSS. The structure 

function of this system is monotone, therefore, only DPLDs 

)01()01(  ix  and )10()10(  ix  can be 

nonzero for this type of systems. The former identifies 

situations in which a failure of component i results in system 

failure, and the latter detects state vectors at which a repair 

of the component causes that the system begins work. Since 

the SI of component i is defined as a relative number of 

situations in which a failure (repair) of component i results in 

system failure (repair), this IM can be computed using 

DPLDs in the following manner [9]: 

 
 
 ,)10()10(TD
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 (9) 

where TD(.) denotes truth density of the argument 

interpreted as a function with Boolean-valued output, i.e. a 

proportion of situations in which the argument takes value 1. 

The BI of component i can be calculated using DPLDs in 

the similar way [9]: 

 
 
 1)10()10(Pr

1)01()01(PrBI




i

ii

x

x




 (10) 

since it is defined as the probability that a failure (repair) of 

the component causes system failure (repair). 

Secondly, let us consider a noncoherent BSS. In this case 

all four DPLDs that can be defined are relevant because all 

of them can contain nonzero elements, i.e. DPLDs 

)01()01(  ix , )10()01(  ix  can be used to 

find correlation between system failure and change of state 

of component i while derivatives )10()10(  ix , 

)01()10(  ix  identify situations in which a change 

of component state results in system repair. 

It has been proposed in [18] that importance analysis of 

noncoherent BSSs should be performed in three steps. 

Firstly, we should quantify influence of component failure on 

system failure (repair). Secondly, impact of component 

repair on system failure (repair) should be quantified. 

Finally, the total influence of the considered component on 

system failure (repair) can be estimated as the sum of the 

results obtained in the previous two steps. This implies that 

several IMs of one type can be defined for one component. 

For example, in case of the SI, the next four measures can be 

calculated: 
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 (11) 

The first two SI measures are used to quantify coincidence 

between component failure (repair) and system failure 

(repair). The remaining SI measures estimates topological 

correlation between component failure (repair) and repair 

(failure) of the system. The total topological influence of 

component i on system failure is computed in the following 

manner [26]: 

  
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SISISI
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and on system repair in the following way: 

  
 .)01()10(TD

)10()10(TD

SISISI




 







i

i

iii

x

x


  (13) 

It is clear that 
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  iiiiii

SISI,SISI,SISI  (14) 

and, therefore, 
iSI , 

iSI , and 
iSI  can be used not only in 

the investigation of system failure but also in the analysis of 

system repair. 

Please note that the same results can also be obtained for 

the BI of noncoherent BSSs by replacement of the truth 

densities in equations (11) – (13) with the probabilities that 

the DPLDs take value 1. 

Thirdly, let us focus on coherent MSSs. In this case, we 

can quantify several dependencies between component state 

and system state. For simplicity, we will consider only 

situations in which component degradation coincide with 

system degradation, i.e. we will not introduce the IMs for 

component improvement. Furthermore, we will assume that 

system components can degrade only one state. Using these 

assumptions, we can calculate the SI of state s of component 

i for system state j as follows [16]: 

   ,)1()(TDSI
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j

si
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for i  {1,…, n}, s  {1,…, mi -1}, j  {1,…, m -1}. 

Based on the meaning of DPLDs, this IM corresponds to 

the relative number of situations in which a minor 

degradation (i.e. degradation by one state) of state s of 

component i results in degradation of system state j. Using 

the ideas presented in [24], [25], this SI can also be used to 

compute the relative number of situations in which a minor 

degradation of state s of component i results in system 

degradation: 
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or the relative number of situations in which a minor 

degradation of component i causes degradation of system 

state j: 
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or the proportion of state vectors at which a minor 

degradation of component i results in system degradation: 
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Equation (16) can be used to quantify topological 

influence of state s of component i on the whole system. 

Similarly, equations (17) allows us to investigate the total 

influence of component i on system state j and formula (18) 

the total influence on the whole system. In the similar way, 

the BI for a minor degradation of component state for a 

coherent MSS can be defined. The only difference is that the 

truth densities in (15) – (17) have to be replaced with the 

probabilities that the considered DPLDs are nonzero. 

IV. USE OF IMPORTANCE ANALYSIS IN INVESTIGATION OF 

MEDICAL DATABASES 

As we mentioned in section III.A, a complete medical 

database can be obtained from a medical dataset using some 

tools of DM. The complete database containing only 

qualitative (categorical) attributes can be viewed as a MSS 

whose structure function agrees with the relation (discovered 

knowledge) between the input attributes and the output 

attribute. However, the main problem is that the database has 

to be interpreted as the structure function of a noncoherent 

MSS because it can contain situations in which a decrease in 

value of input attribute can result in increase of value of the 

output attribute. For example, in Table II, change of variable 

x2, which corresponds to value of attribute A2, from value 1 

to 0 causes that the value of the structure function of the 

considered database changes from value 0 to 1 if x1 = 0, 

x3 = 0, and x4 = 1. This fact requires proposing some 

generalizations of the SI for noncoherent MSSs if we want to 

use this measure to find input attributes that have the greatest 

influence on the output attribute. 

In noncoherent systems, not only component degradation 

but also component improvement can result in system 

degradation. This implies that we also need to detect 

situations in which component improvement results in 

system degradation. DPLDs )1()(  ssxhj i  in 

which j > h can be used for this purpose. Based on these 

DPLDs, topological influence of a minor improvement of 

state s of component i on degradation of system state j can be 

estimated using the next version of SI: 
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for i  {1,…, n}, s  {0,…, mi -2}, j  {1,…, m -1}. 

In case of noncoherent BSSs, the total influence of a given 

component on system failure is computed as the sum of SI 

measures analyzing consequences of the component failure 

and repair. Therefore, in case of MSSs, the total importance 

of state s of component i for degradation of system state j 

can be computed simply using the next SI: 
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where 



j

si,
SI  is computed based on formula (15). 

SI measures (15), (19), and (20) are useful for evaluation 

of influence of a given component state on degradation of a 

given system state. However, they do not allow identifying 

importance of the whole component on degradation of a 

given system state or importance of a given component state 

318 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



 

 

 

 

on the entire system (regardless of a concrete system state). 

For these purposes, other versions of the SI have to be 

defined. This can be done in the similar way as in the case of 

coherent MSSs, i.e. the total importance of a given 

component state on system activity can be computed as 

follows: 
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where 
si,

SI  (definition (16)) quantifies consequences of 

deterioration of state s of the i-th system component on 

system activity, and 
si,

SI  calculates results of improvement 

of state s of component i on system degradation. Please note 

that 
si,

SI is computed similarly as 
si,

SI , i.e.: 
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The total topological influence of component i on a given 

system state can be calculated based on the next formula: 
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where 


j

i
SI  (definition (17)) quantifies results of degradation 

of the i-th system component on degradation of system state 

j, and 


j

i
SI  evaluating consequences of improvement of the 

i-th component on degradation of system state j is computed 

using the following formula: 

 

 .)1()(TD
1

1

SI
1

1
SI

2

0

1

0

2

0
,






























i

i

m

s

j

h

i

i

m

s

j

si

i

j

i

ssxhj
m

m


 (24) 

Based on the meaning of DPLDs, it can be shown simply 

that SI (21) agrees with the relative number of state vectors 

at which a minor change (i.e. a change by one state) of state s 

of component i results in system degradation, SI (22) 

identifies the relative count of state vectors at which a minor 

improvement of state s of component i results in system  

degradation, SI (23) corresponds to the relative number of 

situations in which a degradation or improvement of 

component i causes decrease in state j of the system, and SI 

(24) agrees with the proportion of state vectors at which an 

improvement of component i causes deterioration of state j 

of the system 

Finally, the total topological importance of a given 

component on system activity can be defined as the relative 

number of state vectors at which a change of component 

state results in system deterioration and, therefore, it can be 

computed as follows: 
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where 
iSI  (definition (18)) quantifies results of degradation 

of the i-th system component on system degradation, and 

iSI  computed based on the next formula: 
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evaluates consequences of improvement of the considered 

component on system degradation. 

In this section, we have proposed a lot of SI measures that 

can be used in the investigation of topological properties of 

noncoherent MSSs. For clarity, we summarize them in Table 

III. The similar formulae could also be proposed for BI 

measures. The only difference is that the probabilities that 

the DPLDs are nonzero have to be used in formulae (15) – 

(26) instead of the truth densities. 

TABLE III. 

STRUCTURAL IMPORTANCE MEASURES FOR NONCOHERENT MULTI-

STATE SYSTEMS 

SI Coherent Part 

(Influence of Component 
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Based on the relation between medical database and the 

structure function of a noncoherent MSS, the proposed SI 

measures can be used to analyze importance of individual 

input attributes on the value of the output attribute. For 

illustration, let us consider the medical database defined by 

Table II. The total topological importance of individual input 

attributes is computed based on formula (25) in Table IV. 

Based on the data presented in this table, the input attribute 

that has the greatest influence on the output attribute is A2. 

On the other hand, value of attribute A3 has no influence on 

attribute B. This implies that attribute A3 is not important for 

tasks for which the table is used (i.e. decision whether the 

breast cancer has high possibility or not) and, therefore, it is 

not necessary to store its values in the database. 

V. CONCLUSION 

This paper focuses on correlation between some key terms 

of KDD (or DM) and reliability analysis. We illustrated that 

KDD is a very complex process whose main part is DM. DM 

is used to discover some new information (knowledge) in a 
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database (predictive DM) or for better understanding of data 

stored in a database (descriptive DM). In case of predictive 

DM used on databases containing only categorical attributes, 

the discovered knowledge can be interpreted as a table that 

can be viewed as the structure function of a MSS. This 

allows us to use some methods of reliability analysis in 

investigation of database properties. One of them is 

importance analysis, which identifies influence of system 

components on the system activity. 

TABLE IV. 

IMPORTANCE OF INDIVIDUAL INPUT ATTRIBUTES FOR THE OUTPUT 

ATTRIBUTE 

Input 

Attribute 


iSI  

A1 0.25 

A2 0.50 

A3 0 

A4 0.22 
 

In this paper, we considered use of importance analysis in 

investigation of coincidence between change of input 

attributes and change of the output attribute of a table 

representing the discovered knowledge. This required 

extending some measures used in importance analysis on 

noncoherent MSSs. The extension was done using logical 

differential calculus. The presented approach can be used to 

optimize number of attributes occurring in the table. 

Furthermore, it can also be used to decide which attributes 

have to be measured with the most accuracy to ensure that 

the prediction based on the table representing the discovered 

knowledge will be correct. 
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