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Abstract—Harnessing the power and popularity of partici-
patory or opportunistic sensing for the purpose of providing
added value security and surveillance services is a promising
research direction. However, challenges such as increased pri-
vacy concerns, as well as technological issues related to the
reliable processing and meaningful analysis of the collected data,
hinder the widespread deployment of participatory surveillance
applications. We present here our work on addressing some of
the aforementioned concerns through our related participatory
application that focuses on crisis management and in particular
buildings’ evacuation. We discuss the technical aspects of our
work, the viability and practicality of which is validated by means
of a real experiment comprising 14 users in the context of an
emergency evacuation exercise.

I. INTRODUCTION

R
ECENT developments regarding the capabilities of

smartphones that are increasingly equipped with middle-

to high-end sensors and their widespread penetration in mod-

ern society have spawn a novel paradigm of information

generation and sharing, that of participatory sensing [1]. In

this bottom-up paradigm illustrated in Figure 1, users of

smartphones take advantage of the capabilities of the devices

that they are carrying in terms of sensing and collect data

regarding their surrounding environment and themselves, e.g.

acceleration, temperature, light, sound, etc. They then proceed

with sharing this information with other users either by

uploading it to a common repository accessible to everyone

(perhaps in the form of a map service where the location of the

collected data is also pinpointed), or by sending their data to a

centralized entity that provides them with related services [2].

The paradigm of participatory sensing is applicable to a

wide range of application domains. Of particular interest is its

consideration in light of security applications, in which case a

new research domain, i.e. that of participatory surveillance,

emerges [3]. Participatory surveillance refers to the use of

principles from participatory sensing in order to monitor,

control, and assess a variety of events for the purpose of

security [4]. For example, the evacuation of a building could

be enhanced when having access to data collected from the

evacuees through their smartphones or in case of criminal

activities the legal and police authorities could have a wealth

of data coming from smartphones of nearby people to support

their investigations [5], even in the absence of operational

networking infrastructures. The latter data yield no significant

information as such, but subject to processing using machine

learning techniques they could be used to deduce useful

knowledge about the activities the users were conducting at

the time of data collection.

Fig. 1. Principles of operation of participatory surveillance.

To examine the viability of such scenarios we built a

prototype participatory surveillance application and staged an

evacuation exercise to validate its viability and practicality in

real settings. We also designed a participatory surveillance

framework and an experimental methodology to collect and

analyze the data gathered throughout the exercise. One of the

main goal of this research work was to examine the potential

knowledge that can be derived from raw data stemming from

the participatory sensing tasks. The driving objective was our

ability to infer the different types of activities that the users

were engaged in during the experiments, using only raw sensor

data as input. We were also interested in examining how much

information can be extracted from a minimal set of data and

the results discussed later were quite interesting in terms of

privacy.
We report here on our findings utilizing artificial intelligence

and in particular machine learning algorithms to preprocess

and analyze the collected data in order to infer the type

of activities the users were conducting when the data was

being collected. The results are very promising, with various

configurations of our framework being able to identify up to
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99% of users’ activities (walking, standing still, climbing stairs

or descending stairs) on the actual data collected from the

evacuation exercise.

The remaining of this paper is structured as follows. After

this brief introduction, Section II reviews related work in

the area of participatory sensing in the context of security.

Section III discusses the design of our participatory surveil-

lance application together with potential scenarios of its use,

whereas Section IV outlines privacy concerns and considera-

tions regarding participatory surveillance. Section V presents

the proposed generic framework to support analysis of data

collected through such applications, evaluation of the accuracy

and performance of which is the subject of Section VI. The

paper concludes with Section VII where the limitations of this

work are underlined and opportunities for further research in

the domain are pinpointed.

II. RELATED WORK

Sensors on mobile phones can be used to infer different

types of information regarding the users of the phones, as

well as the surrounding environment. Accordingly, an exten-

sive review is presented in [6]. Accelerometers, gyroscopes,

and other sensors have been used to detect human activities

with typical cases presented in [7], [8], [9]. Such works

are significant for security reasons, because they can reveal

the state of users, e.g. running or laying still, and thus in

combination with other contextual information they can hint

on possibly suspicious actions of users, e.g. running away

from a crime scene, while everybody else around the user is

walking. Moreover, considering a smartphone’s microphone

as input, audio recordings regarding noteworthy events could

be recorded in an inconspicuous manner, whereas the phone

camera could serve as an additional channel of information

reporting, as discussed in [10].

The prominence and ubiquity of current smartphones that

are equipped with a variety of embedded sensors has spurred

applications related to user-centric sensing and monitoring

of the surroundings, namely the paradigm of participatory

sensing [1]. Such applications have found applicability in envi-

ronmental monitoring [11], green vehicle routing [12], noise

mapping in urban environments [13] and lately in security

and surveillance operations [4]. Despite the fact that there

are several potential shortcomings from such an approach, i.e.

regarding privacy [14] and the quality and accuracy of data

collection [15], its benefits nonetheless are far from negligible.

In the context of security, participatory sensing applications

can provide great data collection services at high granularity

(spatial and temporal) and at a low cost. Current surveil-

lance practices rely mostly on video monitoring, e.g. CCTV,

which has several shortcomings in person identification [16]

and cannot inherently cover extended areas. While there has

been work on using sensors as information side channels

for security operations, e.g. microphone [17], accelerometers

and PIR [18], and magnetometers [19], such techniques have

however not been envisaged at a large scale. Limited num-

ber of sensors were deployed in previous works and such

approaches therefore also suffer from poor range and poor

data records. Participatory sensing builds on the use of sensors

on smartphones that are nowadays pervasive and ubiquitous

and can thus provide information for large geographical areas,

assuming a large volunteer user base. The associated costs

are minimal compared to the installation and deployment of

infrastructure-based solutions, while additionally the ease of

deployment is great since nowadays users carry their phones

with them for the major party of the day and it is always

on, collecting sensor data. Another benefit of participatory

sensing applications for security purposes can be found in

the straightforward identification of people that is supported

through the cell IDs of the phones and allows the association

of users with the data related to them. The Cell-All project

from the US Department of Homeland Security on the use

of chemical sensors on mobile phones to detect chemical

attack related emergency situations was one of the first efforts

towards crowdsensing being put in use for security purposes

[20].

Furthermore, one of the biggest concerns in participatory

sensing is ensuring that users are actively contributing and

sharing their data [21], [22] since it could eventually lead to

poor performance due to the lack of accurate and informative

representations. This problem has been considered in the con-

text of noise mapping, where a persuasive, motivating game

was considered in [23] to stimulate user data collection and

sharing. In terms of participatory surveillance, we postulate

that the citizens’ sense of engagement and contribution in

securing their environments will be the driving factor for

their engagement. Nevertheless, in order to promote such

engagement the fundamental issue raised by users, i.e. privacy,

should be addressed. In this respect, there has been significant

research work on the anonymization of shared user data with

prominent examples being reported in [24] and [25].

III. PARTICIPATORY SURVEILLANCE SCENARIOS

Participatory surveillance as a concept aims at utilizing

the notions of participatory sensing and the ubiquity of

smartphones equipped with a wealth of sensors in order to

provide services related to surveillance and public security.

This paradigm shift aims at empowering both the citizen and

the police authorities and raising public awareness and citizen

engagement [3]. Citizens on one hand feel more empowered

since they are contributing in securing their neighborhoods

and acquire thus a more active role in their society. Police

authorities on the other hand gain from the wealth of data com-

ing from citizens’ smartphones and other monitoring means.

It is an inexpensive and efficient way of enriching the data

coming from traditional sources of surveillance, e.g. CCTV,

as well as reaching areas where deployment of CCTV-like

systems is not possible or allowed. Moreover, data coming

from smartphones is not only limited to pictures or videos,

but it can also include data from the embedded sensors such

as accelerometer, gyroscope, pressure, magnetometer, etc. This

kind of data supports the police authorities in gaining a better

understanding of potentially noteworthy incidents [4].
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In this respect, we considered a scenario that involved a

variety of actors in order to collect experimental datasets from

smartphone sensors and also to test the feasibility of the notion

of participatory surveillance. We chose to avoid scenarios that

would seem invasive and that might be considered as threaten-

ing citizens’ privacy, e.g. continuous localization using GSM

signals or recording the audio and video signals surrounding

citizens at all times. The scenario we considered involved

crisis management and in particular an evacuation exercise

of an office building in case an emergency occurs, e.g. fire.

People inside the building, namely employees, safety staff,

building delegates (in charge of enforcing standard evacuation

procedures) and visitors, were assumed to have a smartphone

equipped with a custom application that monitored the values

registered from their sensors and reported the data back to a

centralized control room.

In terms of participatory surveillance, the principal goal

was the utilization of the collected sensor datasets to provide

the remotely located control room supervisors with useful

knowledge regarding the progress of the evacuation, e.g.

bottlenecks in exits indicated by users standing still, running in

stairs indicating panic, users in peculiar situations (lying down

or falling). Accordingly, the collected datasets that contained

raw sensor data, e.g. from accelerometers or gyroscopes, had

to be processed and analyzed in a manner that would allow

us to extract useful information about user activities related

to the collected data. The motivation behind this exercise was

to examine whether data from smartphones alone would be

sufficient to support surveillance tasks during an emergency

when infrastructure surveillance mechanisms such as CCTV

would be unavailable, namely to study the potential use

of smartphones and participatory applications as a backup

channel for surveillance.

The evacuation exercise scenario is in our view typical

of prospective participatory surveillance applications, since it

exhibits the majority of desired characteristics. In particular,

it considers the use of a variety of sensors and a large

number of people; it is privacy-friendly since it allows people

to decide when and what type of data they wish to share;

it is easily extensible to include further features and data

sources; it provides solid motivation for the use of smartphones

for security operations, since in such a case the lack of

infrastructure surveillance network would be detrimental to

police operations. Undoubtedly, the major concern of user

privacy is present in this scenario as well as in every other

participatory sensing application, albeit at a smaller scale.

In the following, we discuss relevant privacy concerns and

describe our approach in alleviating them.

IV. PRIVACY CONSIDERATIONS

While the benefits stemming from participatory surveillance

applications are evident, the privacy risks involved are not

clear and need to be carefully considered. The mere concept

of participatory surveillance comes along with a series of

potential privacy risks. Users are required to share personal

data coming from the sensors embedded on their phones, in

order to support and improve security operations and promote

the communal sense of safety. We illustrate in Section VI that

even with the use of data coming from just the accelerometer,

it is possible to infer the activities that the user was conducting

at the time of data collection. Use of additional sensors could

exacerbate this risk, providing more detailed information on

user activities. Indicative of relevant privacy risks, is the recent

work presented in [26] that considered RF-sensing to infer

the state of device-free individuals without their cooperation.

Taking into account the capabilities of modern smartphones

and the wealth of data available to participatory surveillance

applications, it becomes clear that proper privacy enhancing

technologies need to be put in place.

A major concern refers to the fact that user data can easily

be traced back to their owner, because of the nature of cellular

networks and the uniqueness of phone identifiers. Since data

can be used to expose potential private user information,

anonymization techniques need to be utilized to hinder such

exposure. A comprehensive review of related solutions can be

found in [24], with the most prominent approaches considering

techniques such as k-anonymity and l-diversity [25]. More-

over, the entire space of sensors on smartphones needs to be

carefully examined. The latter are nowadays carrying a large

number of sensors and the knowledge that can be extracted

from them (by processing the corresponding sensed data) is

still not fully chartered. Studies like the one presented in this

paper, expose the privacy risks related to the accelerometer,

however the need to perform similar studies for the entirety of

available sensors is paramount. Accordingly, guidelines could

be provided to the end users to instruct them on the potential

risks involved in sharing data coming from diverse sensors.

This is particularly important since users are quite sensitive

about sharing photos or location data for example, but are

unaware of the risks involved in sharing data from low level

sensors that could be equally detrimental to their privacy [14].

Access to this data should also be protected, so as not

to allow its unauthorized viewing and processing. Participa-

tory surveillance is the context in which this data is being

collected and therefore police authorities should access this

data under this particular context. The role of national Data

Protection Authorities (DPAs) naturally emerges as a safepoint

of supervisory control regarding participatory data protection.

In addition to any such effort, participatory surveillance ap-

plications should also be designed with privacy in mind, in

which case they should record any access to data and the

processing method invoked on them to assist in prospective

inquiries. Furthermore, who will have ownership of this data

and for how long it should be kept and processed remains

an open issue that could trigger conflicting situations. One

could for example postulate that data should be retained by

police authorities only when a criminal activity took place

and then stored indefinitely. However, the exposure of such

an activity cannot be foreseen and therefore data should be

kept to ensure its availability if needed. Another conflict that

might arise involves the user wishing to remove his shared data

(right to be forgotten), whereas the police authorities might
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not permit this due to ongoing or forthcoming investigations.

There is no panacea to resolve such conflicts, with application-

and context-dependent solutions usually being the norm. Un-

doubtedly, appropriate legislation and rule systems should be

introduced to regulate this newly established field and thus

promote its prosperity.

V. DATA ANALYSIS FRAMEWORK DESIGN

The notion of participatory surveillance refers to the collec-

tion of data from a variety of smartphones and other mobile

devices and in particular from the on-board sensors carried

by such devices. Processing and analyzing this wealth of

data could lead to the inference of interesting information

and knowledge regarding various surveillance aspects, namely

the identification of distinct human activities, the location of

a user and his/her surroundings (physical and social) and

the occurrence of abnormal conditions, e.g. extreme sound

levels potentially attributed to screaming or intense physical

stress possibly attribute to user falling. The goal of the data

analysis part of any effective participatory surveillance system

is therefore to deduce such useful information. In the following

we present a generic framework that has been devised for such

purposes of data analysis and discuss its various aspects.
Analyzing data to extract useful patterns and accordingly

use these to identify human activities and distinguish between

them has been a very active research domain over the years

[27]. The goal is to have computing systems capable of infer-

ring knowledge by themselves using only raw data as input.

The main elements of machine learning for the purposes of

activity recognition using smartphones include the following:

• Data collection: collection of data using sensors located

on the users’ smartphone.

• Data training: the collected raw data need to be processed

in order to deduce some useful information features and

characteristics that will assist in its classification.

• Data classification: use of the aforementioned features

in conjunction with machine learning classification al-

gorithms to classify data, i.e. assign classes to data

instances.

Figure 2 depicts these 3 different steps in the machine

learning process. We applied these steps on both the collected

reference data and the test data for our experiments and

appropriately configured the classification process to enhance

its performance in respect to our requirements. During the

training phase the most appropriate and appropriately config-

ured classifier is selected, so as to be applied in the testing

phase over new data and classify them accordingly.

As previously discussed, sensor data can be exploited to

detect human activities and thus provide insight on the actions

and whereabouts of the smartphone users in a non-intrusive

manner. We decided to use a systematic approach to tackle this

problem and for this reason introduced a generic framework

for the analysis of data coming from participatory surveillance

activities. The main goal is to build a comprehensive dataset

for training statistical classifier and applying this to actual,

i.e. test, data to establish possible patterns/matches and thus

Fig. 2. Machine learning stages for activity recognition applied on both
training and testing phases.

identify human activities for the purposes of surveillance.

The reason why we chose to define a generic framework

is to establish a methodological framework of doing similar

experiments, as well as to facilitate further developments in

the domain. The framework is presented in Figure 3, while its

elements are detailed in the following:

• Define problem space: the particulars of the participatory

surveillance tasks need to be carefully defined at a high

level, namely what needs to be achieved. They will serve

as the requirements that will drive the rest of the analysis

process.

• Define activities to be identified: not all scenarios for

participatory surveillance rely on the identification of

the same set of activities. However, the selection of the

interesting activities is important at an early stage since

it drives the definition of the required data and sensors

to monitor these activities.

• Define sensors to be used: having defined the activities we

are interested in, the next step concerns the selection of

the most appropriate sensors to support the identification

of these activities.

• Plan and conduct training experiments: the training phase

is the first phase in the machine learning process and it

involves a set of base experiments to collect reference

data for the activities in question. The planning of these

experiments is therefore of paramount importance, so as

no configuration parameters or testing conditions become

neglected during the following phase.

• Collect datasets for training: collect training data referring

to elementary activities related to participatory surveil-

lance as defined in previous steps of the process. The data

should refer to more than one repetitions of the activity

over a span of time.

• Pre-process training data: the collected data is in most

cases noisy and needs to be pre-processed prior to being

used by machine learning classifiers. Raw data usually

has very fine granularity making it difficult to discern

relevant statistical properties. Therefore it needs to be

processed in order to extract statistical features over time,

as well as in the frequency domain. The pre-processing

tasks involve the removal of outliers from the original

dataset, the annotation of the data for classification pur-
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Fig. 3. Generic framework for the analysis of participatory surveillance data.

poses (applies only to training data, since the classifier

will ¿predictř the class of the test data) and the extraction

of statistical features.

• Build classifier based on training data: amongst the large

number of classification algorithm available in the related

literature, the optimal one for the particular type of

collected data and extracted features should be selected.

Each classifier has a set of configuration parameters and

a sensitivity analysis of each of them and their influence

on the accuracy of the classifier needs to be performed in

order to conclude on the most appropriate classifier for

the considered experimental settings.

• Apply classifier on test data: having decided on the

optimal classifier, it needs to be applied on the collected

test data (a posteriori or at runtime depending on the

experimental settings). The classifier should be able to

identify the class to which each of the test data belongs

and decide upon that.

• Evaluate accuracy: the accuracy of the classifier is evalu-

ated against the ground truth, hence the need to properly

and accurately annotate both the training and test data.

• Improve classifier: test and training data are of the same

type but a lot of irregularities might appear on the test

data that might not have been present in the training

data. There are many reasons for this, most important

of which is the fact that training data users are rarely the

same as test data users and thus do not have the same

physiological patterns. Therefore, the classifier might not

predict the test data as efficiently as expected and further

modifications need to be applied on it and accordingly

the experiments might need to be performed again.

In what follows we elaborate on the elements of our

proposed framework in the context of our participatory surveil-

lance evaluation case-study, i.e. the evacuation exercise.

VI. EVALUATION

To validate the feasibility of participatory surveillance and

evaluate its efficiency we conducted an evacuation exercise

experiment, where the main goal was to establish whether the

use of smartphones’ sensors as a backup channel for informa-

tion collection can yield information about users’ activities. In

this respect, we built a comprehensive dataset for training a

statistical classifier and applied this to the test data collected

during the experiment to establish possible pattern matches

and subsequently analyze the results to augment the design of

the assumed participatory surveillance system.

A. Implementation

In order to collect data from the sensors embedded on

the smartphones of the users we experimented initially with

the Funf open sensing framework [28] running on Android

platforms, but we finally opted for a custom built application

to avoid the unnecessary complexity in configuring Funf. In

particular, Funf allows the developer to set preferences in

regards to data collection, such as the types of sensors to

be monitored, the duration of the monitoring and recording

phase and the interval between two consecutive recording

phases. A limitation of this framework is the fact that the

actual frequency of data collection, while seemingly subject

to a user’s preferences, is actually a compromise between the

value set by the user and the frequency that Android itself

and the corresponding sensors can actually support. Android

allows for 4 different rates for data collection from sensors,

i.e. normal, UI, game, fastest. However, the actual values

for these frequencies differ between different sensors, which

further complicates matters when it comes to data collected

using Funf. For these reasons we built our custom application

to collect sensor data, the main distinguishing feature of which
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is that it allows explicit setting of data collection frequency

per sensor.

Fig. 4. Architecture of sensor data collection application.

The application we built has a modular and extensible

architecture that is shown in Figure 4. The Sensor Manager

is the main entry point for the app, currently running on

Android phones, by means of a dedicated GUI that allows the

user to select the sensor the values of which she is interested

in recording. Two main elements of the architecture are the

Sensor Controller and the Data Manager. The former interacts

with the Location Handler to retrieve current location and the

Sensor Handler to get low level system access to the embedded

sensors and retrieve their values, while the latter parses this

information into an appropriate data format and stores it to a

local Data Repository. Moreover, the Data Manager supports

management of this repository, i.e. search, update, delete data,

applying access control policies to avoid unauthorized access

to private data and logging every request for data.

B. Experimental setup

The evacuation exercise experiment was conducted in a

public building at the JRC premises and it comprised both

floors of the building, as well as the parking space, where the

actual evacuation meeting points is located. The participatory

surveillance exercise was part of a larger experiment that

aimed amongst others at evaluating additional techniques such

as indoor localization using smartphones and facial recognition

through the cameras on the smartphones. For the participatory

surveillance tasks, 14 actors were involved: 1 building delegate

and 13 regular users carrying their smartphones. The latter had

our custom application deployed in order to collect sensor

data, e.g. accelerometer, and the users were also instructed

at times (via SMS from the control room) to use their

smartphones to record video of their surroundings. Users and

the building delegate were equipped with different types of

smartphones (Samsung Galaxy Nexus, Sony Xperia S, HTC

One) to account for the diversity of existing platforms and

embedded sensors.

Upon completion of the evacuation exercise we had a total

of 13 datasets from a corresponding number of phones that had

collected sensor data through our application. Unfortunately,

the instability of the application and of the smartphones’

platform led to not all phones having recorded data (only 6 out

of 13 phones reported worthwhile data). It has to be clarified

that the reasons for the erroneous, wrongly timed and limited

data collection cannot be pinpointed to a particular event. They

can be attributed to users not having activated all services,

e.g. location reporting services, networking hindrances due to

obstacles or other reasons that collectively prevented timely

data reporting, smartphone being overloaded, smartphone bat-

tery having been depleted, etc. The major problem that we

encountered was the concurrent and synchronized collection

of sensor and localization data. This was necessary in order

to be able to reason about the sensor data and to pinpoint

the location of interesting events. In the future a larger user

test base should be considered and an extensive preparation

phase prior to the experiments should take place to ensure

proper operation. Moreover, test users should not be left to

freely interact with the considered applications and services,

but instead they should follow a strict script/set of actions in

order to ensure that the results we obtain will not be biased

by the individual users’ attitudes.

The frequency of data collection from the sensors was

set to 500Hz (every 2ms), which intuitively is rather high

to allow for distinguishing between differences in human

activities. Moreover, it reduces the battery level significantly

since the device is constantly operational and collecting data.

In future experiments we plan to perform a thorough sensitivity

analysis of this variable, as well as of other variables in our

configuration. The sensors involved in data collection include

the triaxial accelerometer, microphone, battery, gravity sensor,

gyroscope, light sensor, magnetometer, orientation, WiFi and

Bluetooth wireless interfaces and the proximity sensor. While

data was collected for all the aforementioned sensors, we

focus our analysis here on those collected by accelerometers.

The reason behind this decision lies in the fact that in this

evacuation exercise, identification of human activities, e.g.

walking or running, was the main goal and in this respect

the accelerometer has been the sensor most widely used for

this purpose in related research works [29].

Moreover, due to the established limitations of the sensing

capabilities of modern smartphones and their issues with

calibration (see for example [30], [31]), sensors such as the

gyroscope, magnetometer and orientation are considered to be

of limited accuracy and this placed constraints on their use in

our experimental design. An additional reason for not using

these sensors was the fact that they are dependent on many

external features, e.g. the way the phone is being held, specific

rooms/configurations where the experiments took place, so

it would have been harder to deduce any useful context

from such sensors considering the difficulties in repeating

experimental settings and conditions. We therefore opted to

1140 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



place emphasis on data collection by the triaxial accelerometer

present in all current smartphones for the analysis of the data

collected in the participatory surveillance project. Evidently,

the training dataset can be easily expanded to include data

from the other sensors in order to establish whether useful

knowledge about the users’ status and activities can be ex-

tracted from them.

C. Training phase

The focal objective of building a reference training dataset

is to establish a solid and wide ground truth to be used for the

evaluation of the participatory surveillance experiments, i.e.

the identification of distinct human activities. In this respect,

we collected training data with a specific focus on data that

corresponds to the activities expected to take place during

the evacuation exercise; walking, walking up stairs, walking

down stairs, standing still. It should be clarified that the more

activities we consider, the more accurate the prediction will be

since there will be more details and more patterns derived for

each of these activities. However, the increase in the number

of considered activities brings a corresponding increase in

the complexity of the data pre-processing and classification

processes. Considering this trade-off we opted for a training

dataset containing accelerometer data corresponding to the 4

basic activities mentioned before.

The training dataset contains 5 minutes worth of data

collected for each of the aforementioned activities, which

were conducted independently and annotated immediately

after completion to limit possible annotation errors. Users

were asked to retain constant gait and velocity as much as

possible. We performed 10 recording sub-sessions, i.e. 40

second sub-sessions, for each activity to eliminate possible

user fatigue that would influence data collection. In addition,

only 30 seconds were considered out of each sub-session; we

trimmed the first and last 5 seconds to omit outliers during

initialization and finalization of the activity. Lastly, we used

the exact same settings in terms of data collection frequency,

smartphone devices and phone placement as in the actual

evacuation exercise.

D. Data preprocessing

The collected training data refers to 3 streams of measure-

ments, one for each axis of the accelerometer. They represent

continuous discrete samples that need to be pre-processed

prior to making any analysis based on them. In accordance

with typical activity recognition algorithms, we commence by

cleaning the raw data and removing the outliers, followed by

the application of a windowing technique to extract groups of

data that could potentially expose repetitive activities or tasks

with common characteristics, both of which are representative

of the majority of human activities. We built a set of custom

Java tools that facilitate the automation and efficient pre-

processing of the raw data and hence allow to invest more

time on the data analysis tasks. All the data are stored as

CSV files, the first line of which indicates the type of data.

Removing outliers is a very important task in data pre-

processing, since these values could influence the outcome

of the analysis process as they are not conforming to the

rest of the data and have thus been potentially generated by

side activities to the one currently under examination. The

most common technique we use to clean the dataset is to

remove the influence stemming from the initialization and

finalization of activities. We are interested in the execution

of the actual activity and therefore we trim the dataset on

both ends accordingly. This is similar to the technique used

in [7] and we also take into account the risk of significantly

reducing the size of the dataset; this is the reason why

we collected additional data as previously described. More

advanced techniques, e.g. mean, Kalman, particle filters, could

also be applied, but since the application of these filters is

subject to intense processing requirements, we opted against

applying any such technique on the collected accelerometer

data.
Subsequently we applied a windowing algorithm to create

logical instances, i.e. windows, of the original dataset. The

windows are used to reduce the problem space on one hand,

but also to assist in grouping similar samples on the other

hand. Generally speaking there exist three different windowing

techniques, namely sliding, event-based and activity-based

windows, applied to raw data for the purpose of recognition

of human activities, as discussed in [32]. We used the sliding

window technique with overlap 50% over the entire training

data population, for a total of over 60,000 samples. Table

I illustrates the different values for the window size that

we experimented with and the corresponding duration of the

window and generated instances in the dataset based on the

assumed data collection frequency. We should note that the

same techniques for data preprocessing are applied in both

the training data as well as the test data during the actual

classification process.

TABLE I
WINDOW SIZE, DURATION AND SIZE OF INSTANCES IN DATASETS

Window size Duration Instances in dataset

64 1.28s 1875
128 2.56s 937
256 5.12s 468

512 10.24s 232

The sampling frequency of the original training dataset

is too high for individual samples to exhibit any interest-

ing properties, especially in regards to human activities that

normally have a duration lasting at least a few seconds. To

alleviate this concern, we extract features over the different

instances (windows) of the data. The notion of features refers

to statistical properties of the windows of data and provides

some qualitative or quantitative information on them. We

examined time domain and frequency domain features in the

related literature and we selected a total of 105 features to

compute for all the data contained in each of the windows

in the dataset. Out of these 105 features, 75 were in the time

domain and 30 in the frequency domain. The latter necessitated
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that we first apply a Fast Fourier Transform (FFT) over the

windows’ data and then calculate the corresponding features.

Table II summarizes the selected features that were applied

on the accelerometer values for each of the three axes, the

magnitude of acceleration and the tilt on all three axes.

TABLE II
TIME AND FREQUENCY DOMAIN FEATURES FOR CLASSIFICATION

Time domain Frequency domain

Mean Mean
Median Median
Minimum Minimum
Maximum Maximum
Harmonic mean Spectral energy

Geometric mean Entropy
Pearson’s correlation Pearson’s correlation
Variance
Standard deviation
Root mean square
Covariance

Cyclic patterns of human activities can be easier observed

using frequency domain features and this is the main reason for

their significance. Indicatively, Figure 5 depicts the mean FFT

for the 3 axes of acceleration; cyclic, identifiable patterns can

be clearly seen in the activities involving stairs as expected.

Fig. 5. Mean FFT of acceleration in the 3 axes and the activities that it
corresponds to.

E. Data classification

Having completed the aforementioned procedures and in

accordance to our generic framework, the next step in the

process involves training the classifier in order for it to be

able to correctly analyze the collected data, but also to be able

to respond to prospective queries on how new data should be

classified, i.e. annotated, in line with previous data. We used

the Weka toolkit [33] to experiment with a variety of machine

learning algorithms, namely KStar, C4.5 decision tree, Bayes

(Bayes Network with K2 search algorithm), Support Vector

Machines (SVM), Sequential Minimal Optimization (SMO),

k-NN, MultiClass (meta-classifier) and MultiLayer Perceptron

Neural Network(MLP).

We indicatively present in the following results on the

training of the classifiers based on training data coming from a

Sony Ericsson phone, where the data collection frequency was

set to be 500, the window size 256 with 50% overlap, the user

conducted all 4 activities and she did so holding the phone in

her hand at the waist level. In order to test the accuracy of the

various classifiers, we used Weka and performed a comparative

analysis of the aforementioned 8 algorithms using cross-

validation with 10 folds and 10 iterations using all the training

data. The annotated test data were used for the evaluation and

that is where the corresponding results refer to. To gain a level

of statistical confidence in the results obtained by Weka, we

applied the well-known statistical hypothesis test Students’ T-

Test, with a requested confidence of 0.05 (indicates statistical

difference threshold when performing pairwise comparison

between schemes), and managed to acquire measurements for

a variety of aspects regarding accuracy and the performance of

the classifiers accordingly. Results regarding these classifiers

are presented in Table III and discussed in the following.

All classifiers exhibited very high accuracy rates, reaching

up to 99.5%. It becomes therefore evident that the use of

just the accelerometer in detecting and distinguishing between

human activities yields very promising results. Additionally,

it exposes the privacy risks involved in participatory sensing,

since it illustrates the level of knowledge that can be gained

with the use of a non-intrusive sensor on board a smartphone.

F. Analysis of results

Table III clearly highlights the optimal performance of the

SVM classifier over all others, with the C4.5 one a close

second. SVM has an accuracy level of 99.5%, whereas C4.5

98.8% and the worst performing classifiers are the Bayes

Network and KStar with accuracies of 85% and 86.6%,

respectively. It is interesting to examine this observation in

light of the mean absolute and root mean squared error metrics.

A simplistic analysis would expect the Bayes Network and

KStar classifiers to have the largest degrees of errors, due

to their low accuracy. However, while Bayes Networks and

KStar do not indeed fare well, it is actually the SMO and

MLP classifiers that exhibit the largest mean errors and root

mean squared errors despite high accuracy levels of 97.01%

and 97% respectively. The reason for this is the fact that while

the latter classifiers managed to correctly classify a larger

number of instances, the misclassifications were so big that

they succeeded in significantly increasing the mean errors.

This observation is consistent with our belief that evaluation

of a machine learning classifier is not a simple process of

computing a couple of metrics, but rather an extensive pro-

cedure where a series of quantitative metrics should be taken

into account and considered in parallel, while additionally one

should not neglect qualitative analysis, as discussed later.

Two very important metrics in assessing classifiers are

the precision and the recall (borrowed from the field of

Information Retrieval - IR). Precision measures successful

assignments to a class over all assignments to that class

(including incorrect ones) and in this respect it refers to the
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TABLE III
TIME AND FREQUENCY DOMAIN FEATURES FOR CLASSIFICATION

Classifier C4.5 Bayes KStar SVM SMO kNN MLP MultiClass

Evaluation metric

Accuracy 98.8054 85.0457 86.5528 99.4976 97.1061 91.2616 97.0416 96.8560
Incorrect classifications 1.1946% 14.9543% 13.4472% 0.5024% 2.8939% 8.7384% 2.9584% 3.1440%
Mean absolute error 0.0060 0.0748 0.0659 0.0025 0.2529 0.0673 0.3044 0.0208
Root mean squared error 0.0638 0.2642 0.2472 0.0345 0.3159 0.1814 0.3523 0.1164
IR Precision 1.000 0.7704 0.7720 0.9976 0.9516 0.8294 0.9574 0.9842
IR Recall 0.9850 0.7762 0.7814 0.9974 0.9799 0.8767 0.9698 0.9497
F-measure 0.9923 0.7715 0.7745 0.9975 0.9652 0.8501 0.9625 0.9659
Area under ROC 0.9925 0.9461 0.9585 0.9983 0.9879 0.9741 0.9999 0.9942
KB mean information 1.9712 1.6417 1.6807 1.9879 0.9803 1.7244 0.6418 1.9052
Kappa statistic 0.9841 0.8006 0.8207 0.9933 0.9614 0.8835 0.9606 0.9581
Elapsed time training 0.0902s 0.1299s 0.0004s 1.1515s 0.1447s 0.0006s 176.3556s 0.4553s
Elapsed time testing 0.0069s 0.0244s 10.3873s 0.1052s 0.0079s 0.1009s 0.1494s 0.0578s

fraction of classified instances that are relevant, i.e. correct.

Conversely, recall refers to the fraction of relevant instances

that have been classified. Therefore, high recall values indi-

cate that the classifier was successful in classifying correctly

most of the instances, whereas high precision means that the

classifier performed more correct classifications than incorrect

ones. In our experiments, it is the C4.5 classifier that has

the best precision with a value of 1.0, followed by the SVM

with a value of 0.99, while the Bayes Network and KStar

classifiers have the lowest precision with value of 0.77 for

both of them. In general, precision follows the same pattern

as accuracy, which was to be expected since these two metrics

are conceptually close. Similar results (top two algorithms

being SVM and C4.5 and lower two Bayes Network and

KStar) can be seen for the recall metric, albeit with more

distinguish values. Interestingly enough, while the MultiClass

classifier had the third best precision at 0.98, it is the SMO

classifier that has the third best recall at 0.98. This indicates a

different performance between these two, where MultiClass is

better at classifying more instances correctly than incorrectly

and SMO outperforms MultiClass in performing more correct

classifications. Nevertheless, SMO had a much higher root

mean squared error than MultiClass, so in general one can

expect better performance of the latter.

Another very important metric is the F-measure that com-

bines both precision and recall (also known as F1 score or

F1 measure since precision and recall are evenly weighted). It

is actually the harmonic mean of precision and recall and is

used to express the accuracy of the classification process and is

widely considered to be more useful than the percent of correct

classifications as expressed by the accuracy metric. According

to the F-measure, the SVM and C4.5 perform the best, while

the Bayes Network and KStar the worst. Moreover, the area

under ROC (receiver operating characteristic) metric has also

proven to be extremely useful in evaluating classification

algorithms [34], although its value has been recently heavily

criticized and thus undermined, e.g. in [35]. The area under the

ROC curve is equal to 1 for a perfect classification and drops as

classification quality drops. In our experiments MLP performs

the best in terms of the area under ROC with a value very close

to 1, followed by SVM and MultiClass, while Bayes Networks

and KStar perform the worst. It has to be clarified nonetheless

that even the worst performing classifier, i.e. Bayes Network,

has a value equal to 0.95 that broadly speaking is very good

for classification purposes.

Other metrics that we considered in order to compare the

performance of the considered classifiers include the Kappa

statistic and the KB mean information. Kappa statistic is used

to indicate the agreement of prediction compared to the ground

truth and is important since it is a probabilistic value that takes

into account not only the comparison to the ground truth, but

also the probability that a correct assignment to a class was by

chance. As before the SVM and C4.5 classifiers were the ones

with higher Kappa statistic value at 0.99 and 0.98 respectively

(the higher the value, the better matching the agreement),

while KStar and Bayes Network had the lowest values, 0.82

and 0.8 respectively. Kononenko and Bratko [36] introduced

an information-based evaluation criterion for each classifier’s

performance, which excludes prior class probabilities and

thus assesses better the performance of the classifier under

uncertain conditions. Once again SVM and C4.5 had the

highest performance in regards to this metric, but surprisingly

MLP did not perform well enough. In our view, the reason is

based on the construction of the MLP construction network

that inherently requires knowledge of prior class probabilities

(back-propagation error correction is at its core), so when

these probabilities are excluded its performance is bound to

be reduced.

The last metric that we considered was the aspect of

time. In particular, we examined the time required to train

the classifiers and the time required for them to perform

classifications over the test data. Since the classifiers were

trained and tested on the same sets of data the values obtained

for these metrics are directly comparable. MLP, which is the

most complex of the considered classifiers, requires the most

time for training, averaging 176.35 seconds. This is however

not reflected in the testing phase that only takes 0.15 seconds.

The fastest classifier to train is KStar followed closely by k-

NN, whereas apart from the MLP classifier, the SVM one at

1.15 seconds is also relatively slow to train. Conversely, when

it comes to testing times SVM is quite fast at 0.1 seconds but

the fastest ones are C4.5 and SMO. The slowest classifier for
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testing was KStar with the remaining algorithms exhibiting

small variance in their values.

Fig. 6. Confusion matrix for the SVM classifier.

It is clear that there are tradeoffs to be considered when

choosing the optimal classifier for participatory surveillance

needs such as identifying human activities. We need to con-

sider accuracy, precision, recall, as well as the overhead in

terms of time for each of the classifiers since they will

need to be considered in real time operation. The training

phase will only occur once, so long timespans for this phase

can be sidestepped, but long times for testing can be used

to exclude certain classifiers from our candidates’ list. Evi-

dently, quantitative results as those previously presented are

important, since they provide a thorough evaluation of the

performance of the different classifiers in regards to a variety

of aspects. It is however equally important to be able to

qualitatively analyze the classification process and in particular

to be able to analyze why classification errors occur. The

best way to do this is by checking the confusion matrix (also

known as contingency table) of the classification process that

represent the classification results versus the ground truth.

Indicatively, Figure 6 shows the confusion matrix for the SVM

classifier and Figure 7 for the C4.5 one. Confusion matrices

are important because they allow us to diagnose which classes

were confused to each other and therefore be able to draw

conclusions as to why this occurred in the first place.

Based on the aforementioned extensive analysis and evalu-

ation of the considered classifiers we came to the conclusion

that the most suitable ones for participatory surveillance needs

include the SVM and C4.5 one. They exhibited the optimal

balance between performance, accuracy and quality of classi-

fication.

Fig. 7. Confusion matrix for the C4.5 classifier.

VII. CONCLUSION

In this paper we presented our work on designing and

developing a solution for participatory surveillance. We aim at

involving end users in the tasks related to security and surveil-

lance and thus on one hand assist and promote the overall

perceived level of safety, while on the other hand promoting

users’ sense of contribution and participation in the society

and hence their awareness. By utilizing the numerous sensors

on smartphones that are nowadays ubiquitous we postulate

that significant information regarding critical, security-related

events can be inferred. As a proof of concept, we built a system

to collect such data from users in the context of an emergency

evacuation exercise and we presented here relevant results on

the use of this data. By using just one sensor, namely the

accelerometer, very high levels of accuracy in predicting users’

activities were reached. In our view, this validates the great

potential that exists in the field of participatory surveillance,

in particular for the management of emergency/crisis events.

Even with quite a few limitations that we encountered in our

study, e.g. sensors accuracy or user participation, and with the

limited amount of collected data, intelligence on the different

activities of users was deducible.

Based on the collected results and our analysis, we are

confident that with the integration of additional sensors, as well

as with the collection of a far more detailed reference dataset,

we would definitely be able to discern between distinct human

activities at a much greater level of detail and with quantifiable

assessment metrics. These aspects are among the ones we plan
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to investigate further in the future. To test the feasibility of our

machine learning approach on participatory surveillance data

we did not check against all possible testing conditions; this

extensive sensitivity analysis is nonetheless the focus of our

ongoing work. We are also planning work on examining the

potential benefits that might arise from exploiting additional

sensors such as the magnetometer, gyroscope, etc.

The usefulness of participatory surveillance is extremely

high if one considers the fact that such a framework could for

example allow groups of rescuers to gain access to information

about the current and ongoing status and activities of people

inside a building, e.g. static user for a long time or user

suffering a physical shock. The analysis of the results and

the possibility of detecting with high accuracy the class of

previously unclassified data has highlighted the great potential

of participatory surveillance systems. However, it has also

exposed the great privacy risks regarding users sharing data

from their smartphones from such systems. We believe that the

use of additional sensors and the information fusion emerging

from the use of multiple sensors will exacerbate these privacy

risks and allow for more accurate detection of the users’

activities, as well as the context of her surroundings. Typical

examples of such risks reported in the literature include the

possibility to infer the PIN of users on smartphones or the

password that they type using accelerometers and gyroscopes

[37]. We therefore also plan to examine the risks involved

from the potential sharing of data from a variety of sensors

and not only the accelerometer.

REFERENCES

[1] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava, “Participatory sensing,” in In: Workshop on World-

Sensor-Web (WSWd’06): Mobile Device Centric Sensor Networks and
Applications, 2006, pp. 117–134.

[2] D. Estrin, “Participatory sensing: applications and architecture [internet
predictions],” Internet Computing, IEEE, vol. 14, no. 1, pp. 12–42, 2010.
doi: 10.1109/MIC.2010.12

[3] K. Shilton, “Participatory sensing: Building empowering surveillance,”
Surveillance & Society, vol. 8, no. 2, pp. 131–150, 2010.

[4] Z. Dong, B. Lu, L. He, P. Cheng, Y. Gu, and L. Fang,
“Exploring smartphone-based participatory computing to improve
pervasive surveillance,” in 11th ACM Conference on Embedded

Networked Sensor Systems, ser. SenSys ’13. ACM, 2013. doi:
10.1145/2517351.2517388. ISBN 978-1-4503-2027-6 pp. 69:1–69:2.
[Online]. Available: http://doi.acm.org/10.1145/2517351.2517388

[5] F. Coudert, M. Gemo, L. Beslay, and F. Andritsos, “Pervasive moni-
toring: Appreciating citizen’s surveillance as digital evidence in legal
proceedings,” in Imaging for Crime Detection and Prevention 2011
(ICDP 2011), 4th Intl Conference on, 2011. doi: 10.1049/ic.2011.0130
pp. 1–6.

[6] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell,
“A survey of mobile phone sensing,” Communications Magazine, IEEE,
vol. 48, no. 9, pp. 140–150, 2010. doi: 10.1109/MCOM.2010.5560598

[7] L. Bao and S. Intille, “Activity recognition from user-annotated
acceleration data,” in Pervasive Computing, ser. LNCS, A. Ferscha
and F. Mattern, Eds. Springer, 2004, vol. 3001, pp. 1–17.
ISBN 978-3-540-21835-7. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-24646-6_1

[8] T. Huynh and B. Schiele, “Analyzing features for activity recognition,”
in Proceedings of the 2005 Joint Conference on Smart Objects and

Ambient Intelligence: Innovative Context-aware Services: Usages and

Technologies, ser. sOc-EUSAI ’05. New York, NY, USA: ACM, 2005.
doi: 10.1145/1107548.1107591. ISBN 1-59593-304-2 pp. 159–163.
[Online]. Available: http://doi.acm.org/10.1145/1107548.1107591

[9] T. Brezmes, J.-L. Gorricho, and J. Cotrina, “Activity recognition from
accelerometer data on a mobile phone,” in Proceedings of the 10th

International Work-Conference on Artificial Neural Networks: Part

II: Distributed Computing, Artificial Intelligence, Bioinformatics, Soft

Computing, and Ambient Assisted Living, ser. IWANN ’09. Berlin,
Heidelberg: Springer-Verlag, 2009. doi: 10.1007/978-3-642-02481-
8_120. ISBN 978-3-642-02480-1 pp. 796–799. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02481-8\_120

[10] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa:
A programming framework for crowd-sensing applications,” in 10th

Intl Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’12. ACM, 2012. doi: 10.1145/2307636.2307668.
ISBN 978-1-4503-1301-8 pp. 337–350. [Online]. Available: http:
//doi.acm.org/10.1145/2307636.2307668

[11] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin,
M. Hansen, E. Howard, R. West, and P. Boda, “Peir, the personal
environmental impact report, as a platform for participatory sensing
systems research,” in Proceedings of the 7th International Conference

on Mobile Systems, Applications, and Services, ser. MobiSys ’09.
New York, NY, USA: ACM, 2009. doi: 10.1145/1555816.1555823.
ISBN 978-1-60558-566-6 pp. 55–68. [Online]. Available: http:
//doi.acm.org/10.1145/1555816.1555823

[12] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F.
Abdelzaher, “Greengps: A participatory sensing fuel-efficient maps
application,” in Proceedings of the 8th International Conference

on Mobile Systems, Applications, and Services, ser. MobiSys ’10.
New York, NY, USA: ACM, 2010. doi: 10.1145/1814433.1814450.
ISBN 978-1-60558-985-5 pp. 151–164. [Online]. Available: http:
//doi.acm.org/10.1145/1814433.1814450

[13] M. Wisniewski, G. Demartini, A. Malatras, and P. Cudré-Mauroux,
“Noizcrowd: A crowd-based data gathering and management system
for noise level data,” in Mobile Web Information Systems, ser. LNCS,
F. Daniel, G. Papadopoulos, and P. Thiran, Eds. Springer, 2013, vol.
8093, pp. 172–186. ISBN 978-3-642-40275-3

[14] K. Shilton, “Four billion little brothers?: Privacy, mobile phones, and
ubiquitous data collection,” Comm. of the ACM, vol. 52, no. 11, pp.
48–53, Nov. 2009. doi: 10.1145/1592761.1592778. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592778

[15] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” Communications Magazine, IEEE, vol. 49, no. 11,
pp. 32–39, 2011. doi: 10.1109/MCOM.2011.6069707

[16] H. Keval and M. A. Sasse, “To catch a thief – you need at
least 8 frames per second: The impact of frame rates on user
performance in a cctv detection task,” in Proceedings of the

16th ACM International Conference on Multimedia, ser. MM ’08.
New York, NY, USA: ACM, 2008. doi: 10.1145/1459359.1459527.
ISBN 978-1-60558-303-7 pp. 941–944. [Online]. Available: http:
//doi.acm.org/10.1145/1459359.1459527

[17] A. Ito, A. Aiba, A. Ito, and S. Makino, “Detection of abnormal sound
using multi-stage gmm for surveillance microphone,” in Information
Assurance and Security, 2009. IAS ’09. Fifth International Conference

on, vol. 1, Aug 2009. doi: 10.1109/IAS.2009.160 pp. 733–736.
[18] J. A. Hanson, K. L. McLaughlin, and T. J. Sereno, “A flexible data

fusion architecture for persistent surveillance using ultra-low-power
wireless sensor networks,” pp. 80 470M–80 470M–12, 2011. [Online].
Available: http://dx.doi.org/10.1117/12.883280

[19] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo,
R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh, “Energy-efficient
surveillance system using wireless sensor networks,” in Proceedings of

the 2Nd International Conference on Mobile Systems, Applications, and

Services, ser. MobiSys ’04. New York, NY, USA: ACM, 2004. doi:
10.1145/990064.990096. ISBN 1-58113-793-1 pp. 270–283. [Online].
Available: http://doi.acm.org/10.1145/990064.990096

[20] T. Monahan and J. T. Mokos, “Crowdsourcing urban surveillance: The
development of homeland security markets for environmental sensor
networks,” Geoforum, vol. 49, no. 0, pp. 279 – 288, 2013. doi:
http://dx.doi.org/10.1016/j.geoforum.2013.02.001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0016718513000341

[21] S. Reddy, D. Estrin, M. Hansen, and M. Srivastava, “Examining
micro-payments for participatory sensing data collections,” in
Proceedings of the 12th ACM International Conference on Ubiquitous

Computing, ser. Ubicomp ’10. New York, NY, USA: ACM, 2010.
doi: 10.1145/1864349.1864355. ISBN 978-1-60558-843-8 pp. 33–36.
[Online]. Available: http://doi.acm.org/10.1145/1864349.1864355

APOSTOLOS MALATRAS, LAURENT BESLAY: A GENERIC FRAMEWORK TO SUPPORT PARTICIPATORY SURVEILLANCE THROUGH CROWDSENSING 1145



[22] S. Reddy, D. Estrin, and M. Srivastava, “Recruitment framework
for participatory sensing data collections,” in Pervasive Computing,
ser. Lecture Notes in Computer Science, P. Floréen, A. Krüger,
and M. Spasojevic, Eds. Springer Berlin Heidelberg, 2010, vol.
6030, pp. 138–155. ISBN 978-3-642-12653-6. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12654-3_9

[23] I. Martí, L. Rodríguez, M. Benedito, S. Trilles, A. Beltrán, L. Díaz,
and J. Huerta, “Mobile application for noise pollution monitoring
through gamification techniques,” in Entertainment Computing -

ICEC 2012, ser. Lecture Notes in Computer Science, M. Herrlich,
R. Malaka, and M. Masuch, Eds. Springer Berlin Heidelberg, 2012,
vol. 7522, pp. 562–571. ISBN 978-3-642-33541-9. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33542-6_74

[24] D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick, “A
survey on privacy in mobile participatory sensing applications,”
Journal of Systems and Software, vol. 84, no. 11, pp. 1928–
1946, Nov. 2011. doi: 10.1016/j.jss.2011.06.073. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2011.06.073

[25] K. L. Huang, S. S. Kanhere, and W. Hu, “Preserving
privacy in participatory sensing systems,” Computer Commu-

nications, vol. 33, no. 11, pp. 1266 – 1280, 2010. doi:
http://dx.doi.org/10.1016/j.comcom.2009.08.012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366409002448

[26] S. Sigg, M. Scholz, S. Shi, Y. Ji, and M. Beigl, “Rf-sensing of activities
from non-cooperative subjects in device-free recognition systems using
ambient and local signals,” Mobile Computing, IEEE Transactions on,
vol. 13, no. 4, pp. 907–920, April 2014. doi: 10.1109/TMC.2013.28

[27] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006. ISBN 0387310738

[28] N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland, “Social
fmri: Investigating and shaping social mechanisms in the real
world,” Pervasive and Mobile Computing, vol. 7, no. 6, pp.
643 – 659, 2011. doi: http://dx.doi.org/10.1016/j.pmcj.2011.09.004
The Ninth Annual {IEEE} International Conference on Pervasive
Computing and Communications (PerCom 2011). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1574119211001246

[29] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity
recognition using body-worn inertial sensors,” ACM Comput. Surv.,

vol. 46, no. 3, pp. 33:1–33:33, Jan. 2014. doi: 10.1145/2499621.
[Online]. Available: http://doi.acm.org/10.1145/2499621

[30] C. Barthold, K. Subbu, and R. Dantu, “Evaluation of gyroscope-
embedded mobile phones,” in Systems, Man, and Cybernetics

(SMC), 2011 IEEE Intl Conference on, Oct 2011. doi: 10.1109/IC-
SMC.2011.6083905. ISSN 1062-922X pp. 1632–1638.

[31] Z. Wu, Y. Wu, X. Hu, and M. Wu, “Calibration of three-axis magne-
tometer using stretching particle swarm optimization algorithm,” Instru-
mentation and Measurement, IEEE Transactions on, vol. 62, no. 2, pp.
281–292, Feb 2013. doi: 10.1109/TIM.2012.2214951

[32] S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, D. Howard,
K. Meijer, and R. Crompton, “Activity identification using body-
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