
TRACO: An Automatic Loop Nest Parallelizer for

Numerical Applications

Marek Palkowski, Tomasz Klimek, Wlodzimierz Bielecki

West Pomeranian University of Technology in Szczecin

ul. Zolnierska 49, 71-210 Szczecin, Poland

Email: mpalkowski@wi.zut.edu.pl, tklimek@wi.zut.edu.pl, wbielecki@wi.zut.edu.pl

Abstract—We present the source-to-source TRACO com-
piler allowing for increasing program locality and paralleliz-
ing arbitrarily nested loop sequences in numerical applica-

tions. Algorithms for generation of tiled code and extracting
synchronization-free slices composed of tiles are presented. Par-
allelism of arbitrary nested loops is obtained by creating a kernel
of computations represented in the OpenMP standard to be ex-
ecuted independently on many CPUs. We consider benchmarks,
typical from compute-intensive sequences of algebra operations
or numerical computation from industry and engineering. The
speed-up of programs generated by TRACO are discussed.
Related compilers and techniques are considered. Future work
is outlined.

I. INTRODUCTION

E
FFICIENT parallel numerical algorithms for commonly

occurring problems in scientific computing are more

difficult to write than sequential ones. Developers must analyze

their performance, granularity and scalability. Optimizing and

parallelizing compiler research with empirical evaluation is

significant for an efficient usage of widely available multi-core

systems.

Because for many numerical kernels and solvers most

computations are contained in program loop nests, automatic

extraction of parallelism available in loop nests is extremely

important for multi-core processing. However, there is a

lack of automated and completed tools permitting for ex-

posing parallelism in serial programs. The most advanced

approach to improve program locality and parallelization is

based on the Affine Transformation Framework (ATF). Un-

fortunately, this approach can fail to parallelize loop nests

exposing storage-related dependences, and as consequence

potential parallelism is left unexploited in some cases [1].

This paper presents an alternative approach to increasing

program locality and parallelization which is implemented in

the open source tool, TRACO [2], based on calculating the

TRAnsitive ClOsure of dependence graphs. It currently par-

allelizes loop nests being written in the C language.

The purpose of this source-to-source compiler is to automat-

ically convert existing serial numerical applications to parallel

ones to be run on multicore systems and high performance

computers. It produces parallel target code that is semantically

identical with original source code.

II. BACKGROUND

The source-to-source TRACO compiler implements Itera-

tion Space Slicing (ISS) techniques together with the free-

scheduling, variable privatization and parallel reduction tech-

niques. Output code, produced by TRACO, is compilable and

contains OpenMP directives [3]. TRACO is available at the

website http://traco.sourceforge.net.

ISS was introduced by Pugh and Rosser [4]. It takes

dependence information as input to find all statement instances

that must be executed to produce the correct values for the

specified array elements. Dependences available in a loop

nest are described by dependence relations with constraints

presented by means of the Presburger arithmetic that is the

first-order theory of the integers in the language L having 0,

1 as constants, +,- as binary operations, and equality =, order

< and congruences ≡n modulo all integers n ≥1 as binary

relations.

Coarse-grained code is presented with synchronization-free

slices. TRACO uses the dependence analysis [5] proposed by

Pugh and Wonnacott where dependences are represented by

dependence relations. This analysis is implemented in Petit

[6].

Standard operations on relations and sets are used, such as

intersection (∩), union (∪), difference (-), domain (dom R),

range (ran R), relation application (S′= R(S): e
′∈S

′iff exists e

s.t. e→e
′∈R,e∈S), positive transitive closure of relation R, R+

= {[e]→[e′] : e→e
′∈ R ∨ ∃ e

′′, e→e′′∈ R ∧ e
′′→e

′∈ R+},

transitive closure R* = R+ ∪ I. In detail, the description of

these operations is presented in papers [5], [7].

The positive transitive closure for a given relation R, R+,

is defined as follows [7]

R+ = {e → e′ : e → e′ ∈ R ∨ ∃e′′s.t. e → e′′ ∈ R ∧ e′′ →
e′ ∈ R+}.

It describes which vertices e′ in a dependence graph (repre-

sented by relation R) are connected directly or transitively with

vertex e.

Transitive closure, R∗, is defined as follows [8]: R∗ =
R+ ∪ I , where I the identity relation. It describes the same

connections in a dependence graph (represented by R) that R+

does plus connections of each vertex with itself.

To perform operations on sets and relations as well as

calculating transitive closure, TRACO uses the ISL library [9].

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 681–686

DOI: 10.15439/2015F34

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 681

III. ITERATION SPACE SLICING FOR PARALLELISM

EXTRACTION

ISS algorithms, presented in paper [1], allow us to gener-

ate parallel code representing synchronization-free slices. An

(iteration-space) slice is defined as follows.

Definition 1. Given a dependence graph defined by a set

of dependence relations, a slice S is a weakly connected

component of this graph, i.e., a maximal sub-graph such that

for each pair of vertices in the sub-graph there exists a forward

or backward path.

Definition 2. An ultimate dependence source is a source

that is not the destination of another dependence. Given a

dependence relation R, describing all the dependences in a

loop, set, SUDS , including all ultimate dependence sources

can be calculated as domain(R) - range(R).

Definition 3. The representative of a slice is its lexicograph-

ically minimal ultimate source.

An approach to extract synchronization-free slices takes

two steps [1]. First, for each slice, a representative statement

instance is defined (it is the lexicographically minimal state-

ment instance from all the sources of a slice). Next, slices

are reconstructed from their representatives and code scanning

these slices is generated.

Given a dependence relation R, describing all the depen-

dences in a loop, we calculate set of all ultimate dependence

sources of slices , SUDS , as follows

SUDS = domain(R)− range(R). (1)

In order to find elements of SUDS that are representatives of

slices, we build a relation, RUSC , that describes all pairs of

the ultimate dependence sources being transitively connected

in a slice, as follows:

RUSC = {[e] → [e′] : e, e′ ∈ SUDS , e ≺ e′, (R∗(e)∩R∗(e′))}.
(2)

The condition (e ≺ e′) in the constraints of relation RUSC

above means that e is lexicographically smaller than e′. Such

a condition guarantees that the lexicographically smallest

element from e and e′ will always appear in the input tuple of

RUSC (its representative source), i.e., it can never appear in the

output tuple. The intersection (R*(e)∩R*(e′)) in the constraints

of RUSC guarantees that vertices e and e′ are transitively

connected, i.e., they are the sources of the same slice.

Next, set, Srepr, containing representatives of each slice is

found as Srepr = SUDS - range(RUSC). Each element e of

set Srepr is the lexicographically minimal statement instance

of a synchronization-free slice. If e is the representative of

a slice with multiple sources, then the remaining sources of

this slice can be found applying relation (RUSC)* to e, i.e.,

(RUSC)*(e). If a slice has the only source, then (RUSC)*(e)=e.

The elements of a slice represented with e can be found

applying relation R* to the set of sources of this slice:

Sslice = R∗((RUSC)
∗(e)). (3)

To generate code, we insert in the first positions of the tuple

of set Sslice the elements of the tuple of set Srepr (together

with corresponding constraints) and apply the CLooG library

[10] to so extended set Sslice .

To parallelize loop nests which expose a single

synchronization-free slice, time partitioning can be applied.

The algorithm, presented in our paper [11], allows us to

generate time partitions and corresponding fine-grained

parallel code on the basis of the free schedule; all statement

instances of a time partition can be executed in parallel, while

partitions are enumerated sequentially. The free schedule

function is defined as follows.

Definition 4 [12]. The free schedule is the function that

assigns discrete time of execution to each loop statement

instance as soon as its operands are available, that is, it is

mapping σ:LD→ Z such that

σ(p) =

0 if there is no p1 ∈ LD s.t. p1 → p

1 +max(σ(p1), σ(p2), ..., σ(pn));
p, p1, p2, ..., pn ∈ LD;

p1 → p, p2 → p, ..., pn → p,

where p, p1, p2, ..., pn are loop statement instances, LD is

the loop domain, p1 → p, p2 → p, ..., pn → p mean that

the pairs p1 and p, p2 and p, ...,pn and p are dependent,

p represents the dependence destination, while p1, p2, ..., pn
represent the sources of dependences, n is the number of

operands of statement instance p (the number of dependences

whose destination is statement instance p). The free schedule

is the fastest legal schedule [12]. In paper [11] we presented

fine-grained parallelism extraction based on the power k of

relation R.

The idea of the algorithm is the following [11]. Given

relations R1, R2, ..., Rm, representing all dependences in a

loop nest, we first calculate R =
m⋃

i=1

Ri and then Rk, where

Rk = R ◦R ◦ ...R
︸ ︷︷ ︸

k

, "◦" is the composition operation. Tech-

niques of calculating the power k of relation R are presented

in the following publications [8], [9], [14] and they are out of

the scope of this paper. Let us only note that given transitive

closure R+, we can easily convert it to the power k of R, Rk,

and vice versa, for details see [9].

Given set UDS comprising all loop nest statement instances

that are ready to execution at time k=0, each vertex, belonging

the set Sk = Rk(UDS) - R+ ◦ Rk(UDS), is connected

in the dependence graph, defined by relation R, with some

vertex(ices) represented by set UDS with a path of length k .

Hence at time k, all the statement instances belonging to the

set Sk can be scheduled for execution and it is guaranteed that

k is as few as possible.

IV. LOOP TILING

Tiling is a very important iteration reordering transformation

for both improving data locality and extracting loop nest

parallelism. TRACO allows users generate parallel tiled code

by means of algorithms based on the transitive closure of a

dependence graph [13].

682 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

First, we form set TILE(II, B) including iterations belonging

to a parametric tile as follows

TILE(II, B) = {[I] | B*II +LB ≤ I ≤ min(B*(II +1)

+ LB -1, UB) AND II ≥ 0}, where vectors LB and UB

include the lower and upper loop index bounds of an original

loop nest, respectively; diagonal matrix B defines the size

of a rectangular original tile; elements of vectors I and II

represent the original loop nest indices and the identifiers of

tiles, respectively; 1 is the vector whose all elements have

value 1.

TILE(II, B) represents a tile of the rectangular shape with

a fixed size defined by the user.

Sets TILE_LT and TILE_GT are the unions of all the tiles

whose identifiers are lexicographically less and greater than

that of TILE(II, B), respectively.

TILE_LT ={[I] | exists II′ s. t. II′ ≺ II AND II, II′ in

II_SET AND I in TILE(II′, B)},

TILE_GT ={[I] | exists II′ s. t. II′ ≻ II AND II, II′ in

II_SET AND I in TILE(II′, B)}.

Set TILE_ITR = TILE - R+(TILE_GT) does not include

any invalid dependence target.

Set TVLD_LT = (R+(TILE_ITR) ∩ TILE_LT) -

R+(TILE_GT) includes all the iterations that i) belong to

the tiles whose identifiers are lexicographically less than that

of set TILE_ITR, ii) are the targets of the dependences whose

sources are contained in set TILE_ITR, and iii) are not any

target of a dependence whose source belong to set TILE_GT.

Set TILE_VLD = TILE_ITR ∪ TVLD_LT represents target

tiles.

To generate code, we form set TILE_VLD_EXT by means

of inserting i) into the first positions of the tuple of set

TILE_VLD indices ii1, ii2, ..., iid; ii) into the constraints of

set TILE_VLD the constraints defining tile identifiers II ≥ 0

and B*II+LB ≤ UB.

The resulting code can be produced by means of applying

any code generator to scan elements of set TILE_VLD_EXT

in the lexicographic order, for example, CLooG [10]. TRACO

implements an extended approach allowing for tiling imper-

fectly nested loops also.

All the presented algorithms implemented in the TRACO

compiler are based on the transitive closure of a dependence

relation representing all dependences in a loop nest. Loop nest

tiling and iteration space slicing can be combined in order

to increase program locality and the grain size of parallel

code. For this purpose, we form relation R_TILE that describes

dependences among all tiles but ignores dependences within

each tile as follows.

R_TILE:={[II]->[JJ]: exist I, J s.t. (II, I) in

TILE_VLD_EXT(II) AND (JJ, J) in TILE_VLD_EXTi(JJ)

AND J in R(I)},

where II, JJ are the vectors representing tile identifiers. Such

a relation can be used to extract slices comprising tiles or free-

scheduling in the same way as it is described in Section III

except from instead of relation R relation R_TILE has to be

used.

V. TRACO USAGE FOR THE HYDRO-FRAGMENT CODE

In this section, we present the usage of the TRACO compiler

to optimize the code of the hydrodynamics fragment of the first

kernel of the Livermoore Loops suite (k1) [15].

f o r (l =1 ; l <= loop ; l ++) {
f o r (k=0 ; k<n ; k++) {

x [k] = q + y [k] ∗ (r ∗z [k +10] + t ∗z [k +11]) ;
}

}

The following relation describes dependences in this pro-

gram.

R := [n,loop] -> { [l,k,13] -> [l’,k’,13] :(k’ = k and 1 <= l

< l’ <= loop and 0 <= k < n and l < loop and 1 <= loop and

2 <= l’) },

where here and further on “13”states for the loop nest state-

ment identifier, defined by the line number of this statement

in the source code.

First of all, we generate parallel synchronization-free code.

For this purpose, we calculate the transitive closure of relation

R, R∗:

R∗ := [n, loop] -> { [l, k, 13] -> [l’, k, 13] : l >= 1 and k

>= 0 and k <= -1 + n and l’ >= 1 + l and l’ <= loop; [l, k,

v] -> [l, k, v] }.

Next, we expose slice representatives. Because RUCS = ⊘,

we have

SREPR =UDS:= {[n, loop] -> [0, i1, 13] : loop >= 17 and

i1 >= 0 and 16i1 <= -1 + n }.

Now, we form set, Sslice, representing slices:

Sslice := [n, loop, c1] ->] [i0, c1, 13] : c1 >= 0 and c1 <=

-1 + n and i0 <= loop and loop >= 2 and i0 >= 1 },

and insert in the first positions of the tuple of set Sslice the

elements of the tuple of set SREPR(together with correspond-

ing constraints) and apply to so extended set Sslice CLooG to

get the following parallel code.

i f (n + loop >= 3 && loop >= 1)
#pragma omp p a r a l l e l f o r

f o r (c1 = 0 ; c1 < n ; c1 += 1)
i f (c1 >= 0 && loop >= 2 && n >= c1 + 1)

f o r (c0 = 1 ; c0 <= loop ; c0 += 1)
x [c1]= q+y [c1] ∗ (r ∗z [c1 +10]+ t ∗z [c1 + 1 1]) ;

Below, we demonstrate how tiled code can be generated for

the same example. First, we define a rectangular parametric

tile of the size 16x16 as follows.

TILE:= [ll, kk, n, loop] -> { [l, k, 13] : l >= 1 + 16ll and

l >= 1 and l <= loop and l <= 16 + 16ll and k >= 16kk and

k >= 0 and k <= -1 + n and k <= 15 + 16kk and ll >= 0 and

kk >= 0 and loop >= 1 and n >= 1 }.

Next, we calculate the following sets:

TILE_LT:= [ll, kk, n, loop] -> { [l, k, 13] : l >= 1 + 16ll

and l >= 1 and l <= loop and l <= 16 + 16ll and k >= 0 and

k <= -1 + 16kk and n >= 1 + 16kk and ll >= 0 and loop >=

16ll and kk >= 0 },

TILE_GT:= [ll, kk, n, loop] -> { [l, k, 13] : l >= 1 + 16ll

and l >= 1 and l <= loop and l <= 16 + 16ll and k >= 16 +

16kk and k <= -1 + n and ll >= 0 and loop >= 16ll and kk

>= 0 and n >= 1 + 16kk ,

MAREK PALKOWSKI ET AL.: AN AUTOMATIC LOOP NEST PARALLELIZER 683

TILE_ITR:= [n, loop, ll, kk] -> [l, k, 13] : ll >= 0 and kk

>= 0 and l >= 1 + 16ll and l <= 16 + 16ll and l <= loop and

k >= 16kk and k <= 15 + 16kk and k <= -1 + n },

TVLD_LT = ⊘, TILE_VLD = TILE_ITR,

TILE_VLD_EXT:= [n, loop] -> { [i0, i1, i2, i3, 13] : i0 >=

0 and i1 >= 0 and i2 >= 1 + 16i0 and i2 <= 16 + 16i0 and

i2 <= loop and i3 >= 16i1 and i3 <= 15 + 16i1 and i3 <= -1

+ n }.

Applying CLooG to set TILE_VLD_EXT, we generated the

following tiled code (without parallelism).

f o r (c0 =0; c0 <= (loop −1) /16 ; c0 += 1)
f o r (c1 =0; c1 <= (n −1) /16 ; c1 += 1)

f o r (c2 =16∗ c0 +1; c2 <=min (loop , 1 6∗ c0 + 1 6) ; c2 ++)
f o r (c3 =16∗ c1 ; c3 <=min (n−1 ,16∗ c1 + 1 5) ; c3 ++)

x [c3]= q+y [c3] ∗ (r ∗z [c3 +10]+ t ∗z [c3 + 1 1]) ;

To generate parallel synchronization-free tiled code, we

calculate tile representatives (the lexicographically minimal

tiles of slices) comprised in set TILE_SOUR and a relation

R_TILE that describes dependences among all tiles but ignores

dependences within each tile as follows. Next, the transitive

closure of that relation, R_TILE∗, is calculated, and finally

set, SLICE, representing slices comprising tiles are extracted.

The corresponding sets and relations for the loop nest above

are as follows.

TILE_SOUR:= [n, loop] -> { [i1, i3, 13] : loop >= 17 and

i1 >= 0 and i3 >= 16i1 and i3 <= 15 + 16i1 and i3 <= -1 +

n }, where “13”is the statement identifier,

R_TILE:= [n, loop] -> { [i0, i1, 13] -> [o0, i1, 13] : i0 >=

0 and i1 >= 0 and 16o0 <= -1 + loop and o0 >= 1 + i0 and

16i1 <= -1 + n and 16i0 <= -2 + loop },

R_TILE∗:= [n, loop] -> { [i0, i1, 13] -> [o0, i1, 13] : i0

>= 0 and i1 >= 0 and 16o0 <= -1 + loop and o0 >= 1 + i0

and 16i1 <= -1 + n and 16i0 <= -2 + loop },

SLICE:= [n, loop, c1] -> { [i0, i1, i2, i3, 13] : loop >= 17

and i2 <= 16 + 16i0 and i2 <= loop and i3 >= 16c1 and i3

>= 0 and i3 <= 15 + 16c1 and i3 <= -1 + n and i3 <= 15 +

16i1 and i3 >= 16i1 and i2 >= 1 and i2 >= 1 + 16i0 }.

Applying CLooG to set SLICE and preprocessing the code

returned by CLooG, we get the following OpenMP C parallel

code, where line 1 represents the OpenMP parallel for

directives pointing out that the for loop in line 2 can be

executed in parallel; line 2 and line 4 include the for loops

enumerating tile identifiers whereas line 5 and line 6 present

the for loops scanning statement instances within a tile whose

identifier is defined by the indices of the loops in lines 2 and

4.

1 . # pragma omp p a r a l l e l f o r
2 . f o r (c1 = 0 ; c1 <= f l o o r d (n − 1 , 1 6) ; c1 ++)
3 . i f (l oop >= 17)
4 . f o r (c0 = 0 ; c0 <= (loop −1) /16 ; c0 += 1)
5 . f o r (c2 =16∗ c0 +1; c2 <=min (16∗ c0 +16 , loop) ; c2 ++)
6 . f o r (c3 =16∗ c1 ; c3 <=min (n−1 ,16∗ c1 + 1 5) ; c3 ++)
7 . x [c3]= q+y [c3] ∗ (r ∗z [c3 +10]+ t ∗z [c3 + 1 1]) ;

VI. RELATED WORK

Well-known automatic parallelization of numerical algo-

rithms is based on the polyhedral model, which provides

TABLE I
NUMERICAL PROGRAMS

Benchmark Description

advect3d Advection Kernel for Weather Modeling

correl Correlation Computation

dct Discrete Cosinus Transform

doitgen Multi resolution Analysis Kernel

dsyr2k Symmetric rank-2k operations

gemver Vector Multiplication and Matrix Addition

k6 General Linear Recurrence Equations

tce Tensor Contraction Expressions

an abstraction to perform high-level transformations such as

loop-nest optimization and parallelization on affine loop nests.

The polyhedral source to source tools: Pluto [16], POCC and

PTile [17] transform C programs to expose parallelism and

improve data locality simultaneously. The core transformation

framework mainly works by finding affine transformations for

efficient loop nest tiling and fusion, but not limited to those.

The polyhedral model approach includes the following

three steps: i) program analysis aimed at translating high

level codes to their polyhedral representation and to provide

data dependence analysis based on this representation, ii)

program transformation with the aim of improving program

locality and/or parallelization, iii) code generation [18], [19],

[20], [21], [22]. All above three steps are available in the

approach presented in this paper. But there exists the following

difference in step ii): in the polyhedral model “a (sequence

of) program transformation(s) is represented by a set of affine

functions, one for each statement” [23] while the presented

approach does not find and use any affine function. It applies

the transitive closure of a program dependence graph to spe-

cific subspaces of the original loop nest iteration space. At this

point of view the program transformation step is rather within

the Iteration Space Slicing Framework introduced by Pugh

and Rosser [4]: “Iteration Space Slicing takes dependence

information as input to find all statement instances from a

given loop nest which must be executed to produce correct

values for the specified array elements ”. The key step in

Iteration Space Slicing is calculating the transitive closure of

a loop nest dependence graph.

To extract affine transformations, the polyhedral model

assumes that first “time-partition constraints” are to be formed,

then a solution to them has to be found. The “time-partition

constraints” [18], [19], [24] represent the condition that if

one iteration is depend upon the other, then the first must be

assigned to a time that is no earlier than that of the second;

if they are assigned to the same time, then the first has to be

executed after the second. If there exist more than one linearly

independent solutions to the time-partition constraints formed

for a loop nest, then it is possible to derive affine transfor-

mations allowing for loop nest parallelization and program

locality improvement. Otherwise, the polyhedral model fails

to expose parallelism and improve program locality.

Some limitations of affine transformation are considered in

paper [1]. The main drawback of the affine transformation

framework is that there does not always exist two or more

684 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

ad
ve

ct
3d

co
rre

l
dc

t

do
itg

en

ds
yr

2k

ge
m

ve
r k6 tc

e
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 1. Speed-up1 for tiled codes (the green bars) and speed-up2 for parallel
tiled codes (the blue bars) of the studied numerical programs.

independent solutions to the time-partition constraints. For

example, the studied numerical algorithm k6 (General Linear

Recurrence Equations) cannot be tiled or parallelized by

PLUTO or other polyhedral tools because there exists the

only solution to corresponding time-partition constraints. To

extract parallelism, TRACO needs only the transitive closure

of a dependence graph, so it lacks the drawbacks inherent for

affine transformations.

VII. NUMERICAL PROGRAMS

In this section, we present numerical programs chosen for

carrying out experiments (Table I). We consider applications

of numerical algorithms in industry and engineering: advect3d,

tce, and dct; typical programs from compute-intensive se-

quences of algebra operations: correl, doitgen, dsyr2k, gemver,

and k6. Source codes of these numerical programs are avail-

able at the TRACO website [2].

advect3d is the Runga-Kutta advection core from the

NCOMMAS code for mesoscale weather modeling [25]. tce

is a sequence of four nested loops, occurring in Tensor

Contraction Expressions that appear in computational quantum

chemistry problems [26]. Discrete cosinus transform (dct) is

important to numerous applications in science and engineering,

from lossy compression of audio and images to spectral meth-

ods for the numerical solution of partial differential equations.

The reminding benchmarks are linear algebra programs:

gemver is a composition of BLAS operations used for house-

holder bidiagonalization, doitgen is an in-place 3D-2D matrix

product, and symmetric rank-2k operations dsyr2k. General

linear recurrence equations k6 is a kernel from the Livermore

loops [15]. correl creates a correlation matrix and is used also

in data mining [27].

The computations of k6, dsyr2k, advect3d, tce, and gemver

are represented by perfectly nested loops, while doitgen, dct,

and correl are represented by imperfectly nested loops.

VIII. EXPERIMENTS

We have applied TRACO to each of the benchmarks,

presented in Table 1, to generate serial tiled and parallel

synchronization-free tiled code. For the k6 program, TRACO

is able to generate only serial tiled code (for this benchmark,

PLUTO fails to generate tiled and any parallel code).

To run programs, we have used a computer with Intel

i5-4670 3.40 GHz processors (Haswell, 2013), 6MB cache

and 8GB RAM. Table II presents execution time for original

(t_untiled), serial tiled (t_tiled) and parallel tiled (t_par_tiled)

applications (for 4 CPUs) for the different problem size and

tile (block) size as well as the speed up of tiled code, where

speed-up1=t_untiled/t_tiled, speed-up2=t_untiled/t_par_tiled,

speed-up3=t_tiled/t_par_tiled.

Analysing the data in Table II, we may conclude that

serial tiled code for each program, except from advect3d and

dsyr2k, demonstrates positive speed-up (see speed-up1), for

the correl program, speed-up is equal about 5,5. This fact can

be explained by increasing tiled code locality in comparison

with that of untiled code.

Serial tiled code does not increase the locality of the original

advect3d and dsyr2k programs, so the corresponding serial

tiled programs are not faster than the original ones.

All parallel synchronization-free tiled programs expose

positive speed-up (speed-up2 and speed-up3). Two parallel

programs, dct and corcol, demonstrate super linear speed-up2

(for four CPUs, the speed-up of those programs is about 12

and 11, respectively). The reason for super-linear speed-up is

that the working set of a problem is greater than the cache size

when executed sequentially, but can fit nicely in each available

cache when executed in parallel.

The best program speed-ups (speed-up2) are presented in

a graphical way in Figure 1. All parallel tiled programs,

generated by TRACO, are faster than serial tiled code – see

speed-up3.

IX. CONCLUSION

In this paper, we presented applying the transitive clo-

sure of dependence graphs, implemented in TRACO, for

automatic producing both serial and parallel tiled code for

chosen numerical applications. Loop nest computations are

divided into multiple slices which are mapped to processors as

threads. TRACO allows users to achieve significant speed-up

of parallel numerical algorithms on shared memory machines

with multi-core processors. The effectiveness of applying

TRACO is comparable or better than that of other well-known

optimizing compilers.

In the future, we plan to implement in TRACO techniques

allowing for tiled code scalability and tile shapes different

from the rectangular one, first of all parallelepiped tiles that

will allow us to increase parallelism degree of parallel tiled

code.

REFERENCES

[1] A. Beletska, W. Bielecki, A. Cohen, M. Palkowski, K. Siedlecki,
“Coarse-grained loop parallelization: Iteration space slicing vs affine
transformations”. Parallel Computing, vol. 37, pp. 479–497, 2011.

[2] The TRACO Compiler, http://traco.sourceforge.net, 2015.

[3] OpenMP Specification, version 3.1, http://www.openmp.org, 2014.

MAREK PALKOWSKI ET AL.: AN AUTOMATIC LOOP NEST PARALLELIZER 685

TABLE II
EXECUTION TIMES OF ORIGINAL, TILED AND PARALLEL TILED CODE, SPEED-UP FOR THE STUDIED NUMERICAL PROGRAMS.

loop size block t_untiled t_tiled t_par_tiled speed-up1 speed-up2 speed-up3

advect3d
200

16
0.144

0.185 0.112 0.778 1.286 1.652
32 0.164 0.098 0.878 1.469 1.673

300
16

0.421
0.496 0.356 0.849 1.183 1.393

32 0.445 0.317 0.946 1.328 1.403

correl
1000

16
0.730

0.383 0.222 1.906 3.288 1.725
32 0.364 0.164 2.005 4.451 2.220

1200
16

3.553
0.728 0.320 4.880 11.103 2.275

32 0.633 0.288 5.613 12.337 2.220

dct
512

16
0.277

0.205 0.116 1.351 2.388 1.776
32 0.174 0.060 1.592 4.617 2.900

1024
16

4.884
1.520 0.655 3.213 7.456 2.320

32 1.321 0.443 3.697 11.025 2.981

doitgen
250

32
3.369

2.689 2.420 1.253 1.392 1.111
64 2.868 1.278 1.175 2.636 2.244

350
32

12.806
10.797 8.050 1.186 1.591 1.341

64 10.777 5.604 1.188 2.285 1.923

dysr2k
1024

16
2.037

2.484 0.753 0.820 2.705 3.298
32 1.977 1.347 1.030 1.512 1.467

1536
16

6.702
6.341 4.529 1.057 1.480 1.400

32 7.523 2.933 0.891 2.285 2.565

gemver
6000

200
0.645

0.254 0.190 2.539 3.395 1.336
400 0.260 0.224 2.481 2.879 1.160

10000
200

2.038
0.734 0.526 2.777 3.875 1.395

400 1.041 0.689 1.958 2.958 1.510

k6
1500

16
12.456

10.778 - 1.156 - -
64 11.166 - 1.116 - -

2000
16

35.723
34.189 - 1.045 - -

64 34.21 - 1.044 - -

tce
200

32
0.293

0.226 0.189 1.296 1.550 1.195
64 0.256 0.166 1.145 1.765 1.542

300
32

16.779
8.518 4.944 1.970 3.394 1.722

64 5.304 5.019 3.163 3.343 1.056

[4] W. Pugh, E. Rosser, “Iteration space slicing and its application to
communication optimization”. In International Conference on Super-

computing, pp. 22–228, 1997.
[5] W. Pugh, D. Wonnacott, “An exact method for analysis of value-based

array data dependences”. In Sixth Annual Workshop on Programming
Languages and Compilers for Parallel Computing, Springer-Verlag,
1993.

[6] W. Kelly et. al., “New User Interface for Petit and Other Extensions”,
User Guide, 1996.

[7] W. Kelly et. al., “The omega library interface guide”. Technical report,
College Park, MD, USA, 1995.

[8] W. Kelly, W. Pugh, E. Rosser, T. Shpeisman, “Transitive closure of
infinite graphs and its applications”, Int. J. Parallel Programming,
vol. 24 (6), pp. 579–598, 1996.

[9] S. Verdoolaege, “Integer Set Library - Manual”, isl.gforge.inria.fr/
manual.pdf, 2015.

[10] C. Bastoul, “Code Generation in the Polyhedral Model Is Easier Than
You Think, PACT’13 IEEE International Conference on Parallel Archi-
tecture and Compilation Techniques”, Juan-les-Pins, France, pp. 7–16,
2004.

[11] W. Bielecki, M. Palkowski, T. Klimek, “Free scheduling for statement
instances of parameterized arbitrarily nested affine loops”, Parallel

Computing, vol. 38 (9), pp. 518–532, 2012.
[12] A. Darte, Y. Robert, F. Vivien, “Scheduling and Automatic Paralleliza-

tion”, Birkhauser, 2000.
[13] W. Bielecki, M. Palkowski, “Perfectly nested loop tiling transformations

based on the transitive closure of the program dependence graph”,
Soft Computing in Computer and Information Science Advances in
Intelligent Systems and Computing, vol. 342, pp. 309-320, 2015.

[14] W. Bielecki, T. Klimek, M. Palkowski, A. Beletska, “An Iterative Algo-
rithm of Computing the Transitive Closure of a Union of Parameterized
Affine Integer Tuple Relations”, COCOA 2010: Fourth International
Conference on Combinatorial Optimization and Applications, Lecture
Notes in Computer Science, vol. 6508, pp. 104–113, 2010.

[15] T. Peters, “Livermore Loops coded in C”, Kendall Square Res. Corp.,
http://www.netlib.org/benchmark/livermorec, 1992.

[16] U. Bondhugula, et al., “A practical automatic polyhedral parallelizer
and locality optimizer”, SIGPLAN Not., vol. 43 (6), pp. 101–113,
urlhttp://pluto-compiler.sourceforge.net, 2008.

[17] PoCC the Polyhedral Compiler Collection, pocc.sourceforge.net, 2014.
[18] P. Feautrier, “Some efficient solutions to the affine scheduling problem:

I. One-dimensional time”, Int. J. Parallel Program., Kluwer Academic
Publishers, vol. 21, pp. 313–348, 1992.

[19] P. Feautrier, “Some efficient solutions to the affine scheduling problem.
Part II. Multidimensional time”, International Journal of Parallel Pro-

gramming, vol. 21, pp. 389–420, 1992.
[20] J. Ramanujam, P. Sadayappan, “Tiling Multidimensional Iteration

Spaces for Multicomputers”, Journal of Parallel and Distributed Com-

puting, Volume 16, Issue 2, pp. 108–120, 1992.
[21] A. W. Lim, M. S. Lam, “Communication-free parallelization via affine

transformations 24th ACM Symp. on Principles of Programming Lan-
guages, Springer-Verlag, pp. 392–106, 1994.

[22] U. Bondhugula, et. al., “Automatic Transformations for Communication-
Minimized Parallelization and Locality Optimization in the Polyhedral
Model Compiler Constructure”, In Proceedings of the CC’08/ETAPS’08,
Springer, pp. 132–146, 2008.

[23] M. W. Benabderrahmane, L. N. Pouchet, A. Cohen, C. Bastoul, “The
polyhedral model is more widely applicable than you think”. Proceed-
ings of the 19th joint European conference on Theory and Practice of
Software, International Conference on Compiler Construction, Springer-
Verlag, pp. 283–303, 2010.

[24] A. Lim, G. I. Cheong, M. S. Lam, “An Affine Partitioning Algorithm to
Maximize Parallelism and Minimize Communication”, In Proceedings of
the 13th ACM SIGARCH International Conference on Supercomputing,
ACM Press, pp. 228–23, 1999.

[25] L. J. Wicker and R. B. Wilhelmson, “Simulation and analysis of
tornado development and decay within a three-dimensional supercell
thunderstorm”. J. Atmos. Sci., vol. 52, pp. 2675–2703, 1995.

[26] The Tensor Contraction Engine ,http://www.csc.lsu.edu/~gb/TCE/, 2014.
[27] The Polyhedral Benchmark suite, http://www.cse.ohio-

state.edu/ pouchet/software/polybench/, 2014.

686 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

