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Abstract—The phase separation processes are typically mod-
eled by well known Cahn-Hilliard equation with obstacle po-
tential. Solving these equations correspond to a nonsmooth and
nonlinear optimization problem. Recently a globally convergent
Newton Schur method was proposed for the non-linear Schur
complement corresponding to this 2× 2 non-linear system. The
proposed method is similar to an inexact active set method in the
sense that the active sets are first identified by solving a quadratic
obstacle problem corresponding to the (1, 1) block of the 2× 2
system, and later solving a reduced linear system by annihilating
the rows and columns corresponding to identified active sets. For
solving the quadratic obstacle problem, various optimal multigrid
like methods have been proposed. However solving the reduced
system remains a major bottleneck. In this paper, we explore
an effective preconditioner for the reduced linear system that
allows solving large scale optimization problem corresponding to
Cahn-Hilliard and to possibly similar models.

I. INTRODUCTION

THE Cahn-Hilliard equation was first proposed in 1958

by Cahn and Hilliard [1] to study the phase separation

process in a binary alloy. Here the term phase stands for the

concentration of different components in the alloy. It has been

empirically observed that the concentration changes from a

possibly mixed state to a distinct spatially separated two phase

state when the alloy under preparation is subjected to a rapid

cooling at a certain critical temperature. This rapid reduction

in the temperature the so-called deep quench limit has been

found to be modeled efficiently by obstacle potential proposed

by Oono and Puri [2] in 1987; also see Blowey and Elliot [3, p.

237, (1.14)]. The phase separation has been noted to be highly

non-linear (point nonlinearity to be precise), and the obstacle

potential emulates the nonlinearity and non-smoothness that is

empirically observed. Dealing with the non-smoothness and

designing robust iterative procedure has been the subject of

much active research in last decades. Assuming semi-implicit

time discretizations [4] to alleviate the time step restrictions,

most of the proposed methods essentially differ in the way

the nonlinearity and non-smoothness are handled. Two of the

main approaches for such problems are: regularization around

the non-smooth region [5] or an active set approach [6] i.e.,

identify the active sets and solve a reduced problem which is

linear, [6] unlike [5] also ensures global convergence of the

Newton method by using proper damping parameter. The non-

linear problem corresponding to Cahn-Hilliard problem with
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obstacle potential could be written as a non-linear system in

block 2× 2 matrix form as follows:(
F BT

B −C

)(
u∗

w∗

)
∋

(
f
g

)
, u∗, w∗ ∈ R

n (1)

where u∗, w∗ are unknowns, F = A+∂IK, where IK denotes

the indicator functional of the admissible set K. The matrices

A,C are essentially Laplacian with A augmented by a non-

local term (a rank one term) reflecting mass conservation.

By nonlinear Gaussian elimination of the u∗ variables, the

system above could be reduced to a nonlinear Schur com-

plement system in w∗ variables [6], where the nonlinear

Schur complement is given by −(C + BF−1BT ). In [6],

a globally convergent Newton method is proposed for this

nonlinear Schur complement system which is later interpreted

as a preconditioned Uzawa iteration. Note that F (x) is a set

valued mapping due to the presence of set-valued operator

∂IK; to solve the inclusion F (x) ∋ y, or equivalently,

x ∈ F−1y corresponding to the quadratic obstacle problem,

many methods have been proposed: projected block Gauss-

Seidel [7], monotone multigrid method [8], [9], [10], truncated

monotone multigrid [11], and recently introduced truncated

Newton multigrid [11]. See the excellent review article [11]

that compares all these methods. Solving the quadratic ob-

stacle problem corresponds to identifying the active sets. By

annihilating the corresponding rows and columns that belong

to the identified active sets, we obtain a reduced linear system

as follows:(
Â B̂T

B̂ −C

)(
û
ŵ

)
=

(
f̂
ĝ

)
, û, ŵ ∈ Rn (2)

The overall nonlinear iteration is performed in the sense of

inexact Uzawa, and the preconditioners are updated with next

available active sets.
In this paper our goal is to design effective preconditioner

for (2). In particular we consider the Schur complement

preconditioner proposed in [5] and adapt it to our linear

system. Our linear system differs from [5]; we have to deal

with nontrivial kernels at (1,1) and (2,2) block. We study

the effectiveness of the preconditioner for various active set

configurations that allow solving large scale nonsmooth op-

timization problem corresponding to similar model problems

when similar nonsmooth Newton Schur method is used.
The rest of this paper is organized as follows. In Section III,

we describe the Cahn-Hilliard model with obstacle potential,
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we discuss the time and space discretizations and variational

formulations. In Section IV, we discuss briefly the solver for

Cahn-Hilliard with obstacle problem. In particular, we briefly

discuss the recent Nonsmooth Newton Schur method, and the

truncated monotone multigrid for the obstacle problem; we

describe how the linear system appears. The preconditioners

for the reduced linear systems are discussed in Section IV-E.

Finally in Section V, we show numerical experiments with the

proposed preconditioner.

II. NOTATION

Let SPD and SPSD denote symmetric positive definite and

symmetric positive semi-definite respectively. Let |x| denote

the absolute value of x, whereas, for a set K, |K| denotes the

number of elements in K. Let Id ∈ R
n×n denote the identity

matrix. For a vector u let u(i) denote the ith entry of vector

u. Similarly for a matrix we use the notation K(i, j) to denote

the (i, j)th entry of K. For any matrix K, K+ shall denote a

pseudoinverse of K.

III. CAHN-HILLIARD PROBLEM WITH OBSTACLE

POTENTIAL

A. The Model

The Cahn-Hilliard equation in PDE form with inequality

constraints reads:

∂tu = ∆w, (3)

w = −ǫ∆u+ ψ
′

0(u) + µ, (4)

µ ∈ ∂β[−1,1](u), (5)

|u| ≤ 1, (6)

∂u

∂n
=
∂w

∂n
= 0 on∂Ω, (7)

where ∂β[−1,1](u) is the subdifferential of β[−1,1](u) :=∫
Ω
I[−1,1](u). The obstacle potential ψ is given as follows:

ψ(u) = ψ0(u) + I[−1,1](u), where ψ0(u) =
1

2
(1− u2). (8)

Here the indicator function I[−1,1](u) is defined as follows:

I[−1,1] =

{
0, if u(i) ∈ [−1, 1],

∞, otherwise.
(9)

The subscript [−1, 1] correspond to the fact that u is allowed

to take values only between −1 and +1, which we sometimes

refer to as upper and lower obstacles respectively.
In (3)-(7) the unknowns u and w are called order parameter

and chemical potential respectively. For a given ǫ > 0, final

time T > 0 and initial condition u0 ∈ K where

K = {v ∈ H1(Ω) : |v| ≤ 1}, (10)

the equivalent initial value problem for Cahn-Hilliard equation

with obstacle potential interpreted as variational inequality

reads: 〈
du

dt
, v

〉
+ (∇w,∇v) = 0, ∀v ∈ H1(Ω), (11)

ǫ(∇u,∇(v − u))− (u, v − u) ≥ (w, v − u), ∀v ∈ K, (12)

where we use the notation 〈·, ·〉 to denote the duality pairing of

H1(Ω) and H1(Ω)
′

. Note that we used the fact that ψ
′

0(u) =
−u in the second term on the left of inequality (12) above.

The existence and uniqueness of the solution of (11), (12)

above has been established in Blowey and Elliot [3]. We next

consider an appropriate discretization in time and space for

the model.

B. Time and Space Discretizations

We consider a fixed non-adaptive grid in time (0, T ) and

in space Ω = (0, 1)× (0, 1). The time step τ = T/N is kept

uniform, N being the number of time steps. We consider the

semi-implicit Euler discretization in time and finite element

discretization as in Barrett et. al. [7] with triangulation Th
with the following spaces:

Sh = {v ∈ C(Ω) : v|T is linear∀T ∈ Th}, (13)

Ph = {v ∈ L2(Ω) : vT is constant∀T ∈ T ∈ Th}, (14)

Kh = {v ∈ Ph : |vT | ≤ 1 ∀T ∈ Th} = K ∩ Sh ⊂ K, (15)

which leads to the following discrete Cahn-Hilliard problem

with obstacle potential:

Find ukh ∈ Kh, w
k
h ∈ Sh such that

〈ukh, vh〉+ τ(∇wk
h,∇vh) = 〈uk−1

h , vh〉, ∀vh ∈ Sh, (16)

ǫ(∇ukh,∇(vh − ukh))− 〈wk
h, vh − ukh〉 ≥ 〈uk−1

h , vh − ukh〉,
(17)

∀vh ∈ Kh.

holds for each k = 1, . . . , N. The initial solution u0h ∈
Kh is taken to be the discrete L2 projection 〈u0h, vh〉 =
(u0, vh), ∀vh ∈ Sh. Existence and uniqueness of the dis-

crete Cahn-Hilliard equations has been established in [4].

The discrete Cahn-Hilliard equation is equivalent to the set

valued saddle point block 2 × 2 nonlinear system (1) with

F = A+ ∂IKh
and

A = ǫ(〈λp, 1〉〈λp, 1〉+ (∇λp,∇λq))p,q∈Nh
, (18)

B = −(〈λp, λq〉)p,q∈Nh
, C = τ((∇λp,∇λq))p,q∈Nh

. (19)

where Nh stands for the set of vertices in Th, and λp, p ∈ Nh

denote the standard nodal basis. We write the above in more

compact notation as follows

A = ǫ(K +mmT ), B = −M, C = τK, (20)

where K and M are stiffness and mass matrices respectively.

IV. ITERATIVE SOLVER FOR CAHN-HILLIARD WITH

OBSTACLE POTENTIAL

In [6], a nonsmooth Newton Schur method is proposed

which is also interpreted as a preconditioned Uzawa iteration.

For a given time step k, the Uzawa iteration reads:

ui,k = F−1(fk −BTwi,k), (21)

wi+1,k = wi,k + ρi,kŜ−1
i,k (Bu

i,k − Cwi,k − gk) (22)
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for the saddle point problem (1). Here i denotes the ith

Uzawa step and k denotes the kth time step. Here fk and

gk are defined in (16) and (17). The time loop starts with

an initial value for w0,0 which is taken arbitrary, and with

the initial value u0,0. The Uzawa iteration requires three main

computations that we describe below.

A. Computing ui,k

The first step (21) corresponds to a quadratic obstacle

problem:

ui,k = arg min
v∈K

(
1

2
〈Av, v〉 − 〈fk −BTwi,k, v〉

)
. (23)

As mentioned in the introduction, this problem has been

extensively studied during last decades [7], [8], [9], [11].

B. Computing Ŝ−1
i,k (Bu

i,k − Cwi,k − gk)

The descent direction di,k+1 = Ŝ−1
i,k (Bu

i,k −Cwi,k − g) in

(22) is obtained as a solution of the following reduced linear

block 2× 2 system:
(
Â B̂T

B̂ −C

)(
ũi,k

di,k

)
=

(
0

g + Cwi,k −Bui,k

)
, (24)

where

Â = TAT + T̂ , B̂ = TB. (25)

Here T and T̂ are defined as follows:

T = diag

(
0, if ui,k(j) ∈ {−1, 1}

1, otherwise

)
, j = 1, . . . , |Nh|, (26)

T̂ = Id− T, Id ∈ R
|Nh|×|Nh|, (27)

where ui,k(j) is the jth component of ui,k. In other words, Â
is the matrix obtained from A by replacing the ith row and the

ith column by the unit vector ei corresponding to the active

sets identified by diagonal entries of T. Similarly, B̂ is the

matrix obtained from B by annihilating columns, and B̂T is

the matrix obtained from BT by annihilating rows.

C. Computing Step Length ρi,k

The step length ρi,k is computed using a bisection method.

We refer the reader to [12, p. 88].

D. Algebraic Monotone Multigrid for Obstacle Problem

To solve the quadratic obstacle problem (21), we use the

truncated monotone multigrid method proposed in [8]. How-

ever, here we use algebraic coarsening [13] that we describe

briefly.

1) Aggregation Based Coarsening: We first discuss the

coarsening for two-grid, the multilevel interpolations are ap-

plied recursively. In classical two-grid, a set of coarse grid

unknowns is selected and the matrix entries are used to build

interpolation rules that define the prolongation matrix P, and

the coarse grid matrix Ac is computed from the following

Galerkin formula

Ac = PTAP. (28)

In contrast to the classical two-grid approach, in aggregation

based multigrid, first a set of aggregates Gi is defined. Let

|Nh,c| be the total number of such aggregates, then the

interpolation matrix P is defined as follows

Pij =

{
1, if i ∈ Gj ,

0, otherwise,

Here, 1 ≤ i ≤ |Nh|, 1 ≤ j ≤ |Nh,c|. Further, we assume that

the aggregates Gi are such that

Gi

⋂
Gj = φ, for i 6= j and

⋃

i

Gi = {i ∈ N : 1 ≤ i ≤ |Nh|}.

(29)

The matrix P defined above is a |Nh| × |Nc,h| matrix, but

since it has only one non-zero entry (which are “one”) per

row, the matrix is compactly represented by a single array of

length Nh,c storing the location of the non-zero entry on each

row. The coarse grid matrix Ac may be computed as follows

(Ac)(i, j) =
∑

k∈Gi

∑

l∈Gj

A(k, l),

where 1 ≤ i, j ≤ |Nh,c|, and A(k, l) is the (k, l)th entry of

A.

Numerous aggregation schemes have been proposed in the

literature, but in this paper we consider the standard aggre-

gation based on strength of connection [14, Appendix A, p.

413] where one first defines a set of nodes Si to which i is

strongly negatively coupled, using the Strong/Weak coupling

threshold β:

Si = { j 6= i | A(i, j) < −β max|A(i, k)| }.

Then an unmarked node i is chosen such that priority is given

to a node with minimal Mi, here Mi being the number of

unmarked nodes that are strongly negatively coupled to i. For

a complete algorithm of aggregation, the reader is referred to

Notay [13], [15].

E. Preconditioner for Reduced Linear System

In Bosch et. al. [5], a preconditioner is proposed in the

framework of semi-smooth Newton method combined with

Moreau-Yosida regularization for the same problem. However,

the preconditioner was constructed for a linear system which

is different from the one we consider in (24). For convenience

of notation, we rewrite the system matrix in (24) as follows

Ax = b, (30)

where scripted A above is

A =

(
Â B̂T

B̂ −C

)
, x =

(
x1
x2

)
, b =

(
b1
b2

)
, (31)

where

x1 = ũi,k, x2 = di,k, b1 = 0, b2 = g + Cwi,k −Bui,k.
(32)
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The preconditioner proposed in [5] has the following block

lower triangular form

B =

(
Â 0

B̂ −S

)
, (33)

where S = C+ B̂Â−1B̂T is the Schur complement. Note that

such preconditioners are also called inexact or preconditioned

Uzawa preconditioners for the linear saddle point problems.

By block 2× 2 inversion formula we have

B−1 =

(
Â 0

B̂ −S

)−1

=

(
Â−1 0

S−1B̂T Â−1 −S−1

)
. (34)

Let Ŝ be an approximation of Schur complement S in B,
then the new preconditioner B̂ and the corresponding precon-

ditioned operator ˆB−1A are given as follows

B̂ =

(
Â 0

B̂ −Ŝ

)
, B̂−1A =

(
I Â−1B̂T

0 Ŝ−1S

)
. (35)

Using (35) above, we can note the following trivial result.

Theorem 4.1: Let B defined in (35) be a preconditioner

for A defined in (31), then there are |Nh| eigenvalues of

B−1A equal to one, and the rest are the eigenvalues of the

preconditioned Schur complement Ŝ−1S.
Remark 4.1: When using GMRES [16], right precondition-

ing is preferred. Similar result as for the left preconditioner

above Theorem 4.1 holds.

The preconditioned system B−1Ax = B−1b is given as

follows
(
I Â−1B̂T

0 Ŝ−1S

)(
x1
x2

)
=

(
Â−1 0

S−1B̂T Â−1 −S−1

)(
b1
b2

)

(36)

from which we obtain the following set of equations

x1 + Â−1B̂Tx2 = Â−1b1, (37)

Ŝ−1Sx2 = S−1(B̂T Â−1b1 − b2). (38)

Algorithm 4.1: Objective: Solve B−1Ax = B−1b

1) Solve for x2 : Ŝ−1Sx2 = Ŝ−1(B̂T Â−1b1 − b2)
2) Set x1 = Â−1(b1 − B̂Tx2)

Here if Krylov subspace method is used to solve for x2, then

matrix vector product with S and a solve with Ŝ is needed.

However, when the problem size i.e. |Nh| is large, it won’t

be feasible to do exact solve with Â, and we need to solve it

inexactly, for example, using algebraic multigrid methods. In

the later case, the decoupling of x1 and x2 as in Algorithm 4.1

is not possible, and we shall need matrix vector product with

A (31) and a solve (forward sweep) with B̂. We discuss at the

end of this subsection on how to take advantage of the special

structure of Â in both cases of exact and inexact solves.

As a preconditioner S̃ of S, we choose the preconditioner

first proposed in [5]. The preconditioner is given as follows:

S̃ = S1Â
−1S2 = −(B̂ − τ1/2K)Â−1(B̂T − τ1/2Â), (39)

where K is the stiffness matrix from (19). We observe that the

preconditioned Schur complement S̃−1S is not symmetric, in

particular, not symmetric w.r.t. 〈·, ·〉S or w.r.t. 〈·, ·〉S̃ which is

a sufficient condition for the convergence of preconditioned

conjugate gradient method [16, p. 262]. Hence we shall

use GMRES in Saad [16, p. 269] that allows nonsymmetric

preconditioners.

1) Exact and Inexact Solve with Â: In step 1 of Algorithm

4.1, we need to solve with Â when constructing right hand

side, and also in step 2. Let P be a permutation matrix, then

solving a system of the form Âh = g is equivalent to solving

PT Âh = PT g as PT is nonsingular. With a change of variable

Py := h, we then solve for y in

PT ÂPy = Pg, (40)

and we set h = Py to obtain the desired solution. By choosing

P that renumbers the nodes corresponding to the coincidence

set, we obtain

PT ÂP =

(
I

RTPT ÂPR

)
, (41)

where R is the restriction operator defined as follows

RTPT ÂPR = Â ↾Nh\N•

h
, (42)

where

N •
h = {i : T (i, i) = 0} (43)

is nothing but set of active nodes. Here R is explicitly given

as follows:

R =






0 0 . . . 0
... . . . . . . 0
0 0 . . . 0







1 0 . . . 0
0 1 . . . 0
...

. . . . . . 0
0 0 . . . 1







, R ∈ R
|Nh|×|Nh\N

•

h | (44)

Let K̂ = TKT, we have

RTPTDPR = RTPT ÂPR

= RTPT ǫ(K̂ + m̂m̂T )PR

= ǫ(RTPT K̂PR+RTPT m̂m̂TPR),

where

RTPT K̂PR = (PTKP )|Nh\N•

h
, K̂ = TKT, m̂ = Tm,

(45)

where m is the rank-one term defined in (20). For convenience

of notation, we write

RTPT ÂPR = ǫ(K̃ + z̃z̃T ), (46)

where K̃ = RTPT K̂PR and z̃ = RTPT ẑ. In the new

notation, we have

PT ÂP =

(
I

ǫ(K̃ + z̃z̃T )

)
. (47)
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Thus (40) now reads
(
I

ǫ(K̃ + z̃z̃T )

)(
y1
y2

)
= Pg =:

(
g1
g2

)
, (48)

which reduces to two-set of equations

y1 = g1, (49)

ǫ(K̃ + z̃z̃T )y2 = g2. (50)

To solve the latter, we use the Sherman-Woodbury formula

(K̃ + m̃m̃T )+ = K̃+ −
K̃+m̃m̃T K̃+

1 + m̃T K̃+m̃
. (51)

The AMG discussed before is used to pseudo-invert K̃, and

we thus avoid constructing the dense matrix which would be

the case when rank one term is explicitely added.

V. NUMERICAL EXPERIMENTS

All the experiments were performed in double precision

arithmetic in MATLAB. The Krylov solver used was GMRES

with subspace dimension of 200, and maximum number of

iterations allowed was 300. The iteration was stopped as soon

as the relative residual was below the tolerance of 10−7.
We consider two samples of active set configurations that

occur when a square region evolves as shown in figures 1

and 2. The region between the two squares and the circles

is the interface between two bulk phases taking values +1

and -1; initially we chose random values between -0.3 and

0.5 in the interface region. The width of the interface is kept

to be 10 times the chosen mesh size. The time step τ is

chosen to be equal to ǫ. We compare various mesh sizes

leading to number of grid points upto just above 1 million,

and compare various values of epsilon for each mesh sizes.

We observe that the number of iterations remain independent

of the mesh size, however it depends on ǫ. But we observe that

for a fixed epsilon, with finer mesh, the number of iterations

actually decrease significantly. For example the number of

iterations for h = 2−7, ǫ = 10−6 is 84 but the number

of iterations for h = 2−10, ǫ = 10−6 is 38, a reduction

of 46 iterations! It seems that finer mesh size makes the

preconditioner more efficient. We also observe that the time to

solve is proportional to number of iterations; the inexact solve

for the (1,1) block remains optimal because the (1,1) block is

essentially Laplacian for which AMG remains very efficient.

VI. CONCLUSION

For the solution of large scale optimization problem cor-

responding to Cahn-Hilliard problem with obstacle problem,

we proposed an efficient preconditioning strategy that requires

two elliptic solves. In our initial experiments upto over million

unknowns, the preconditioner remains mesh independent. Al-

though, for coarser mesh, there seems to be strong dependence

on epsilon, but as the mesh becomes finer, we observe a

significant reduction in iteration count, thus making the pre-

conditioner effective and useful on finer meshes. It is likely

that the iteration count continues to decrease on finer meshes.

Fig. 1. Square

Fig. 2. Circle

TABLE I
COMPARE ITERATIONS COUNT FOR VARIOUS ǫ AND h

square circle
h ǫ its time its time

2
−7 e-2 6 1.40 6 1.37

e-3 8 2.00 9 2.16
e-4 20 4.50 22 4.76
e-5 41 9.23 45 10.14
e-6 77 17.83 83 22.02

2
−8 e-2 6 6.22 6 4.61

e-3 5 4.88 5 5.12
e-4 13 10.56 15 11.91
e-5 31 24.39 35 27.31
e-6 60 50.44 67 54.09

2
−9 e-2 5 18.13 6 18.50

e-3 5 16.57 5 18.92
e-4 8 28.21 9 32.09
e-5 22 72.59 25 80.03
e-6 47 166.46 52 180.58

2
−10 e-2 5 81.86 6 89.16

e-3 5 81.69 5 85.23
e-4 5 98.62 5 97.76
e-5 14 218.52 15 254.48
e-6 34 527.49 38 612.41

PAWAN KUMAR: FAST SOLVERS FOR NONSMOOTH OPTIMIZATION PROBLEMS IN PHASE SEPARATION 593



REFERENCES

[1] J. W. Cahn and J. E. Hilliard, “Free Energy of a Nonuniform System.
I. Interfacial Free Energy,” The Journal of Chemical Physics, vol. 28,
no. 2, 1958. [Online]. Available: http://dx.doi.org/10.1063/1.1744102

[2] Y. Oono and S. Puri, “Study of phase-separation dynamics by use of
cell dynamical systems. I. Modeling,” Physical Review A, vol. 38, no. 1,
1987. [Online]. Available: http://dx.doi.org/10.1103/PhysRevA.38.434

[3] J. F. Blowey and C. M. Elliott, “The Cahn-Hilliard gradient theory
for phase separation with non-smooth free energy Part I: Numerical
analysis,” European J. Appl. Math., no. 2, pp. 233–280, 1991. [Online].
Available: http://dx.doi.org/10.1017/S095679250000053X

[4] ——, “The Cahn-Hilliard gradient theory for phase separation with
non-smooth free energy Part II: Numerical analysis,” European J.

Appl. Math., no. 3, 1992. [Online]. Available: http://dx.doi.org/10.1017/
S0956792500000759

[5] J. Bosch, M. Stoll, and P. Benner, “Fast solution of Cahn-Hilliard
variational inequalities using implicit time discretization and finite
elements,” Journal of Computational Physics, vol. 262, pp. 38–57,
2014. [Online]. Available: http://dx.doi.org/10.1016/j.jcp.2013.12.053

[6] C. Graeser and R. Kornhuber, “Nonsmooth newton methods for set-
valued saddle point problems,” SIAM Journal on Numerical Analysis,
vol. 47, no. 2, pp. 1251–1273, 2009.

[7] J. Barrett, R. Nurnberg, and V. Styles, “Finite element approximation
of a phase field model for void electromigration,” SIAM J. Numer.

Anal., vol. 42, no. 2, pp. 738–772, 2004. [Online]. Available:
http://dx.doi.org/10.1137/S0036142902413421

[8] R. Kornhuber, “Monotone multigrid methods for elliptic variational
inequalities I,” Numerische Mathematik, vol. 69, no. 2, pp. 167–184,
1994.

[9] ——, “Monotone multigrid methods for elliptic variational inequalities
II,” Numerische Mathematik, vol. 72, no. 4, pp. 481–499, 1996.

[10] J. Mandel, “A Multilevel lterative Method for Symmetric, Positive
Definite Linear Complementarity Problems,” Applied Mathematics and

Optimization, vol. 11, pp. 77–95, 1984.
[11] C. Graser and R. Kornhuber, “Multigrid Methods for Obstacle Prob-

lems,” Journal of Computational Mathematics, vol. 27, no. 1, pp. 1–44,
2009.

[12] C. Graser, “Convex Minimization and Phase Field Models,” Ph.D.
dissertation, FU Berlin, 2011.

[13] P. Kumar, “Aggregation based on graph matching and inexact coarse
grid solve for algebraic two grid,” International Journal of Computer
Mathematics, vol. 91, no. 5, pp. 1061–1081, 2014. [Online]. Available:
http://dx.doi.org/10.1080/00207160.2013.821115

[14] U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid. Academic
Press, 2001. [Online]. Available: http://www.academicpress.com

[15] Y. Notay, “An aggregation-based algebraic multigrid method,” Electronic

Transactions on Numerical Analysis, vol. 37, pp. 123–146, 2010.
[Online]. Available: http://dx.doi.org/10.1109/ISQED.2007.31

[16] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia: SIAM, 2003. [Online]. Available: http://dx.doi.org/10.
1137/1.9780898718003

594 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015


