
Abstract—In this paper, we define a new practical technol-
ogy-driven  Resource  Constrained  Scheduling  Problem  (t-
RCPSP). We propose three approaches, applying constructive
heuristics  to  tackle  effectively  the  practical  application  of
RCPSP. In the RCPSP formulation, the constraints are defined
to design the tasks in the spaces constructed by non- and re-
newable resources,  without violating the precedence relation-
ships and technologies in real world problem that exists in Plas-
tic and Rubber Processing company. The difficulty of t-RCPSP
is  NP-hard  and  we  proposed  three  constructive  specialized
methods: duration based heuristics (DBH), locally optimal re-
source usage PEC and NEH heuristic  adaptation.  The paper
presents results of computational experiments that show the ef-
fectiveness of the proposed approaches. 

I. INTRODUCTION

he automated computer-aided scheduling in real world

application has a tremendous impact on the enterprise.

Production schedule building process by human needs a lot

of time (long hours), what increases costs and strongly de-

pends on the human condition (costly mistakes). Moreover,

the automated scheduling process  requires  less  time (only

seconds),  is  faultless  and  can  be  run  anytime,  e.g.  to

reschedule in the case of  break-down production.  In  most

cases, schedule generated by computer is more efficient than

schedule built by the human.

T

In this paper, an automated scheduling problem practical
application  in  Plastic  and  Rubber  Processing  Industry  is
investigated.  Mainly,  there  is  a  set  of  injection  molding
machines,  specialized  devices,  set  of  (sub)products  and
ingredients.  Such  renewable  (e.g.  machines,  devices)  and
non-renewable  (product's  ingredients)  resources  should  be
assigned to client requests (tasks) to get near optimal usage
in the production process. The major element of automated
scheduling system is schedule builder. If  solution is to be
useful  in  practice,  schedule  builder  should  give  the
(sub)optimal  production  schedule  in  reasonable  time:  less
than 1 minute is acceptable. 

It  is  widely  known  that  the  automated  computer-aided
scheduling  in  real  world  application  may  reduce  human
work.  However,  our  specific  domain  requirements  make
complicated application of classical algorithms. We propose
three  types  of  RCPSP  solving  methods:  duration  based
heuristics  (DBH) based  on the greedy algorithm, classical

NEH adaptation and method (PEC locally optimal resources
usage driven.

The  proposed  technology-driven  t-RCPSP  can  be
generalized  to  RCPSP, which  in  literature  is  presented  as
NP-hard [1] and there are no exact algorithms to solve it in
reasonable computation time. Some researches recommend
heuristics  [7][8]Error:  Reference  source  not  foundError:
Reference  source  not  found as  fast  and  quite  effective
RCPSP solving tools. 

To  get  schedule  near  optimal  some  metaheuristic
approaches are recommended, e.g. Simulated Annealing [2],
Tabu  Search  [12][15],  Genetic  Algorithms  [18][22],
Evolutionary  Algorithms  [5]Error:  Reference  source  not
found (hybrids  EA  [21]).  Also,  some  swarm  intelligence
methods  can  be  successfully  applied  to  RCPSP, like  Ant
Colony  Optimisation  [4][9][10][11],  hybrid  ACO  [13],
Particle Swarm Optimization [23] or Bee Colony Algorithms
[25].

The rest of the paper is organized as follows. Section 2
presents  general  RCPSP  problem  statement  and  specific
domain requirements; technology-driven t-RCPSP model is
proposed.  Section  3  describes  details  of  three  proposed
heuristics.  Experiments  of  developed  methods  in  a  given
dataset are presented in section 4. Finally, section 5 presents
summary of gained results and gives some possible further
research directions. 

II. PROBLEM STATEMENT

In  this section,  the main elements  of  classical  RCPSP are
presented. In a real world problem, such RCPSP model can
be useless. The main reason is that, in practical application,
to realize the client's request machines and devices can use
several configurations of ingredients that may cause entirely
different task duration. Thus, problem that we met in MP2
company enforced us to extend RCPSP by several elements.
Proposed  technology-driven  RCPSP  (t-RCPSP)  model  in
details is presented below.

A. Short description of technology-driven RCPSP

In classical RCPSP Error: Reference source not found each
task is described by duration, start and finish time. Tasks are
non-preemptive,  which  means  that  preemption  is  not
allowed. Each task can be lined to other one in timeline. We
use discrete time measure  - timeslots.
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In  the  presented  t-RCPSP  application  (schema  is
presented on Figure 1), we need to run several tasks, which
are  non-preemptive.  Each  task  has  its  execution  deadline
and duration time that depends on used resources. To apply
task  and  produce  required  product(s)  some resources  are
used: machines, devices, materials and subproducts. 

Resources are renewable (machines and devices) and non-
renewable:  materials  (such  plastic,  paints  and  other
ingredients)  and  subproducts.  As  some  products  are
composed  of  other  products,  there  is  relation  start-finish
between tasks that produce needed subproducts of the given
task. Some resources (machines and devices) are dedicated,
what means that can be assigned only one activity at a given
time [6]. 

In  t-RCPSP  specific  set  of  constraints  that  should  be
satisfied  is  defined.  The  feasible  schedule  satisfies  all
constraints defined as follows:

C1. Each task is applied only on one proper machine using
specialized device,
C2.  Each  machine  and  device  can  be  used  only  once  in
selected timeslot,
C3. Each device can cooperate with machine in various way,
using other configuration of ingredients,
C4.  Each  task  requires  a  given  amount  of  ingredients:
materials and subproducts,
C5.  The  task  that  produces  subproducts  must  be  finished
before task requiring it,
C6. Each task has defined deadline and number of products,
C7. Each task has assigned duration time that depends on
number of required products and used machine and device, 
C8. There are 4 types of machine setup times that depend on
two adjacent tasks: 

• no  operation  –  if  two  tasks  produce  the  same
products, 

• start (15 timeslots duration) two tasks produce the
same products and machine has been stopped, 

• rinse (30 timeslots) two tasks use the same device
and machine but provide other products,

• full refitting (120 timeslots) to clean machine and
change device.

All devices are  specialized to provide a given type of

products  using the machine,  materials or/and subproducts.

The device can be applied only to selected machines, and its

effectiveness  is connected with machine and configuration

of ingredients. The main goal of t-RCPSP is to generate fea-

sible schedule (according to C1-C8 constraints) to minimize

its  duration  –  makespan,  calculated  as  the  difference  be-

tween first  task start  and  end  of  the last  task in the final

schedule. The minor criteria is to reduce the average latency

of schedule execution given as the difference between each

task end time and its defined deadline.

This problem is NP-hard  [1][3][6] and overconstrained.
There are no effective algorithms therefore we propose use
some  heuristics  to  solve  it  in  acceptable  time.  The  extra
constraint  required  by  MP2  company  is  time  limit,  i.e.
solving method execution cannot exceed 1 minute of CPU
computational time of reference machine.

B. t-RSPSP - formulation

The feasible  schedule  (S)  consists  j=1,..,J tasks  and  each
task is defined as a tuple:

J:=<{request_products [amounts]...}, 
sj, dtj, ddj>

(1)

where ddj defines task execution deadline, sj means timeslot
to start task in the discrete time period; However  dtj  value
strongly  depends  on  used  resources:  machine,  device  and
materials. To link such aspects model we defined technology
t=1,..,T as follows:

T:=<M, D, {resources I [amount]},
{products P amount}, dtt>

(2)

where  dtt  value  determines  the  task  execution  time using
given  set  of  resources.  To  apply  technology  to  produce
products (P) it uses renewable resource (m=1,..,M machines
and  d=1,..,D  devices) and some product  ingredients (I) as
non-renewable  resources:  MA=1,..,i materials  and  other
resources R=1,..,r, including subproducts.

Various technologies can produce the same product using
other  resources  and  give  other  execution  time.  Such
technology definition as an abstract layer makes possible to
link the same resources in another way. Set of technologies
describes the effectiveness of model and makes optimization
simpler.  The  primary  optimization  goals  are  defined  as
follows:

min MAKESPAN(S) = max (sj+ddj) - min(sj) (3)

Such formula gives information about the total schedule S
execution time, calculated as the differences between the last
task's finish and start of the first task. It should be minimized
to  make  schedule  execution  possible  shorter.  Another
measure that gives quality of given schedule S is the average
latency defined as follows:

min AVG_LATENCY(S) = (4)

Fig 1. Schema of t-RCPSP
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1

k
∑
1.. k

{ 0 if sj+dtj<ddj

else ddj−sj+dtj
}

Such measure gives the averaged value of how late each
task is due to its defined deadline. It should be minimized to
finish each task before its deadline and possible to avoid the
delay (and potential financial penalties). 

III. PROPOSED METHODS

Each of three proposed methods: NEH adaptation, duration
based heuristic (DBH) and resource optimal usage PEC are
based  on  some  observations  and  motivations.  Moreover,
methods differ not only in implementation but they also use
various parameters. Proposed heuristics use sorting deadline
criteria of tasks. We defined three basic criteria: ascending
(tasks with earlier deadline have priority),  descending (the
opposite  situation)  and  random  order.  We  decided  to
implement  the  random  task  order  to  get  reference  to  the
other two. In this section, details of proposed methods are
presented. 

A. Duration based heuristic – DBH

The  main  motivation  of  DBH  is  to  build  the  shortest
schedule  using  adaptation  of  classical  greedy  algorithm
based  on  rule  heuristics  [19].  The  DBH  pseudocode  is
presented  on  Pseudocode  1.  DBH  heuristic  works  on  all
unassigned  tasks  and  proposes  first  possible  timeslot  and
uses the shortest technology to execute it.

The DBH heuristic asks model for set of tasks that can be
preformed in selected timeslot (line 6). List of tasks is sorted
by criteria (randomly, ascending or descending deadlines) to
get one task (line 9). Then the technology with the shortest
execution time is given to apply in given timeslot (line 10).
If all model constraints are satisfied task is assigned in the
schedule (line 11) and removed from list of unassigned tasks

(line 12). If there no tasks that can run, the model takes next
timeslot (line 13).  

B. Local optimal resource usage heuristic – PEC

In  DBH  heuristic  technology  is  selected  that  gives  the
shortest  time of  task  realization.  Such strategy  is  optimal
locally  because  doesn't  take  into  consideration  optimal
renewable resource usage. In PEC heuristic (see Pseudocode
2) such aspect is included as some local search method. As
DBH only assigns the first task, PEC heuristic tries to assign
the larger number of tasks in given timeslot (line 11-17). All
analyzed  tasks  are  unassigned  for  schedule  (line  19-23).
Only the best  task sequence for  given timeslot  is  selected
and all included tasks are assigned to final schedule (line 26-
29). 

To reduce the PEC computation complexity some limits
are introduced – the size PEC parameter defines number of
tasks that are analyzed in one sequence. As  size parameter
equals to 1 PEC heuristic works as DBH, the greater value
needs much more CPU working time but returns production
schedule more efficient. 

The PEC heuristic is a type of compromise between semi-
blind greedy DBH and brute force method that analyzes all
possible  permutations  to  get  the  (local)  optimal  schedule.
The  size parameter gives a range of above compromise to
get possible better schedule than build by DBH. 

C. NEH2 as NEH heuristic adaptation

Results of experiments with PEC and DBH heuristic showed
that tasks sequence for effectiveness of algorithms have big
impact on the final schedule. Such observation encourage us
to  find  algorithm  which  can  optimize  this  aspect.  The
classical  NEH  (Nawaz,  Enscore,  Ham)  [14] algorithm  is
considered  as  one  of  the  most  effective  method  of
minimizing  the  makespan  for  Permutation  Flowshop
Scheduling Problem. The main goal in original  NEH is to
find the optimal sequence of operations to get more optimal

PSEUDOCODE 1. DBH PSEUDOCODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

procedure DurationBasedHeuristic ( SORT_CRITERIA ) 

UT = Tasks             // unsigned tasks 

TS = 0;               // timestamp 

RUT_TS = {}             // sequence of ready to run unassigned tasks 

do 

assigned=false 

RUT_TS = getApplicableTasks (UT, TS) 

if ( |RUT_TS| > 0 ) 

RUT_TS:= SORT( RUT_TS, SORT_CRITERIA ); 

Task = RUT.getFirstTask(); 

Tech = getShortestDurationApplicableTechnology( Task, TS ) 

assigned = schedule.assign (Task, Tech, TS) 

if (assigned==true) UT = UT / Task 

else TS++  

while ( |UT|>1 ) 
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schedule.  As evaluation can be applied makespan or other
schedule measure.  In  this paper model RCPSP some NEH
modification must be implemented. 

The  basic  version  of  NEH  heuristic  builds  schedule
partially to find optimal sequence of tasks adding next task
to partial schedule, finally composing the whole schedule. In
our  approach  NEH  is  considered  rather  as  metaheuristics
that proposes sequence of tasks that make schedule optimal
(see Pseudocode 3). The other algorithm schedules task to
build  partial  schedule  –  we  decided  to  use  the  classical
greedy algorithm. The best task sequence is marked as base
task  sequence  (line  16),  that  is  extended  by  next  tasks
probing all positions in the task sequence. Let's analyze the
NEH working illustration. Having task A and task B, NEH

executes  greedyAlgorithm to  find  optimal  tasks  sequence
(AB or  BA).  Let's  assume that  BA is  optimal,  to  extend
sequence BA adding new task C the greedyAlgorithm probes
sequences: CBA, BCA and BAC and so on.

The basic NEH procedure is too time-consuming to apply
in  real  world  application.  The  next  step  of  NEH
implementation  was  to  optimize  its  computational
complexity.  The  most  expensive  operation  is
GreedyAlgorithm and  this  factor  should  be  reduced.  We
observed that  GreedyAlgorithm builds each time the whole
schedule which is a huge extravagance. The next step was to
use partially build schedule and reverse task sequence build
strategy. 

PSEUDOCODE 2. PEC PSEUDOCODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

procedure PEC ( SIZE, SORT_CRITERIA ) 

UT = Tasks         // unsigned tasks 

TS = 0;            // timestamp 

RUT_TS = {}         // sequence of possible to run unassigned Tasks 

do 

RUT_TS = getApplicableTasks (UT, TS) 

if ( |RUT_TS| > 0 ) 

RUT_TS:= SORT( RUT_TS, SORT_CRITERIA )

RUT_TS:= getFirstNElements( RUT_TS, SIZE)

AssignedTasksMax = 0; 

for all P permutation RUT_TS 

numberOfAssignedTasks = 0 

for each T_j task RUT_TS 

   Task = RUT.getFirstTask; 

   Tech = getShortDurAppTechn( Task, TS ) 

   assigned = schedule.assign (Task, Tech, TS)  

   if (assigned)  numberOfAssignedTasks++ 

for end 

if ( numberOfAssignedTasks > AssignedTasksMax )  

AssignedTasksMax = numberOfAssignedTasks 

BestTaskSequence = P 

schedule.unassignTasks( RUT_TS ) 

end for 

 

for each Task from BestTaskSequence 

Tech = getShortDurnApplTech( Task, TS ) 

assigned = schedule.assign (Task, Tech, TS) 

if (assigned) UT = UT / Tech 

end for 

end if   

TS++; 

while ( |UT| > 0)
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For example, in basic NEH for three task (A, B and C, let
assume  that  BA  sequence  is  an  optimal)  the  analyzed
sequences  are:  CBA,  BCA and BAC.  In  reverse  order  in
NEH2 we build BA schedule  as  base,  then BAC. In  next
sequence  BCA  from  schedule  is  removed  task  A,  then
inserted  C  and  A.  In  basic  NEH  to  examine  three  task
sequence 9 task is scheduled, in reduced version (NEH2, see
Pseudocode 4) only 6 tasks is (re)scheduled.

The main modification of  NEH2 heuristic is  to remove
from the initial sequence and reschedule only tasks that are
next  inserted  (see  line  11-14).  To  evaluate  the  partial
schedule is build by  GreedyAlgorithm (line 15) to examine
the sequence of tasks.

The  NEH2  computation  complexity  reduction  makes
possible practical application of heuristic in simpler cases.
Such NEH2 heuristic has been examined. Results of test are
presented in the next section. 

IV. EXPERIMENTS AND RESULTS 

The  t-RCPSP  model  is  specialized  to  MP2  company
requirements.  All  proposed  methods  in  verification
procedure need an empirical data. We analyzed real data and
prepared  dataset  that  is  complete  for  the domain:  various
number of tasks, machines, devices and technologies. Such
dataset  allows  us  to  do  research  and  compare  results  of
proposed methods. 

All  experiments  are  implemented  in  standard  C/C++.
Machine for test was equipped with Intel Core2 Duo 2.53

GHz, 4GB RAM and Windows7 OS. For each experiment,
only one Core was used.

A. Experiments' set-up and dataset

Prepared  dataset  MP2dataset1 consists  of  seven  various
types of configurations – summary of dataset is presented in
Table1. There are three types of simple settings (10_3x3_10,
50_10x20_40 and 75_10x20_40) that involve small number

1 MP2dataset is published in http://imopse.ii.pwr.edu.pl/

PSEUDOCODE 3. NEH2 PSEUDOCODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

procedure NEH2 (SORT_CRITERIA) 

UT = Tasks       // unsigned tasks 

BestTS = <>       // best sequence according to MAKESPAN 

CurrentTS = <>     // current (candidate) tasks sequence 

BaseTS = <>       // base task sequence 

UT = SORT( UT, SORT_CRITERIA ) 

BestTS = CurrentTS = UT.getFirstTask() 

for each Task from UT 

CurrentTS = BaseTS  

for each position i=|CurrentTS| insertion Task into CurrentTS 

for each position CurrentTS to i

                   rTask = CurrentTS.removeTask(i)

                   ReTasks.addTask(rTask) 

            end for

            value = GreedyAlgorithm(CurrentTS, ReTasks, Task) 

if (value < bestValue or i==|CurrentTS|) 

bestValue = value 

BestTS = CurrentTS + Task + ReTasks 

end if  

BaseTS = BestTS 

end for 

TABLE I.

SUMMARY OF TESTING DATASET MP2DATASET

task
s 

machines devices technol
ogies 

10_3x3_10 10 3 3 10

50_10x20_40 50 10 20 40

75_10x20_40 75 10 20 40

100_30x30_100 100 30 30 100

200_30x30_100 200 30 30 100

300_30x100_500 300 30 100 500

500_30x45_100 500 30 45 100

Legend: tasks _ machines x devices _ technologies
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of  tasks  (respectively  10  or  50)  and  small  number  of
devices,  less  than  20.  Two  configurations  have  medium
difficulty  (100_30x30_100  and  200_30x30_100)  where
number of tasks is larger (100 or 200) and there is increased
number  of  possible  technologies  to  100.  Additionally,  the
configuration 300_30x100_500 is difficult because of large
number of tasks and extremely a lot of technologies (500)
and devices  (100).  The last  configuration  consists  of  500
tasks, which is the most difficult for methods testing.

To get dataset more general,  for each configuration 100
instances  were  generated.  The  data  generator  constructs
instances  randomly  according  to  the  specific  domain
requirements and configuration. Analyzing the real data we
assumed some additional dataset parameters:  task deadline
ddt in  <10,50> defined  in discrete  timeslots,  the maximal
number  of  generated  products  by  technology  is  5.  Each
technology can produce no more that  2 types  of  products
and use no more than 4 types of materials. Each product can

be  generated  by  2  or  more  technologies.  The  longest
technology duration not exceeds 10 timeslots. 

B. Experiments results

The main goal of provided experiments was to investigate
how presented  methods  are  effective  in  solving  t-RCPSP.
The  method's  results  are  described  by  makespan  and
averaged latency of all tasks in given schedule.  The other
comparative aspect was computational CPU time needed by
methods  to  obtain  results.  All  methods  were  investigated
using MP2dataset and results were averaged to compare to
others  (see  Table  II).  Research  consists  all  examined
methods DBH, NEH2 and PEC using one main parameter,
sorting criteria: by task deadline ascending, descending and
random. The PEC uses extra parameter: size of task list.

Experiments results presented in Table II give information
that all developed heuristics are useful in solving t-RCPSP.
In 4/7 cases the minimal makespan provided DBH, however
NEH2 in such cases gives slightly worse results and in 3/5

TABLE II.

AVERAGED SCHEDULE MAKESPAN (AND STANDARD DEVIATION) FOR MP2DATASET

Tasks_mach.

device_techn

10_3

x3_10

50_10

x20_40

75_10

x20_40

100_30

x30_100

200_30

x30_100

300_30

x100_500

500_30

x45_100

DBH asc 185,53

41,93

189,43

45,52

252,65

55,36

190,21

45,13

336,88

73,93

214,72

22,16

899,0

231,76

DBH dsc 184,9

41,7

183,9

48,3

252,5

61,2

190,4

41,4

333,4

69,9

214,7

18,5

880,0

236,4

DBH rand 191,31

42

192,84

48

253,57

58

194,12

45,9

338,48

72,95

217,07

20,04

920,0

250

PEC(3) asc 190,6

43,0

189,4

43,9

250,1

53,5

196,1

48,1

345,6

68,0

271,5

18,9

915,9

251,5

PEC(3) dsc 189,6

41,9

185,0

47,1

254,8

60,1

192,2

41,9

342,1

73,3

273,3

17,9

906,4

229,1

PEC(3) rand 193,0

43

189,44

46

256,87

54

196,33

44

339,9

70

257,63

19,6

927,51

242

PEC(4) asc 187,28

40

187,65

44

250,56

58

192,43

45

342,08

73

259,6

19,87

926,0

245

PEC(4) dsc 187,1

43,9

185,55

49,14

251,21

59,04

191,45

39,21

340,80

70,05

260,83

17,74

894,6

232,42

PEC(5) asc 187,04

39,04

190,2

41

251,78

59

192,14

49,9

344,57

71,93

249,11

19,29

920,65

242

PEC(5) dsc 190,02

41,85

185,78

48,36

254,4

61

191,0

40,8

339,09

71,67

245,78

17,53

896,9

226

NEH2 asc 185,5

41,9

189,3

45,7

252,7

55,2

189,7
46,1

336,8

73,0

time limit

exceeded

time limit

exceeded

NEH2 dsc 185,17

41,29

183,89

48,33

252,72

61,12

189,38

41,28

331,84

69,3

time limit

exceeded

time limit

exceeded
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TABLE III.

AVERAGED SCHEDULE LATENCY (AND STANDARD DEVIATION) FOR MP2DATASET

Tasks_mach.

device_techn

10_3

x3_10

50_10

x20_40

75_10

x20_40

100_30

x30_100

200_30

x30_100

300_30

x100_500

500_30

x45_100

DBH asc 0,30

0,52

0,53

0,89

2,03

2,32

0,43

0,79

3,45

2,57

0,12

0,15

44,125

19,70

DBH dsc 2,39

1,60

3,65

3,19

8,66

4,37

2,57

2,05

10,48

4,06

7,76

2,00

74,31

23,53

DBH rand 1,6

1,37

2,2

2,25

5,83

3,83

1,62

1,42

7,63

3,59

4,70

1,57

63,32

19,9

PEC(3) asc 0,29

0,5

0,42

0,9

2,05

2,27

0,52

1,03

3,88

2,59

0,10

0,15

49,64

21,10

PEC(3) dsc 2,72

1,59

3,80

3,26

9,13

4,56

2,82

2,07

12,13

4,2

21,97

3,45

96,07

20,85

PEC(3) rand 1,73

1,4

2,58

2,82

5,93

3,47

1,82

1,62

8,1

3,5

9,0

2,2

68,12

19

PEC(4) asc 0,26

0,44

0,47

0,92

2,02

2,75

0,5

1,0

3,72

2,72

0,13

0,19

48,33

20,65

PEC(4) dsc 2,53

1,63

3,94

4,53

8,94

4,53

2,64

2,00

11,64

4,44

18,65

3,2

90,27

21,81

PEC(5) asc 0,28

0,53

0,40

0,74

2,00

2,57

0,47

0,9

3,52

2,6

0,14

0,17

47,34

19,57

PEC(5) dsc 2,6

1,6

3,85

3,22

9,05

4,43

2,63

2,03

11,13

4,22

15,34

2,94

87,10

21,0

NEH2 asc 0,30

0,52

0,52

0,89

2,05

2,33

0,42

0,76

3,47

2,6

time limit

exceeded

time limit

exceeded

NEH2 dsc 2,39

1,59

3,65

3,19

8,66

4,35

2,55

2,04

10,5

4,11

time limit

exceeded

time limit

exceeded

TABLE IV.

AVERAGED COMPUTATIONAL TIME [S] FOR MP2DATASET

Tasks_mach.

device_techn

10_3

x3_10

50_10

x20_40

75_10

x20_40

100_30

x30_100

200_30

x30_100

300_30

x100_500

500_30

x45_100

DBH 0,14 0,05 0,12 0,13 0,57 4,8 7,13

PEC(3) 0,11 0,05 0,12 0,08 0,39 2,58 4,11

PEC(4) 0,10 0,05 0,12 0,1 0,41 2,95 4,71

PEC(5) 0,24 0,11 0,27 0,20 0,87 6,2 9,3

NEH2 5,6 1,2 3,9 5,6 49,66 time limit

exceeded

time limit

exceeded
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cases returns solutions that compete with others. The NEH2
in more complicated cases  (300 and  500 tasks)  execution
time exceeded 1 minutes CPU time and results are not taken
into consideration.  PEC only in  one case returns  the best
solution  (75  tasks,  PEC(3)  asc).  Increasing  the  PEC  size
parameter  value  in  most  cases  reduces  makespan,  e.g.
comparing results of PEC(3) and PEC(4) using descending
task deadline order. To summary results of all methods for
all  instances:  DBH dsc needs average 319,97  timeslots to
execute all 700 instances, DBH asc needs 324,06 timeslots
and PEC(5)  dsc  has  the third  place:  328,9  timeslots.  The
longest  averaged  makespan  schedule  (equals  to  337
timeslots)  achieved  PEC(3)  heuristic  with  ascending  task
order.  Analysis  of  the results  presented  into  Table  II can
draw the conclusion that descending sorting criteria of tasks
gives  better  results  in  the  minimization  of  schedule
makespan. Random tasks order makes solution the worst in
all  investigated  cases.  All  methods  are  deterministic,  the
averaged  results  are  computed  on  100  instances  of  each
configuration. In case of random tasks order, results for each
instances are repeated 10 times and then averaged.

Results  presented  in  Table  III describe  how  generated
schedules are late using as measure the average latency of
all  tasks  in  the  schedule.  The  gained  results  proved  our
intuition that the best results give ascending sorting criteria
of  tasks  –  task  with  the  shorter  deadline  is  taken  into
consideration earlier. All methods showed that are effective,
but it is rather impossible to point the best one. In 2/7 cases
DBH gives the best solution, PEC in 4/7 cases (using  size
parameter equals to 3, 4 or 5). Results gained by NEH2 are
not qualitative. Moreover, NEH2 in one case returns the best
solution (100 tasks configuration). Comparing the averaged
latency  for  700  instances  (whole  MP2dataset)  the  best
method gives 7,28 latency (DBH asc), the second one 7,73
(PEC(5)  asc)  and  third one 7,91  (PEC(4) asc).  The worst
averaged latency achieved PEC(3) dsc: 21,23.

Comparing  methods'  working  time (see  Table  IV)  it  is
worth mentioning that methods are fast and effective.  The
provided MP2dataset of 700 instances gives an opportunity
to compare methods results and recommend them to real-
world applications. Increasing size of the problem, methods
are practical as computational time not exceeds 10 seconds.
Such short computational time makes possible to run several
methods to get set of schedules and give a human operator a
real choice.

The  computation  complexity  of  presented  heuristics  is
O(k2) for  DBH  and  O(size!k2) for  PEC.  The  NEH2
complexity is larger because core of NEH2 is  O(k2)  but in
each  step  uses  greedyAlgorithm that  is  O(k),  what  gives
finally NEH2 O(k3). The result is that the computational time
of  NEH2  increases  so  dramatically  that  needed  time  is
unacceptable  in  construction  process  of  schedules  that
consist of more that 200 tasks. In such cases other methods
are  more  effective  and  less  demanding  for  CPU working
time. 

V. SUMMARY

Standard  RCPSP,  in  presented  work,  was  extended  by
technologies  to  solve  practical  problem  in  Plastic  and
Rubber  Processing  Industry  –  we  defined  t-RCPSP. Such
model  makes  possible,  in  simply  and  intuitive  way,  a

formalization of real-world problem. Each technology links
non-renewable and renewable resources, uses various types
of ingredients in production. Technologies that produce the
same products may use resources in different way, more or
less  effectively.  It  can  case  be  other  production  time
consumption,  too.  The  technology-driven  RCPSP  model
gives a lot of possibilities to build effective heuristics. We
proposed three of them: NEH2 adaptation,  locally optimal
resource  usage  PEC  and  duration  driven  heuristic  DBH.
Analyzing  a  real  production  schedule  instances  we
implemented  a  data  generator  to  get  the  MP2dataset
(published in Internet) that includes 700 instances in 7 basic
problem configurations  to  empirically  prove  efficiency  of
proposed  methods.  Results  of  experiments  showed  that
proposed  methods  can  be  used  as  effective  tool  for
scheduling in production company. Moreover, the next step
was  done:  all  presented  methods  were  developed  as
automated  scheduling  module  in  MP2 company computer
system. 

A. Further research

As the practical aspect of further research is the definition of
more  domain-based  measures  of  final  schedule  and  used
technologies.  In  presented  paper,  only  the  makespan  and
latency are analyzed as the measure.  However, in practice
such technology can be more energy consuming, may need
more labor (including human work) or can be less effective
as a scrap measure is considered. The existence of several
measures  of  schedule  leads  to  the  situation  when
multiobjective optimisation should be considered. 

Investigating  the  comparison  of  presented  methods  we
can see some possible directions of further work. The most
promising  is  using  metaheuristics  (such  as  Evolutionary
Algorithms or Tabu Search) to build schedule near optimal
in  cost/time  criterion.  Metaheuristics  usage  needs  more
computational  time  than  simple  heuristic  –  but  our
experience  (e.g.  Error:  Reference  source  not  foundError:
Reference  source  not  found)  shows  that  results  are
(sub)optimal.  Additionally,  metaheuristics  are  using
evaluation function (as the superposition of several schedule
measures)  can  provide  schedule  dedicated  to  given  user.
Especially  Tabu  Search  [12][15][16][20] application  to
RCPSP is very strong trend in literature. 
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