
Strategies of parallelizing nested loops on the
multicore architectures on the example of the WZ

factorization for the dense matrices

Beata Bylina, Jarosław Bylina
Marie Curie-Skłodowska University,

Institute of Mathematics,

Pl. M. Curie-Skłodowskiej 5,

20-031 Lublin, Poland

Email: {beata.bylina,jaroslaw.bylina}@umcs.pl

Abstract—In the WZ factorization the outermost parallel loop
decreases the number of iterations executed at each step and this
changes the amount of parallelism in each step. The aim of the
paper is to present four strategies of parallelizing nested loops on
multicore architectures on the example of the WZ factorization.

For random dense square matrices with the dominant diagonal
we report the execution time, the performance, the speedup of
the WZ factorization for these four strategies of parallelizing
nested loops and we investigate the accuracy of such solutions.

It is possible to shorten the runtime when utlilizing the
appropriate strategies with the use of good scheduling.

Keywords: linear system, WZ factorization, matrix factoriza-
tion, matrix computations, multicore architecture, parallel nested
loops, OpenMP

I. INTRODUCTION

M
ULTICORE computers with shared memory are used

to solve the computational science problems. One of

more important computational problems is solution of linear

systems, the form of which is the following:

Ax = b, where A ∈ R
n×n, b ∈ R

n. (1)

One of the direct methods of solving a dense linear system

(1) is to factorize the matrix A into some simpler matrices

— that is its decomposition into factor matrices of a simpler

structure — and then solving simpler linear systems.

Such factorization is hard to compute and that is why

it is worth applying different optimization techniques and

simultaneously using parellelism of contemporary computers.

The implementation of the factorization contains nested

loops. The reasearch of the parallelization of nested loops have

been undertaken by different scientistcs.

In the work [6], the authors study five different models for

nested parallel loops execution on shared-memory multipro-

cessors and show a simulation based performance comparison

of different techniques using real application. The possibility

to take advantage of the parallelism in nested parallel loops

with the use of good scheduling and synchronization algo-

rithms is described.

An automatic mechanism to dynamically detect the best way

to exploit the parallelism when having nested parallel loops

is presented in the study [3]. This mechanism is based on a

number of threads, size of the problem, number of iterations

in a loop and its was implemented inside IBM XL runtime

library. This paper examined (among other) an LU kerner,

which decomposes the matrix A into the matrices: L (lower

triangular matrix) and U (upper triangular matrix).

An algorithm for finding good distributions of threads to

tasks is provided and the implementation of nested parallelism

in OpenMP is discussed in the paper [1].

The main focus of [5] was to investigate the possibility of

dynamically choosing, at runtime, the loop which best utilises

the available threads.

To implement parallel programs on multicore systems with

shared-memory, programmers usually use the OpenMP stan-

dard [8]. The programming model provides a set of directives

to explicitly define parallel regions in applications. The com-

pliator translates these directives. One of its most interesting

features in the language is the support for nested parallelism.

This work investigate the issue of the parallelizing nested

loops in OpenMP. The OpenMP standard supports loop par-

alelism. For OpenMP standard, it is done by the utilization of

the directive #pragma omp parallel for, which pro-

vides a shourtcut for specifying a parallel region that contains

a single #pragma omp parallel.

Parallelism of the nested loops in the WZ factorization is

the aim of the work. In the WZ kerner the outermost parallel

loop decreases the amount of iterations executed at each step

and this changes the number of parallelism in each step. In

this paper we investigate the time, the scalability, the speedup

and the acuraccy for four different nested loops parallelism

strategies for the WZ factorization.

The paper deals with the following issues. In Section II the

idea of the WZ factorization [2], [7] and the way the matrix A

is factorized to a product of matrices W and Z are described.

Such a factorization exists for every nonsingular matrix (with

pivoting) which was shown in [2].

Section III provides information about some strategies of

parallelizing nested loops and their application to the orginal

the WZ factorization. Section IV presents the results of our

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 629–639

DOI: 10.15439/2015F354

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 629



experiments. The time, the speedup, the performance of WZ

factorization for different strategies on the two platforms are

analysed. The influence of the size of the matrix on the

achieved numerical accuracy is studied as well. Section V is

a summary of our experiments.

II. WZ FACTORIZATION (WZ)

The chapter presents the WZ factorization usage to solve

(1). The WZ factorization is described in [2], [4].
Let us assume that the A is a square nonsingular matrix

of an even size (it is somewhat easier to obtain formulas for

even sizes than for odd ones). We are to find matrices W and

Z that fulfill WZ = A and the matrices W and Z consist of

the following rows wT
i and zTi respectively:

wT
1 = (1, 0, . . . , 0

︸ ︷︷ ︸

n−1

)

wT
i = (wi1, . . . , wi,i−1, 1, 0, . . . , 0

︸ ︷︷ ︸

n−2i+1

, wi,n−i+2, . . . , win)

for i = 2, . . . , n
2 ,

wT
i = (wi1, . . . , wi,n−i, 0, . . . , 0

︸ ︷︷ ︸

2i−n−1

, 1, wi,i+1, . . . , win)

for i = n
2 + 1, . . . , n− 1,

wT
n = (0, . . . , 0

︸ ︷︷ ︸

n−1

, 1)

zTi = (0, . . . , 0
︸ ︷︷ ︸

i−1

, zii, . . . , zi,n−i+1, 0, . . . , 0)

for i = 1, . . . , n
2 ,

zTi = (0, . . . , 0
︸ ︷︷ ︸

n−i

, zi,n−i+1, . . . , zii, 0, . . . , 0)

for i = n
2 + 1, . . . , n.

(2)
After the factorization we can solve two linear systems:







Wy = b

Zx = y

(3)

(where y is an auxiliary intermediate vector) instead of one

(1).
In this paper we are interested only in obtaining the matrices

Z and W. The first part of the algorithm consists of setting

succesive parts of columns of the matrix A to zeros. In the first

step we do that with the elements in the 1st and nth columns

— from the 2nd row to the (n−1)st row. Next we update the

matrix A.
More formally we can describe the first step of the algorithm

the following way.

1) For every i = 2, . . . , n − 1 we compute wi1 and win

from the system:
{

a11wi1 + an1win = −ai1
a1nwi1 + annwin = −ain

and we put them in the matrix of the form:

W(1) =












1 0 · · · 0 0

w21 1
. . .

... w2n

... 0
. . . 0

...

wn−1,1

...
. . . 1 wn−1,n

0 0 · · · 0 1












.

2) We compute:

A(1) = W(1)A.

After the first step we get a matrix of the form:

A(1) =











a11 a12 · · · a1,n−1 a1n

0 a
(1)
22 · · · a

(1)
2,n−1 0

...
...

...
...

0 a
(1)
n−1,2 · · · a

(1)
n−1,n−1 0

an1 an2 · · · an,n−1 ann











, (4)

where (for i, j = 2, . . . , n− 1):

a
(1)
ij = aij + wi1a1j + winanj . (5)

Then, we proceed analogously — but for the inner square

matrices — A(1) of size (n− 2) and so on.
So, the whole algorithm is the following.
For k = 1, 2, . . . , n

2 − 1:

1) For every i = k + 1, . . . , n − k we compute wik and

wi,n−k+1 from the system:






a
(k−1)
kk wik + a

(k−1)
n−k+1,kwi,n−k+1

= −a
(k−1)
ik

a
(k−1)
k,n−k+1wik + a

(k−1)
n−k+1,n−k+1wi,n−k+1

= −a
(k−1)
i,n−k+1

and we put them in a matrix of the form shown in Figure

1.

2) We compute:

A(k) = W(k)A(k−1).

After (n2 − 1) such steps we get the matrix

Z = A(n

2
−1).

Moreover, we know that:

W(n

2
)−1 · . . . ·W(1) ·A = Z,

so we get

A = {W(1)}−1 · . . . · {W(n

2
)−1}−1 · Z = WZ.

Algorithm 1 shows the WZ algorithm.
The complexity of Algorithm 1 can be expressed by the

formule
n

2
−1

∑

k=1



3 +
n−k∑

i=k+1



8 +
n−k∑

j=k+1

4







 =
4n3 − 7n− 18

6
. (6)

So, this algorithm requires O(n3) arthmetic operations.

630 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



W(k) =


























1
. . .

1

wk+1,k
. . . wk+1,n−k+1

...
. . .

...

wn−k,k

. . . wn−k,n−k+1

1

. . .

1


























Fig. 1. The matrix W(k) in kth step.

Algorithm 1 Outline of the WZ factorization algorithm (WZ)

Require: A

Ensure: W, Z

1: for k = 1 to n/2− 1 do

2: k2← n− k + 1
3: det← akk ∗ ak2k2 − ak2k ∗ akk2
4: for i = k + 1 to k2− 1 do

5: wik ← (ak2k2 ∗ aik − ak2k ∗ aik2)/det
6: wik2 ← (akk ∗ aik2 − akk2 ∗ aik)/det
7: for j = k + 1 to k2− 1 do

8: aij ← aij − wik ∗ akj − wik2 ∗ ak2j
9: end for

10: end for

11: end for

12: Z ← A

III. NESTED LOOPS PARALLELISM STRATEGIES

An application with nested loops can be performed parallely

in different ways depending on compilators, hardware and

run-time system support available. Nested loops require from

of a programmer taking a decision concerning details of

parallelism.

In this work we deal with the following parallelization

strategies for nested loops:

1) outer

2) inner

3) nested

4) split

While all variables used in a parallel region are by default

shared, in each strategy we declare explicitly all variables

as private or shared for all directives respectively. Using

the private clause, we specify that each thread has its own

copy of variables.

To ensure load balancing for all threads we use the schedule

clause, which specifies how the iterations of the loop are

assigned to the threads. In the clause schedule of the

directive #pragma omp parallel for we set the value

static, because the computational cost of the tasks is

known.

A. Outer

Outer — the simplest parallelization strategy of nested

loops is parallel execution of the most outer loop. All inner

loops are executed in a sequence. This approach gives good

results if the number of iterations in a loop is big and the

iteration’s granularity is coarse enough, which happens exactly

in case of the WZ factorization. Algorithm 2 presents outer

strategy for WZ factorization. The outermost k-loop cannot

be parallelized, however, we can parallelize the i-loop. In

this simple parallelization strategy the loop is divided equally

between threads, so every thread performs the same amount

of work, which ansure regular distribution of work beetwen

threads.

B. Inner

Another strategy of paralelizing nested loops involves ex-

ecuting the inner loops in parallel on all processors, but the

outer loop is executed in a sequence. Clearly, in case of WZ

factorization blocking barrier is used at the end of each parallel

JAROSLAW BYLINA, BEATA BYLINA: STRATEGIES OF PARALLELIZING NESTED LOOP 631



Algorithm 2 Outline of the WZ factorization algorithm (WZ) — outer strategy

Require: A

Ensure: W, Z

1: for k = 1 to n/2− 1 do

2: k2← n− k + 1
3: det← akk ∗ ak2k2 − ak2k ∗ akk2
4: #pragma omp parallel for private(i) shared(k, k2, w, a, det,j)

5: for i = k + 1 to k2− 1 do

6: wik ← (ak2k2 ∗ aik − ak2k ∗ aik2)/det
7: wik2 ← (akk ∗ aik2 − akk2 ∗ aik)/det
8: for j = k + 1 to k2− 1 do

9: aij ← aij − wik ∗ akj − wik2 ∗ ak2j
10: end for

11: end for

12: end for

13: Z ← A

loop, which prevents incorect results. Parallelizing the inner

loop will potentially provide smaller pieces of work so they

can be distributed evenly between the available threads but it

has more overhead due to work distribution and synchroniza-

tion beetwen threads. This overhead may be high if the loop

granularity is too fine. Algorithm 3 presents inner strategy for

WZ factorization, in which the j-loop are parallelized.

C. Nested

The third strategy of execution of nested loops paralelization

is exploiting the paralelism on each level — nested parallelism.

Standard OpenMP (from 2.5 version) makes it possible to nest

parallel loops, however, it must be switched on by means

of the environment variable OMP_NESTED or the function

omp_set_nested. Each task needs at least one thread to

its own disposal. Algorithm 4 presents the nested strategy.

This algorithm shows how a 2-level parallelism can be

implemented in OpenMP based on the directives. Nesting

parallel loops is a way to use more threads in a computation.

This can easily create a large number of threads as their

number is the product of the number of threads forked at each

level of nested loops.

D. Split

The final strategy concernes division of i-loops into two

separate loops. Such a split facilites presentation of kth step

in the form of a dag (directed acyclic graph), which shows the

order of the task execution. The dag represents computational

solutions in which the nodes represent tasks to be executed

and edges represent precedence among the tasks. In the figure

2 a dag for kth step and shows, which part of the matrix

is processed in a particular task is presented. By Task 1 we

understand determining of valiables k2 and det (lines 2 and

3 in Algorithm 1. Task 2 is the computation of kth and k2nd

column of the matrix W (lines 4, 5 and 6 in Algorithm 1).

Task 3 is the computation of values in the matrix A (lines 4,

7 and 8 in Algorithm 1).

Algorithm 5 shows the split strategy for WZ factorization.

The first loop is parallelized. The second loop is nested loop

and we use outer version to parallelize this loop.

IV. NUMERICAL EXPERIMENTS

In this section we tested the time, the performance, the

speedup and the absolute accuracy of the WZ factorization.

Our intention was to investigate diffrent nested loops par-

allelization strategies for the WZ factorization on multicore

architecuters. We examined five versions algorithms of the WZ

factorization:

• sequential (Algorithm 1),

• outer (Algorithm 2),

• inner (Algorithm 3),

• nested (Algorithm 4),

• split (Algorithm 5).

Here we used experiments, based on information collected

at runtime, to decide whether a loop should execute clause

static or dynamic and we chose static.

The input matrices are generated (by the authors). They are

random, dense, square matrices with a dominant diagonal of

even sizes (1000, 2000,. . . , 9000)

We used two hardware platforms for testing: E5-2660 and

X5650. Their details specifications are presented in Table I.

The algorithms sequential, outer, inner, nested and split

were implemented with the use of the C language with the use

of the double precision. Our codes were compiled by INTEL

C Compiler (icc) with optimization flag -O3. Additionally, all

algorithms were linked with the OpenMP library.

A. The Time

All the processing times are reported in seconds. The time is

measured with an OpenMP function open_get_wtime().

They were tested in the double precision.

In Figures 3 and 4 we have compared the average running

time of the four parallel WZ decomposition algorithms and

the sequential version on two platforms.

632 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



Algorithm 3 Outline of the WZ factorization algorithm (WZ) — inner strategy

Require: A

Ensure: W, Z

1: for k = 1 to n/2− 1 do

2: k2← n− k + 1
3: det← akk ∗ ak2k2 − ak2k ∗ akk2
4: for i = k + 1 to k2− 1 do

5: wik ← (ak2k2 ∗ aik − ak2k ∗ aik2)/det
6: wik2 ← (akk ∗ aik2 − akk2 ∗ aik)/det
7: #pragma omp parallel for private(j) shared(k, k2, w, a, det,i)

8: for j = k + 1 to k2− 1 do

9: aij ← aij − wik ∗ akj − wik2 ∗ ak2j
10: end for

11: end for

12: end for

13: Z ← A

Algorithm 4 Outline of the WZ factorization algorithm (WZ) — nested strategy

Require: A

Ensure: W, Z

1: for k = 1 to n/2− 1 do

2: k2← n− k + 1
3: det← akk ∗ ak2k2 − ak2k ∗ akk2
4: #pragma omp parallel for private(i) shared(k, k2, w, a, det)

5: for i = k + 1 to k2− 1 do

6: wik ← (ak2k2 ∗ aik − ak2k ∗ aik2)/det
7: wik2 ← (akk ∗ aik2 − akk2 ∗ aik)/det
8: #pragma omp parallel for private(j) shared(k, k2, w, a, det)

9: for j = k + 1 to k2− 1 do

10: aij ← aij − wik ∗ akj − wik2 ∗ ak2j
11: end for

12: end for

13: end for

14: Z ← A

1 1

2 3

2

1

2

1 1

11

Fig. 2. The dag of the tasks (left). The sequence of calculations in the matrix in the WZ factorization in every step (right).

JAROSLAW BYLINA, BEATA BYLINA: STRATEGIES OF PARALLELIZING NESTED LOOP 633



Algorithm 5 Outline of the WZ factorization algorithm (WZ) — split strategy

Require: A

Ensure: W, Z

1: for k = 1 to n/2− 1 do

2: k2← n− k + 1
3: det← akk ∗ ak2k2 − ak2k ∗ akk2
4: #pragma omp parallel for private(i) shared(k, k2, w, a, det)

5: for i = k + 1 to k2− 1 do

6: wik ← (ak2k2 ∗ aik − ak2k ∗ aik2)/det
7: wik2 ← (akk ∗ aik2 − akk2 ∗ aik)/det
8: end for

9: #pragma omp parallel for private(i) shared(k, k2, w, a, det)

10: for i = k + 1 to k2− 1 do

11: for j = k + 1 to k2− 1 do

12: aij ← aij − wik ∗ akj − wik2 ∗ ak2j
13: end for

14: end for

15: end for

16: Z ← A

TABLE I
SOFTWARE AND HARDWARE PROPERTIES OF E5-2660 AND X5650 SYSTEMS

E5-2660 System X5650 System
CPU 2x Intel Xeon E5-2660 (20M Cache, 2.20 GHz, 8 cores with HT) 2x Intel Xeon X5650 (12M Cache, 2.66 GHz, 6 cores with HT)
CPU memory 48GB DDR3 48GB DDR3
Operating system CentOS 5.5 (Linux 2.6.18-164.el5) Debian (GNU/Linux 7.0)
Libraries OpenMP, Intel Composer XE 2013 OpenMP, Intel Composer XE 2013
Compilers Intel Intel

Figure 3 shows the dependence of the time on the number

of threads for the matrix of the size 9000 on two platforms

(X5650 on the right side, E5-2660 on the left side).

Figure 4 shows the dependence of the time on the matrix

size for 12 threads for X5650 system (the right side) and 16

threads for E5-2660 system (the left side).

Using obtained results we conclude that:

• For a growing number of threads E5-2660 architecture

outperforms X5650, due to the fact that the latter one is

its older. We were expecting this result.

• The time is the shortest for 12 threads on the X5650

system and for 16 threads on the E5-2660 system. For

bigger number of threads the time is the same as for

12 threads on the X5650 system nad for 16 threads on

E5-2660, which proves weakness of the hyperthrading

technology.

• If the size matrix is increased, then the runtime is

increased too and it becomes more profitable to use a

big number of the threads.

• split and outer algorithms achieve very similar execution

time, which is the shortest compared with other algo-

rithms.

• The worse execution time was achieved by the nested al-

gorithm and for E5-2660 it is even worse than sequential

algorithm.

B. The Performance

Figures 5 and 6 compare the performance (in Gflops) results

obtained for those five algorithms (sequential, outer, inner,

nested, split) — in the double precision on two platforms.

The performance is based on the number of floating-point

operations in the WZ factorization (6).

Figure 5 shows dependence of the performance on the

number of threads (maximum number of the threads is 24)

for the matrix of the size 9000 for two platforms (X5650 —

the right, E5-2660 — the left).

Figure 6 shows dependence of the performance on matrix

size for 12 threads for X5650 system (the right side) and 16

threads for E5-2660 (the left side).

We can see the best performance (about 5.5 Gflop/s)

achieved by split algorithm for the matrix of the size 9000 for

16 threads on E5-2660 system, and worst (less than 1 Gflop/s)

is for nested version and sequential algorithm for all matrix

sizes. On X5650 system we obtain worse performance for all

tested algorithms than on E5-2660 System. The performance

is very low for all algorithms on X5650 system and almost the

same for inner, outer and split algorithms on X5650 system.

C. The Speedup

Figures 7 and 8 present the speedup results obtained for

four algorithms implementations — in the double precision

on two platforms. Figure 7 shows dependence of the speedup

on the number of threads (maximum number of the threads is

634 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



 10

 100

 1000

 10000

 100000

 0  5  10  15  20  25

ti
m

e
 [

s
]

number of threads

Performance time (E5-2660, n=9000)

seq.
outer
inner

nested
split

 100

 1000

 10000

 100000

 0  2  4  6  8  10  12  14  16  18  20

ti
m

e
 [

s
]

number of threads

Performance time (X5650, n=9000)

seq.
outer
inner

nested
split

Fig. 3. The average running time of the WZ matrix decomposition as a function of the number of threads — for the five algorithms using the double
precision on two platforms (E5-2660 on the left side and X5650 on the right side) for the matrix of the size 9000 (logarithmic y-axis).

 0.1

 1

 10

 100

 1000

 10000

 1000  2000  3000  4000  5000  6000  7000  8000  9000

ti
m

e
 [

s
]

miatrix size

Performance time (E5-2660, 16 threads)

seq.
outer
inner

nested
split

 0.1

 1

 10

 100

 1000

 10000

 1000  2000  3000  4000  5000  6000  7000  8000  9000

ti
m

e
 [

s
]

miatrix size

Performance time (X5650, 12 threads)

seq.
outer
inner

nested
split

Fig. 4. The average running time of the WZ matrix decomposition as a function of the matrix size — for 16 threads on E5-2660 system (the left side) and
for 12 threads on X5650 system (the right side) (logarithmic y-axis ).

23) for the matrix of the size 9000 for two platforms (X5650

— the right, E5-2660 — the left).

Figure 8 shows dependence of the performance on the

matrix size for 12 threads for X5650 system (the right side)

and 16 threads for E5-2660 (the left side).

Note that:

• All algorithms scale well with the size of a matrix;

moreover,the bigger the matrix, the better the speedup.

• The speedup increases steadily until 12 threads on E5-

2660 System and 16 threads on X5650 system, before it

starts to level off.

• Split algorithm has the better speedup, even value up to

14 for 16 threads on E5-2660 system.

• On the X5650 system split and outer algorithm have

similary seedup, but on E5-2660 System split algorithm

has higher speedup than split algorithm.

D. Numerical Accuracy

The purpose of this section is not to accomplish a full study

of the numerical stability and accuracy of the WZ factoriza-

tion, but justify experimentally that our implementation of the

WZ algorithm can be used in practice.

As a measure of accuracy we took the following expression

(where ||M|| is the Frobenius norm of the matrix M) based

on the absolute error:

||A−WZ||.

Table II illustrates the accuracy (given as the norms ||A−
WZ||) of the WZ factorization. The norms on both platforms

(E5-2660 and X5650) are the same for appropriate matrix

JAROSLAW BYLINA, BEATA BYLINA: STRATEGIES OF PARALLELIZING NESTED LOOP 635



 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25

G
flo

p
s

number of threads

Performance (E5-2660, n=9000)

seq.
outer
inner

nested
split

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12  14  16  18  20

G
flo

p
s

number of threads

Performance (X5650, n=9000)

seq.
outer
inner

nested
split

Fig. 5. The performance results for the WZ factorization — using the double precision on two platforms (E5-2660 — the left side; X5650 — the right side)
for the five algorithms as the function of number of threads.

 0

 1

 2

 3

 4

 5

 6

 7

 1000  2000  3000  4000  5000  6000  7000  8000  9000

G
flo

p
s

miatrix size

Performance (E5-2660, 16 threads)

seq.
outer
inner

nested
split

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000  2000  3000  4000  5000  6000  7000  8000  9000

G
flo

p
s

miatrix size

Performance (X5650, 12 threads)

seq.
outer
inner

nested
split

Fig. 6. The performance results for the WZ factorization — using the double precision for 16 threads on E5-2660 system (the left side) and for 12 threads
on X5650 system (the right side) for the five algorithms as a function of the matrix size.

sizes. Values of the norm do not depend on the number of

the threads and do not depend on a choice of algorithms (for

all algorithms the norm depends only on the matrix size).

V. CONCLUSION

In this paper we examined several practical aspect of nested

parallel loop execution. We used four different strategies

for executing nested parallel loops on the examples of the

WZ factorization. All proposed approaches usually accelerate

sequential computations, except the nested algorithm.

Nested algorithm for a small number of threads proved to

be the fastest, but for a big numer of threads its execution

took longer time even than for a sequential algorithm. We

may explain that creating any parallel region will cause the

overhead. Overhead from nesting of parallel regions may cause

overheads greater than necessary if, for example, an outer

region could simply employ more threads in a computation.

The appliaction lost the time on scheduling threads. OpenMP

allows the specification of nested parallel loops, but for WZ

factorization does not acquire satisfactory results. OpenMP

uses nesting poorly.

The available number of threads exploited both outer and

split algorithms best. Split approach achievs the best speedup.

The speedup of 14 was achived for 16 threads on the E5-2660

system. We find this result very satisfactory.

The implementation had no impact on the accuracy of the

factorization — the accuracy depended only on the size of the

matrix what is quite self-evident.

The implementation of the split algorithm presented in this

paper achieves high performance results, which has a direct

636 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

s
p
e
e
d
u
p
 (

to
 s

e
q
.)

number of threads

Speedup (E5-2660, n=9000)

outer
inner

nested
split

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s
p
e
e
d
u
p
 (

to
 s

e
q
.)

number of threads

Speedup (X5650, n=9000)

outer
inner

nested
split

Fig. 7. The speedup results for the WZ factorization — using the double precision on two platforms (E5-2660 — top; X5650 — bottom) for the four
algorithms as the function of number of threads.

JAROSLAW BYLINA, BEATA BYLINA: STRATEGIES OF PARALLELIZING NESTED LOOP 637



 0

 2

 4

 6

 8

 10

 12

 14

1000 2000 3000 4000 5000 6000 7000 8000 9000

s
p
e
e
d
u
p
 (

to
 s

e
q
.)

matrix size

Speedup (E5-2660, 16 threads)

outer
inner

nested
split

 0

 2

 4

 6

 8

 10

 12

 14

1000 2000 3000 4000 5000 6000 7000 8000 9000

s
p
e
e
d
u
p
 (

to
 s

e
q
.)

matrix size

Speedup (X5650, 12 threads)

outer
inner

nested
split

Fig. 8. The speedup results for the WZ factorization — using the double precision for 16 threads on E5-2660 System (top) and 12 threads on X5650 System
(bottom) for the four algorithms as a function of the matrix size.

638 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



TABLE II
THE NORMS FOR THE WZ FACTORIZATIONS IN DOUBLE PRECISION ON E5-2660 SYSTEM AND X5650 SYSTEM FOR ALL THE ALGORITHMS IN DOUBLE

PRECISION

matrix size ||A−WZ||
1000 2.89 · 10−22

2000 1.18 · 10−21

3000 2.97 · 10−21

4000 5.59 · 10−21

5000 9.32 · 10−21

6000 1.40 · 10−20

7000 2.06 · 10−20

8000 2.83 · 10−20

9000 3.78 · 10−20

impact on the solution of linear systems.

This paper is another example of the succesful use of

OpenMP for solving scientific appliactions.

REFERENCES

[1] R. Blikberg, T. Sørevik: “Load balancing and OpenMP implementation
of nested parallelism”, Parallel Computing 31, Elsevier, 2005, pp. 984–
998.

[2] S. Chandra Sekhara Rao: “Existence and uniqueness of WZ factoriza-
tion”, Parallel Computing 23, (1997), pp. 1129–1139.

[3] A. Duran, R. Silvera, J. Corbalan, J. Labarta: “Runtime adjustment of
parallel nested loops”, Proceedings of the 5th international conference

on OpenMP Applications and Tools: shared Memory Parallel Program-

ming with OpenMP, Houston, 2004, pp. 137–147.
[4] D. J. Evans, M. Hatzopoulos: “The parallel solution of linear system”,

Int. J. Comp. Math. 7 (1979), pp. 227–238.
[5] A. Jackson, O. Agathokleous: “Dynamic Loop Parallelisation”, arXiv:

1205.2367v1, 10 May 2012.
[6] A. Sadun, W. W. Hwu: “Executing nested parallel loops on shared-

memeory multiprocessors”, Proceedings of the 21st Annual International

Conference on Parallel Processing, 1992.
[7] P. Yalamov, D. J. Evans: “The WZ matrix factorization method”, Parallel

Computing 21, 1995, pp. 1111–1120.
[8] OpenMP, http://openmp.org/wp/, April 2015.

JAROSLAW BYLINA, BEATA BYLINA: STRATEGIES OF PARALLELIZING NESTED LOOP 639


