
Abstract—In this paper, we define a new practical technol-
ogy-driven Resource Constrained Scheduling Problem (t-
RCPSP). We propose three approaches, applying constructive
heuristics to tackle effectively the practical application of
RCPSP. In the RCPSP formulation, the constraints are defined
to design the tasks in the spaces constructed by non- and re-
newable resources, without violating the precedence relation-
ships and technologies in real world problem that exists in Plas-
tic and Rubber Processing company. The difficulty of t-RCPSP
is NP-hard and we proposed three constructive specialized
methods: duration based heuristics (DBH), locally optimal re-
source usage PEC and NEH heuristic adaptation. The paper
presents results of computational experiments that show the ef-
fectiveness of the proposed approaches.

I. INTRODUCTION

he automated computer-aided scheduling in real world

application has a tremendous impact on the enterprise.

Production schedule building process by human needs a lot

of time (long hours), what increases costs and strongly de-

pends on the human condition (costly mistakes). Moreover,

the automated scheduling process requires less time (only

seconds), is faultless and can be run anytime, e.g. to

reschedule in the case of break-down production. In most

cases, schedule generated by computer is more efficient than

schedule built by the human.

T

In this paper, an automated scheduling problem practical
application in Plastic and Rubber Processing Industry is
investigated. Mainly, there is a set of injection molding
machines, specialized devices, set of (sub)products and
ingredients. Such renewable (e.g. machines, devices) and
non-renewable (product's ingredients) resources should be
assigned to client requests (tasks) to get near optimal usage
in the production process. The major element of automated
scheduling system is schedule builder. If solution is to be
useful in practice, schedule builder should give the
(sub)optimal production schedule in reasonable time: less
than 1 minute is acceptable.

It is widely known that the automated computer-aided
scheduling in real world application may reduce human
work. However, our specific domain requirements make
complicated application of classical algorithms. We propose
three types of RCPSP solving methods: duration based
heuristics (DBH) based on the greedy algorithm, classical

NEH adaptation and method (PEC locally optimal resources
usage driven.

The proposed technology-driven t-RCPSP can be
generalized to RCPSP, which in literature is presented as
NP-hard [1] and there are no exact algorithms to solve it in
reasonable computation time. Some researches recommend
heuristics [7][8]Error: Reference source not foundError:
Reference source not found as fast and quite effective
RCPSP solving tools.

To get schedule near optimal some metaheuristic
approaches are recommended, e.g. Simulated Annealing [2],
Tabu Search [12][15], Genetic Algorithms [18][22],
Evolutionary Algorithms [5]Error: Reference source not
found (hybrids EA [21]). Also, some swarm intelligence
methods can be successfully applied to RCPSP, like Ant
Colony Optimisation [4][9][10][11], hybrid ACO [13],
Particle Swarm Optimization [23] or Bee Colony Algorithms
[25].

The rest of the paper is organized as follows. Section 2
presents general RCPSP problem statement and specific
domain requirements; technology-driven t-RCPSP model is
proposed. Section 3 describes details of three proposed
heuristics. Experiments of developed methods in a given
dataset are presented in section 4. Finally, section 5 presents
summary of gained results and gives some possible further
research directions.

II. PROBLEM STATEMENT

In this section, the main elements of classical RCPSP are
presented. In a real world problem, such RCPSP model can
be useless. The main reason is that, in practical application,
to realize the client's request machines and devices can use
several configurations of ingredients that may cause entirely
different task duration. Thus, problem that we met in MP2
company enforced us to extend RCPSP by several elements.
Proposed technology-driven RCPSP (t-RCPSP) model in
details is presented below.

A. Short description of technology-driven RCPSP

In classical RCPSP Error: Reference source not found each
task is described by duration, start and finish time. Tasks are
non-preemptive, which means that preemption is not
allowed. Each task can be lined to other one in timeline. We
use discrete time measure - timeslots.

Constructive heuristics for technology-driven
Resource Constrained Scheduling Problem

Paweł B. Myszkowski
Wrocław University of

Technology, Wrocław, Poland
Email:

pawel.myszkowski@pwr.edu.pl

Michał Przewoźniczek
Wrocław University of

Technology MP2 company,
Wrocław, Poland

Email:
michal.przewozniczek@pwr.edu.pl

Marek Skowroński
Wrocław University of

Technology, Wrocław, Poland
Email: m.e.skowronski@pwr.edu.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 119–127

DOI: 10.15439/2015F389

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 119

In the presented t-RCPSP application (schema is
presented on Figure 1), we need to run several tasks, which
are non-preemptive. Each task has its execution deadline
and duration time that depends on used resources. To apply
task and produce required product(s) some resources are
used: machines, devices, materials and subproducts.

Resources are renewable (machines and devices) and non-
renewable: materials (such plastic, paints and other
ingredients) and subproducts. As some products are
composed of other products, there is relation start-finish
between tasks that produce needed subproducts of the given
task. Some resources (machines and devices) are dedicated,
what means that can be assigned only one activity at a given
time [6].

In t-RCPSP specific set of constraints that should be
satisfied is defined. The feasible schedule satisfies all
constraints defined as follows:

C1. Each task is applied only on one proper machine using
specialized device,
C2. Each machine and device can be used only once in
selected timeslot,
C3. Each device can cooperate with machine in various way,
using other configuration of ingredients,
C4. Each task requires a given amount of ingredients:
materials and subproducts,
C5. The task that produces subproducts must be finished
before task requiring it,
C6. Each task has defined deadline and number of products,
C7. Each task has assigned duration time that depends on
number of required products and used machine and device,
C8. There are 4 types of machine setup times that depend on
two adjacent tasks:

• no operation – if two tasks produce the same
products,

• start (15 timeslots duration) two tasks produce the
same products and machine has been stopped,

• rinse (30 timeslots) two tasks use the same device
and machine but provide other products,

• full refitting (120 timeslots) to clean machine and
change device.

All devices are specialized to provide a given type of

products using the machine, materials or/and subproducts.

The device can be applied only to selected machines, and its

effectiveness is connected with machine and configuration

of ingredients. The main goal of t-RCPSP is to generate fea-

sible schedule (according to C1-C8 constraints) to minimize

its duration – makespan, calculated as the difference be-

tween first task start and end of the last task in the final

schedule. The minor criteria is to reduce the average latency

of schedule execution given as the difference between each

task end time and its defined deadline.

This problem is NP-hard [1][3][6] and overconstrained.
There are no effective algorithms therefore we propose use
some heuristics to solve it in acceptable time. The extra
constraint required by MP2 company is time limit, i.e.
solving method execution cannot exceed 1 minute of CPU
computational time of reference machine.

B. t-RSPSP - formulation

The feasible schedule (S) consists j=1,..,J tasks and each
task is defined as a tuple:

J:=<{request_products [amounts]...},
sj, dtj, ddj>

(1)

where ddj defines task execution deadline, sj means timeslot
to start task in the discrete time period; However dtj value
strongly depends on used resources: machine, device and
materials. To link such aspects model we defined technology
t=1,..,T as follows:

T:=<M, D, {resources I [amount]},
{products P amount}, dtt>

(2)

where dtt value determines the task execution time using
given set of resources. To apply technology to produce
products (P) it uses renewable resource (m=1,..,M machines
and d=1,..,D devices) and some product ingredients (I) as
non-renewable resources: MA=1,..,i materials and other
resources R=1,..,r, including subproducts.

Various technologies can produce the same product using
other resources and give other execution time. Such
technology definition as an abstract layer makes possible to
link the same resources in another way. Set of technologies
describes the effectiveness of model and makes optimization
simpler. The primary optimization goals are defined as
follows:

min MAKESPAN(S) = max (sj+ddj) - min(sj) (3)

Such formula gives information about the total schedule S
execution time, calculated as the differences between the last
task's finish and start of the first task. It should be minimized
to make schedule execution possible shorter. Another
measure that gives quality of given schedule S is the average
latency defined as follows:

min AVG_LATENCY(S) = (4)

Fig 1. Schema of t-RCPSP

120 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

1

k
∑
1.. k

{ 0 if sj+dtj<ddj

else ddj−sj+dtj
}

Such measure gives the averaged value of how late each
task is due to its defined deadline. It should be minimized to
finish each task before its deadline and possible to avoid the
delay (and potential financial penalties).

III. PROPOSED METHODS

Each of three proposed methods: NEH adaptation, duration
based heuristic (DBH) and resource optimal usage PEC are
based on some observations and motivations. Moreover,
methods differ not only in implementation but they also use
various parameters. Proposed heuristics use sorting deadline
criteria of tasks. We defined three basic criteria: ascending
(tasks with earlier deadline have priority), descending (the
opposite situation) and random order. We decided to
implement the random task order to get reference to the
other two. In this section, details of proposed methods are
presented.

A. Duration based heuristic – DBH

The main motivation of DBH is to build the shortest
schedule using adaptation of classical greedy algorithm
based on rule heuristics [19]. The DBH pseudocode is
presented on Pseudocode 1. DBH heuristic works on all
unassigned tasks and proposes first possible timeslot and
uses the shortest technology to execute it.

The DBH heuristic asks model for set of tasks that can be
preformed in selected timeslot (line 6). List of tasks is sorted
by criteria (randomly, ascending or descending deadlines) to
get one task (line 9). Then the technology with the shortest
execution time is given to apply in given timeslot (line 10).
If all model constraints are satisfied task is assigned in the
schedule (line 11) and removed from list of unassigned tasks

(line 12). If there no tasks that can run, the model takes next
timeslot (line 13).

B. Local optimal resource usage heuristic – PEC

In DBH heuristic technology is selected that gives the
shortest time of task realization. Such strategy is optimal
locally because doesn't take into consideration optimal
renewable resource usage. In PEC heuristic (see Pseudocode
2) such aspect is included as some local search method. As
DBH only assigns the first task, PEC heuristic tries to assign
the larger number of tasks in given timeslot (line 11-17). All
analyzed tasks are unassigned for schedule (line 19-23).
Only the best task sequence for given timeslot is selected
and all included tasks are assigned to final schedule (line 26-
29).

To reduce the PEC computation complexity some limits
are introduced – the size PEC parameter defines number of
tasks that are analyzed in one sequence. As size parameter
equals to 1 PEC heuristic works as DBH, the greater value
needs much more CPU working time but returns production
schedule more efficient.

The PEC heuristic is a type of compromise between semi-
blind greedy DBH and brute force method that analyzes all
possible permutations to get the (local) optimal schedule.
The size parameter gives a range of above compromise to
get possible better schedule than build by DBH.

C. NEH2 as NEH heuristic adaptation

Results of experiments with PEC and DBH heuristic showed
that tasks sequence for effectiveness of algorithms have big
impact on the final schedule. Such observation encourage us
to find algorithm which can optimize this aspect. The
classical NEH (Nawaz, Enscore, Ham) [14] algorithm is
considered as one of the most effective method of
minimizing the makespan for Permutation Flowshop
Scheduling Problem. The main goal in original NEH is to
find the optimal sequence of operations to get more optimal

PSEUDOCODE 1. DBH PSEUDOCODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

procedure DurationBasedHeuristic (SORT_CRITERIA)

UT = Tasks // unsigned tasks

TS = 0; // timestamp

RUT_TS = {} // sequence of ready to run unassigned tasks

do

assigned=false

RUT_TS = getApplicableTasks (UT, TS)

if (|RUT_TS| > 0)

RUT_TS:= SORT(RUT_TS, SORT_CRITERIA);

Task = RUT.getFirstTask();

Tech = getShortestDurationApplicableTechnology(Task, TS)

assigned = schedule.assign (Task, Tech, TS)

if (assigned==true) UT = UT / Task

else TS++

while (|UT|>1)

PAWEŁ B. MYSZKOWSKI ET AL.: CONSTRUCTIVE HEURISTICS FOR TECHNOLOGY-DRIVEN RESOURCE CONSTRAINED SCHEDULING PROBLEM 121

schedule. As evaluation can be applied makespan or other
schedule measure. In this paper model RCPSP some NEH
modification must be implemented.

The basic version of NEH heuristic builds schedule
partially to find optimal sequence of tasks adding next task
to partial schedule, finally composing the whole schedule. In
our approach NEH is considered rather as metaheuristics
that proposes sequence of tasks that make schedule optimal
(see Pseudocode 3). The other algorithm schedules task to
build partial schedule – we decided to use the classical
greedy algorithm. The best task sequence is marked as base
task sequence (line 16), that is extended by next tasks
probing all positions in the task sequence. Let's analyze the
NEH working illustration. Having task A and task B, NEH

executes greedyAlgorithm to find optimal tasks sequence
(AB or BA). Let's assume that BA is optimal, to extend
sequence BA adding new task C the greedyAlgorithm probes
sequences: CBA, BCA and BAC and so on.

The basic NEH procedure is too time-consuming to apply
in real world application. The next step of NEH
implementation was to optimize its computational
complexity. The most expensive operation is
GreedyAlgorithm and this factor should be reduced. We
observed that GreedyAlgorithm builds each time the whole
schedule which is a huge extravagance. The next step was to
use partially build schedule and reverse task sequence build
strategy.

PSEUDOCODE 2. PEC PSEUDOCODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

procedure PEC (SIZE, SORT_CRITERIA)

UT = Tasks // unsigned tasks

TS = 0; // timestamp

RUT_TS = {} // sequence of possible to run unassigned Tasks

do

RUT_TS = getApplicableTasks (UT, TS)

if (|RUT_TS| > 0)

RUT_TS:= SORT(RUT_TS, SORT_CRITERIA)

RUT_TS:= getFirstNElements(RUT_TS, SIZE)

AssignedTasksMax = 0;

for all P permutation RUT_TS

numberOfAssignedTasks = 0

for each T_j task RUT_TS

 Task = RUT.getFirstTask;

 Tech = getShortDurAppTechn(Task, TS)

 assigned = schedule.assign (Task, Tech, TS)

 if (assigned) numberOfAssignedTasks++

for end

if (numberOfAssignedTasks > AssignedTasksMax)

AssignedTasksMax = numberOfAssignedTasks

BestTaskSequence = P

schedule.unassignTasks(RUT_TS)

end for

for each Task from BestTaskSequence

Tech = getShortDurnApplTech(Task, TS)

assigned = schedule.assign (Task, Tech, TS)

if (assigned) UT = UT / Tech

end for

end if

TS++;

while (|UT| > 0)

122 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

For example, in basic NEH for three task (A, B and C, let
assume that BA sequence is an optimal) the analyzed
sequences are: CBA, BCA and BAC. In reverse order in
NEH2 we build BA schedule as base, then BAC. In next
sequence BCA from schedule is removed task A, then
inserted C and A. In basic NEH to examine three task
sequence 9 task is scheduled, in reduced version (NEH2, see
Pseudocode 4) only 6 tasks is (re)scheduled.

The main modification of NEH2 heuristic is to remove
from the initial sequence and reschedule only tasks that are
next inserted (see line 11-14). To evaluate the partial
schedule is build by GreedyAlgorithm (line 15) to examine
the sequence of tasks.

The NEH2 computation complexity reduction makes
possible practical application of heuristic in simpler cases.
Such NEH2 heuristic has been examined. Results of test are
presented in the next section.

IV. EXPERIMENTS AND RESULTS

The t-RCPSP model is specialized to MP2 company
requirements. All proposed methods in verification
procedure need an empirical data. We analyzed real data and
prepared dataset that is complete for the domain: various
number of tasks, machines, devices and technologies. Such
dataset allows us to do research and compare results of
proposed methods.

All experiments are implemented in standard C/C++.
Machine for test was equipped with Intel Core2 Duo 2.53

GHz, 4GB RAM and Windows7 OS. For each experiment,
only one Core was used.

A. Experiments' set-up and dataset

Prepared dataset MP2dataset1 consists of seven various
types of configurations – summary of dataset is presented in
Table1. There are three types of simple settings (10_3x3_10,
50_10x20_40 and 75_10x20_40) that involve small number

1 MP2dataset is published in http://imopse.ii.pwr.edu.pl/

PSEUDOCODE 3. NEH2 PSEUDOCODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

procedure NEH2 (SORT_CRITERIA)

UT = Tasks // unsigned tasks

BestTS = <> // best sequence according to MAKESPAN

CurrentTS = <> // current (candidate) tasks sequence

BaseTS = <> // base task sequence

UT = SORT(UT, SORT_CRITERIA)

BestTS = CurrentTS = UT.getFirstTask()

for each Task from UT

CurrentTS = BaseTS

for each position i=|CurrentTS| insertion Task into CurrentTS

for each position CurrentTS to i

 rTask = CurrentTS.removeTask(i)

 ReTasks.addTask(rTask)

 end for

 value = GreedyAlgorithm(CurrentTS, ReTasks, Task)

if (value < bestValue or i==|CurrentTS|)

bestValue = value

BestTS = CurrentTS + Task + ReTasks

end if

BaseTS = BestTS

end for

TABLE I.

SUMMARY OF TESTING DATASET MP2DATASET

task
s

machines devices technol
ogies

10_3x3_10 10 3 3 10

50_10x20_40 50 10 20 40

75_10x20_40 75 10 20 40

100_30x30_100 100 30 30 100

200_30x30_100 200 30 30 100

300_30x100_500 300 30 100 500

500_30x45_100 500 30 45 100

Legend: tasks _ machines x devices _ technologies

PAWEŁ B. MYSZKOWSKI ET AL.: CONSTRUCTIVE HEURISTICS FOR TECHNOLOGY-DRIVEN RESOURCE CONSTRAINED SCHEDULING PROBLEM 123

of tasks (respectively 10 or 50) and small number of
devices, less than 20. Two configurations have medium
difficulty (100_30x30_100 and 200_30x30_100) where
number of tasks is larger (100 or 200) and there is increased
number of possible technologies to 100. Additionally, the
configuration 300_30x100_500 is difficult because of large
number of tasks and extremely a lot of technologies (500)
and devices (100). The last configuration consists of 500
tasks, which is the most difficult for methods testing.

To get dataset more general, for each configuration 100
instances were generated. The data generator constructs
instances randomly according to the specific domain
requirements and configuration. Analyzing the real data we
assumed some additional dataset parameters: task deadline
ddt in <10,50> defined in discrete timeslots, the maximal
number of generated products by technology is 5. Each
technology can produce no more that 2 types of products
and use no more than 4 types of materials. Each product can

be generated by 2 or more technologies. The longest
technology duration not exceeds 10 timeslots.

B. Experiments results

The main goal of provided experiments was to investigate
how presented methods are effective in solving t-RCPSP.
The method's results are described by makespan and
averaged latency of all tasks in given schedule. The other
comparative aspect was computational CPU time needed by
methods to obtain results. All methods were investigated
using MP2dataset and results were averaged to compare to
others (see Table II). Research consists all examined
methods DBH, NEH2 and PEC using one main parameter,
sorting criteria: by task deadline ascending, descending and
random. The PEC uses extra parameter: size of task list.

Experiments results presented in Table II give information
that all developed heuristics are useful in solving t-RCPSP.
In 4/7 cases the minimal makespan provided DBH, however
NEH2 in such cases gives slightly worse results and in 3/5

TABLE II.

AVERAGED SCHEDULE MAKESPAN (AND STANDARD DEVIATION) FOR MP2DATASET

Tasks_mach.

device_techn

10_3

x3_10

50_10

x20_40

75_10

x20_40

100_30

x30_100

200_30

x30_100

300_30

x100_500

500_30

x45_100

DBH asc 185,53

41,93

189,43

45,52

252,65

55,36

190,21

45,13

336,88

73,93

214,72

22,16

899,0

231,76

DBH dsc 184,9

41,7

183,9

48,3

252,5

61,2

190,4

41,4

333,4

69,9

214,7

18,5

880,0

236,4

DBH rand 191,31

42

192,84

48

253,57

58

194,12

45,9

338,48

72,95

217,07

20,04

920,0

250

PEC(3) asc 190,6

43,0

189,4

43,9

250,1

53,5

196,1

48,1

345,6

68,0

271,5

18,9

915,9

251,5

PEC(3) dsc 189,6

41,9

185,0

47,1

254,8

60,1

192,2

41,9

342,1

73,3

273,3

17,9

906,4

229,1

PEC(3) rand 193,0

43

189,44

46

256,87

54

196,33

44

339,9

70

257,63

19,6

927,51

242

PEC(4) asc 187,28

40

187,65

44

250,56

58

192,43

45

342,08

73

259,6

19,87

926,0

245

PEC(4) dsc 187,1

43,9

185,55

49,14

251,21

59,04

191,45

39,21

340,80

70,05

260,83

17,74

894,6

232,42

PEC(5) asc 187,04

39,04

190,2

41

251,78

59

192,14

49,9

344,57

71,93

249,11

19,29

920,65

242

PEC(5) dsc 190,02

41,85

185,78

48,36

254,4

61

191,0

40,8

339,09

71,67

245,78

17,53

896,9

226

NEH2 asc 185,5

41,9

189,3

45,7

252,7

55,2

189,7
46,1

336,8

73,0

time limit

exceeded

time limit

exceeded

NEH2 dsc 185,17

41,29

183,89

48,33

252,72

61,12

189,38

41,28

331,84

69,3

time limit

exceeded

time limit

exceeded

124 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE III.

AVERAGED SCHEDULE LATENCY (AND STANDARD DEVIATION) FOR MP2DATASET

Tasks_mach.

device_techn

10_3

x3_10

50_10

x20_40

75_10

x20_40

100_30

x30_100

200_30

x30_100

300_30

x100_500

500_30

x45_100

DBH asc 0,30

0,52

0,53

0,89

2,03

2,32

0,43

0,79

3,45

2,57

0,12

0,15

44,125

19,70

DBH dsc 2,39

1,60

3,65

3,19

8,66

4,37

2,57

2,05

10,48

4,06

7,76

2,00

74,31

23,53

DBH rand 1,6

1,37

2,2

2,25

5,83

3,83

1,62

1,42

7,63

3,59

4,70

1,57

63,32

19,9

PEC(3) asc 0,29

0,5

0,42

0,9

2,05

2,27

0,52

1,03

3,88

2,59

0,10

0,15

49,64

21,10

PEC(3) dsc 2,72

1,59

3,80

3,26

9,13

4,56

2,82

2,07

12,13

4,2

21,97

3,45

96,07

20,85

PEC(3) rand 1,73

1,4

2,58

2,82

5,93

3,47

1,82

1,62

8,1

3,5

9,0

2,2

68,12

19

PEC(4) asc 0,26

0,44

0,47

0,92

2,02

2,75

0,5

1,0

3,72

2,72

0,13

0,19

48,33

20,65

PEC(4) dsc 2,53

1,63

3,94

4,53

8,94

4,53

2,64

2,00

11,64

4,44

18,65

3,2

90,27

21,81

PEC(5) asc 0,28

0,53

0,40

0,74

2,00

2,57

0,47

0,9

3,52

2,6

0,14

0,17

47,34

19,57

PEC(5) dsc 2,6

1,6

3,85

3,22

9,05

4,43

2,63

2,03

11,13

4,22

15,34

2,94

87,10

21,0

NEH2 asc 0,30

0,52

0,52

0,89

2,05

2,33

0,42

0,76

3,47

2,6

time limit

exceeded

time limit

exceeded

NEH2 dsc 2,39

1,59

3,65

3,19

8,66

4,35

2,55

2,04

10,5

4,11

time limit

exceeded

time limit

exceeded

TABLE IV.

AVERAGED COMPUTATIONAL TIME [S] FOR MP2DATASET

Tasks_mach.

device_techn

10_3

x3_10

50_10

x20_40

75_10

x20_40

100_30

x30_100

200_30

x30_100

300_30

x100_500

500_30

x45_100

DBH 0,14 0,05 0,12 0,13 0,57 4,8 7,13

PEC(3) 0,11 0,05 0,12 0,08 0,39 2,58 4,11

PEC(4) 0,10 0,05 0,12 0,1 0,41 2,95 4,71

PEC(5) 0,24 0,11 0,27 0,20 0,87 6,2 9,3

NEH2 5,6 1,2 3,9 5,6 49,66 time limit

exceeded

time limit

exceeded

PAWEŁ B. MYSZKOWSKI ET AL.: CONSTRUCTIVE HEURISTICS FOR TECHNOLOGY-DRIVEN RESOURCE CONSTRAINED SCHEDULING PROBLEM 125

cases returns solutions that compete with others. The NEH2
in more complicated cases (300 and 500 tasks) execution
time exceeded 1 minutes CPU time and results are not taken
into consideration. PEC only in one case returns the best
solution (75 tasks, PEC(3) asc). Increasing the PEC size
parameter value in most cases reduces makespan, e.g.
comparing results of PEC(3) and PEC(4) using descending
task deadline order. To summary results of all methods for
all instances: DBH dsc needs average 319,97 timeslots to
execute all 700 instances, DBH asc needs 324,06 timeslots
and PEC(5) dsc has the third place: 328,9 timeslots. The
longest averaged makespan schedule (equals to 337
timeslots) achieved PEC(3) heuristic with ascending task
order. Analysis of the results presented into Table II can
draw the conclusion that descending sorting criteria of tasks
gives better results in the minimization of schedule
makespan. Random tasks order makes solution the worst in
all investigated cases. All methods are deterministic, the
averaged results are computed on 100 instances of each
configuration. In case of random tasks order, results for each
instances are repeated 10 times and then averaged.

Results presented in Table III describe how generated
schedules are late using as measure the average latency of
all tasks in the schedule. The gained results proved our
intuition that the best results give ascending sorting criteria
of tasks – task with the shorter deadline is taken into
consideration earlier. All methods showed that are effective,
but it is rather impossible to point the best one. In 2/7 cases
DBH gives the best solution, PEC in 4/7 cases (using size
parameter equals to 3, 4 or 5). Results gained by NEH2 are
not qualitative. Moreover, NEH2 in one case returns the best
solution (100 tasks configuration). Comparing the averaged
latency for 700 instances (whole MP2dataset) the best
method gives 7,28 latency (DBH asc), the second one 7,73
(PEC(5) asc) and third one 7,91 (PEC(4) asc). The worst
averaged latency achieved PEC(3) dsc: 21,23.

Comparing methods' working time (see Table IV) it is
worth mentioning that methods are fast and effective. The
provided MP2dataset of 700 instances gives an opportunity
to compare methods results and recommend them to real-
world applications. Increasing size of the problem, methods
are practical as computational time not exceeds 10 seconds.
Such short computational time makes possible to run several
methods to get set of schedules and give a human operator a
real choice.

The computation complexity of presented heuristics is
O(k2) for DBH and O(size!k2) for PEC. The NEH2
complexity is larger because core of NEH2 is O(k2) but in
each step uses greedyAlgorithm that is O(k), what gives
finally NEH2 O(k3). The result is that the computational time
of NEH2 increases so dramatically that needed time is
unacceptable in construction process of schedules that
consist of more that 200 tasks. In such cases other methods
are more effective and less demanding for CPU working
time.

V. SUMMARY

Standard RCPSP, in presented work, was extended by
technologies to solve practical problem in Plastic and
Rubber Processing Industry – we defined t-RCPSP. Such
model makes possible, in simply and intuitive way, a

formalization of real-world problem. Each technology links
non-renewable and renewable resources, uses various types
of ingredients in production. Technologies that produce the
same products may use resources in different way, more or
less effectively. It can case be other production time
consumption, too. The technology-driven RCPSP model
gives a lot of possibilities to build effective heuristics. We
proposed three of them: NEH2 adaptation, locally optimal
resource usage PEC and duration driven heuristic DBH.
Analyzing a real production schedule instances we
implemented a data generator to get the MP2dataset
(published in Internet) that includes 700 instances in 7 basic
problem configurations to empirically prove efficiency of
proposed methods. Results of experiments showed that
proposed methods can be used as effective tool for
scheduling in production company. Moreover, the next step
was done: all presented methods were developed as
automated scheduling module in MP2 company computer
system.

A. Further research

As the practical aspect of further research is the definition of
more domain-based measures of final schedule and used
technologies. In presented paper, only the makespan and
latency are analyzed as the measure. However, in practice
such technology can be more energy consuming, may need
more labor (including human work) or can be less effective
as a scrap measure is considered. The existence of several
measures of schedule leads to the situation when
multiobjective optimisation should be considered.

Investigating the comparison of presented methods we
can see some possible directions of further work. The most
promising is using metaheuristics (such as Evolutionary
Algorithms or Tabu Search) to build schedule near optimal
in cost/time criterion. Metaheuristics usage needs more
computational time than simple heuristic – but our
experience (e.g. Error: Reference source not foundError:
Reference source not found) shows that results are
(sub)optimal. Additionally, metaheuristics are using
evaluation function (as the superposition of several schedule
measures) can provide schedule dedicated to given user.
Especially Tabu Search [12][15][16][20] application to
RCPSP is very strong trend in literature.

ACKNOWLEDGMENT

The research has been partially supported as a part of the

Support Programme of the Partnership between Higher Edu-

cation and Science and Business Activity Sector finances by

City of Wroclaw.

REFERENCES

[1] Blazewicz J., Lenstra J.K., Rinnooy Kan A.H.G.; Scheduling subject
to resource constraints: Classification and complexity, Discrete
Applied Mathematics (5), pp. 11-24, 1983.

[2] Bouleimen K., Lecocq H.; A new efficient simulated annealing
algorithm for the resource-constrained project scheduling problem and
its multiple mode version, Eur. J of Operational Research (149), pp.
268-281, 2003.

[3] Brucker P., Drexl A., Mohring R., Neumann K., Pesch E.; Resource–
constrained project scheduling: Notation, classification, models, and
methods, European Journal of Oper. Research (112), pp. 3–41, 1998.

126 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

[4] Dorigo M.; Ant Colony System: A Cooperative Learning Approach to
the Traveling Salesman Problem, IEEE Transactions of Evolutionary
Computation (1/1), pp. 53-66, 1997.

[5] Hartmann S.; A competitive genetic algorithm for resource–constrai-
ned project scheduling, Naval Research Logistics (45), pp. 733–750,
1998.

[6] Hartmann S., Briskorn D., A survey of variants and extensions of the
resource-constrained project scheduling problem, European Journal of
Operational Research 207(2010), pp.1-14. 2010.

[7] Kolisch R., Hartmann S., Experimental evaluation of state-of-the-art
heuristics for the resource- constrained project scheduling problem,
European Journal of Oper. Research (127), pp. 394–407, 2000.

[8] Kolisch R., Hartmann S., Experimental investigation of heuristics for
resource-constrained project scheduling: An update, Euro. Journal of
Oper. Research (174), pp. 23-37, 2006.

[9] Liang Y., Chen A., Kao W., Chyu C.; An Ant Colony approach to Re-
source–Constrained Project Scheduling Problems, Proc of the 5th Asia
Pacific Indust. Eng. and Manag Systems Conf 2004, pp. 31.5.1-
31.5.10, 2004.

[10] Luo S., Wang C., Wang J.; Ant Colony Optimization for Resource-
Constrained Project Scheduling with Generalized Precedence
Relations, Proc of the 15th IEEE International Conference on Tools
with A(ICTAI03), pp. 284–289, 2003.

[11] Merkle D., Mittendorf M., Schmeck H.; Ant Colony Optimization for
Resource–Constrained Project Scheduling, IEEE Transactions on
Evolutionary Computation (6/4), pp. 333–346, 2002.

[12] Myszkowski P.B., Skowroński M. E., Myszkowski P. B., Kwiatek P.,
Adamski M., Tabu Search approach for Multi-Skill Resource-
Constrained Project Scheduling Problem, Annals of Computer Science
and Information Systems Volume 1, Proc. of the 2013 FeDCSIS
Confeences, pp. 153-158, 2013.

[13] Myszkowski P.B., Skowronski M.E., Olech Ł.P. and Oślizło K., Hyb-
rid ant colony optimization in solving multi-skill resource-constrained
project scheduling problem, Soft Computing Journal, Sep 2014.

[14] Nawaz, M., Enscore, J., Ham, I.: A Heuristic Algorithm for the M-ma-
chine, N-task Flow-shop Sequencing Problem. Omega-Int. J. Ma-
nage. S. 11(1), 91–95 (1983)

[15] Pan H.I., Hsaio P.W., Chen K.Y.; A study of project scheduling
optimization using Tabu Search algorithm, Engineering Applications
of Artificial Intelligence (21), pp. 1101-1112, 2008.

[16] Pan N.H., Lee M.L., Chen K.Y.; Improved Tabu Search Algorithm
Application in RCPSP, Proceedings of the International
MultiConference of Engineers and Computer Scientists (Vol I), 2009.

[17] Santos M., Tereso A. P.; On the multi-mode, multi-skill resource
constrained project scheduling problem - computational results, Soft
Computing in Industrial Applications, Advances in Intelligent and Soft
Computing (96), pp. 239–248, 2011.

[18] Skowroński M. E., Myszkowski P. B., Specialized genetic operators
for Multi-Skill Resource-Constrained Project Scheduling Problem,
19th Inter. Conference on Soft Computing Mendel 2013, pp. 57-62,
2013.

[19] Skowroński M. E., Myszkowski P. B., Podlodowski L., Novel
heuristic solutions for Multi-Skill Resource- Constrained Project
Scheduling Problem, Annals of Computer Science and Information
Systems Volume 1, Proc. of the 2013 Federated Conference on
Computer Science and Information Systems, pp. 159-166, 2013.

[20] Thomas P. R., Salhi S.; A Tabu Search Approach for the Resource
Constrained Project Scheduling Problem, Journal of Heuristics (4), pp.
123-139, 1998.

[21] Valls V., Ballestin F., Quintanilla S.; A hybrid genetic algorithm for the
resource–constrained project scheduling problem, European Journal of
Operational Research (185), pp. 495-508, 2008.

[22] Zhang H., Xu H., Peng W., A Genetic Algorithm for Solving RCPSP,
2008 International Symposium on Computer Science and
Computational Technology, pp. 246–249, 2008.

[23] Zhang H., Li H., Tam C.; Particle swarm optimization for resource–
constrained project scheduling, In- ter. Jour. of Project Management
(24), pp. 83-92, 2006.

[24] Zhang K., Zhao G., Jiang J.; Particle Swarm Optimization Method for
Resource-Constrained Project Scheduling Problem, The Ninth
International Conference on Electronic Measurement & Instruments
ICEMI2009, pp. 792–796, 2009.

[25] Ziarati K., Akbari R., Zeighami V.; On the performance of bee
algorithms for resource–constrained project scheduling problem,
Applied Soft Computing (11), pp. 3720–3733, 2011

PAWEŁ B. MYSZKOWSKI ET AL.: CONSTRUCTIVE HEURISTICS FOR TECHNOLOGY-DRIVEN RESOURCE CONSTRAINED SCHEDULING PROBLEM 127

