
 

 

 

 

Abstract—The head movement based control methods in the 

3D graphic applications requires the real-time face position 

estimation. Therefore, the tracking method at the high speed 

and with the minimal latency is needed. This is especially hard 

to achieve when the face is tracked with the use of the high 

resolution video image on mobile devices. In the article, we 

present several methods for an acceleration of the face position 

estimation method based on the fuzzy skin color classifier and 

other color-based face tracking methods. The acceleration is 

achieved through a highly parallel GPU computation, the 

precalculation of the classifier weights and through the 

combined computations on the GPU and the CPU. The achieved 

computation time is independent of the used skin color 

classification method, allowing for use of very complex 

classifiers. The presented methods provides the robust head 

position tracking on the high resolution video image of 

1920x1080 pixels, at 300 frames per second, on the mobile 

device with a low computing power. 

I. INTRODUCTION 

HE head position tracking can be used as 

a multiplatform control method on desktop computers, 

laptops, game consoles and hand-held mobile devices. In the 

latter case it is especially important as the available 

touch-based control methods are not suitable for many 

interactive applications, due to the low precision and the 

fingers obscuring the screen. Moreover, when we are using 

the hand-held mobile device, the change of a relative head 

position does not require the actual movement of the head 

and can be changed by the rotation of the device.  

The face tracking can be used, inter alia, for three-

dimensional imaging technique called the Head-Coupled 

Perspective (HCP abbreviated) [1][2][3][9] which gives the 

impression of the depth of the presented 3D scene by 

dynamically linking the perspective of the rendered scene 

with the current head position. The rough head tracking in 

three degrees of freedom is sufficient for this imaging 

technique. For the depth sensation more important than the 

face tracking accuracy are its smoothness (i.e. the lack of the 

jittering and the unnoticeable difference between two 

consecutive estimated head positions), a high frequency of 

tracking and its low latency (i.e. short time between the 

actual head movement and the application response). These 

requirements are difficult to achieve in the case of the face 

tracking on the high resolution video image. Also it must be 

taken into account, that the head tracking is just one of the 

costly calculations that the interactive application needs to 

perform in a real time. On the mobile devices the additional 

limitation is their low computing power. 

 

On the mobile devices it is possible to estimate the 

relative position of the user’s face on the basis of other 

internal device sensors like the accelerometer or the 

gyroscope [6][7]. The rotation and the orientation of the 

device can be determined based on the readings from these 

sensors and therefore the head position relative to the screen 

can be estimated. The information from these sensors is 

delivered quickly (with frequency of 200 Hz on Android 

devices) and do not require time consuming computations 

[19]. Moreover, the tracking range of the sensors is not 

limited by the camera field of view. The drawback of the 

sensor based tracking is that their readings are noisy, what is 

especially noticeable in the HCP technique where a slight 

head movement results in the big displacement of the far 

background of the scene. Filtering of the sensor signals takes 

into account earlier sensor readings and generates the 

additional delay in the application response to the head 

movement. Yet, it may be unnoticeable with use of the 

Extended Kalman Filter [19]. Still, sensors like 

accelerometer or gyroscope are not able to notice the actual 

movement of the head itself, omission of which can destroy 

the 3D impression. Therefore, the additional use of the video 

based head tracking can highly improve the quality of the 

sensor based tracking [6][7]. Unfortunately, the face tracking 

methods chosen in these articles, are too slow. The tracking 

is several times slower than the sensors input, so its usage is 

limited to the occasional sensor reading correction. The use 

of a very rapid head tracking method may provide the actual 

head movement tracking, as well as the signal noise 

reduction without the delay generation. 

The article presents the face tracking method that is able 

to find face coordinates in a few milliseconds and is based 

on the fuzzy skin color classifier first proposed in [1]. The 

low computational time is achieved through the parallel 

calculations on the GPU and the CPU and through the 

precalculation of all possible color weights assigned by the 

fuzzy classifier.   

In the next section the existing rapid head tracking method 

are discussed. The third section presents the face position 
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estimation method with use of the fuzzy skin color 

segmentation. In the fourth section we describe precisely the 

methods for accelerating the color-based head position 

tracking. The fifth section presents the test results of the 

proposed solutions and the sixth section contains the 

conclusions and considered future work. 

II. RELATED WORKS 

Fast head position finding in the camera image is possible 

with various head tracking and detection methods. They can 

be based, among others, on the background subtraction 

[1][2][4], template matching [2], Haar-like feature based 

learning [16][17][18] or the Local Binary Pattern based 

learning [9][15]. 

In [2], for the head tracking the template matching method 

is used, which compares the low resolution face image with 

the input frame fragments. To reduce the search space, the 

background subtraction is performed to reject still, 

unchanged pixels. This method of the face tracking proved to 

be rapid, but the used subtraction is sensitive to the 

illumination changes, which is frequent in the natural light. It  

is not applicable on the mobile devices in which camera is 

not still and moves with the device. Additionally, the 

template matching method is sensitive to the head tilting, a 

natural movement when controlling the application with head 

movement. 

For the fast head detection in the camera image, the most 

popular method is based on the Haar-like features, proposed 

by Viola and Jones [18]. Method is based on the detection of 

simple rectangular features, used then for the AdaBoost 

learning algorithm. With the use of the Integral Image, 

wherein each pixel represents the sum of values of all pixels 

from the input image above and to the left of it, it is possible 

to quickly evaluate the features on the given position and 

scale. Unfortunately the calculation of the Integral Image is 

time consuming and requires 2*N operations for  the image 

of N pixels. The complexity of the feature calculations is of 

O(M*N) for features of M scales. In [16] the acceleration of 

this method is proposed, with use of the GPU, but still it 

reaches only 19 fps for an image of 1280x960 pixels. In [17] 

a head tracking method based on Haar-like feature detection 

is proposed, working at theoretical 500 fps. The search of the 

entire frame of 512x512 pixels can be executed at 200 fps, 

on a rather powerful GPU (934 GFLOPS). The search 

frequency of the high-resolution image of 1920x1080 pixels, 

on the hand-held device would not exceed 20fps. 

A faster tracking method, also based on the AdaBoost 

learning, but using the Local Binary Pattern is proposed in 

[9]. The LBP method considers the surroundings of the 

pixels. Thanks to the calculation on GPU and CPU [15], for 

a picture of 1024x1024 pixels, method can process at 10fps, 

but on the mobile device of very low computational power. 

On current hand-held devices even high-resolution image 

could be processed at about 25 fps. 

Due to the low computational complexity and the 

possibility of use on the mobile devices, the face tracking 

methods based on the skin color classification are 

important[1][4][5][14]. Such a classifiers extract from the 

RGB space (or other color space) a subspace containing the 

RGB values corresponding to the possible shades of the skin 

color. Fuzzy classifiers that determines the pixel degree of 

membership may provide a smoother tracking with the same 

resolution image [1]. Multiplatform version of the method 

described in [1] is presented in Section III. 

Despite the linear complexity of the skin color based 

tracking method, analysis of high resolution images still can 

be very time consuming, especially on hand-held mobile 

devices. In this article, we proposed accelerating methods, 

enabling face tracking on frame of 1920x1080 pixels at 

about 300 fps, even on the devices with a low processing 

power. 

III. THE FUZZY SKIN-COLOR CLASSIFIER 

To maintain the multiplatform usability of the fuzzy head 

tracking method, first proposed in [1], and to allow its usage 

on hand-held mobile devices, the omission of the 

background subtraction is necessary. It is impossible to use 

due to the continuous motion of the hand-held device and 

hence its camera.  

In the proposed multiplatform head tracking method, the 

user’s head position is determined based on the degree of 

membership μS(p) of all the pixels to the fuzzy skin-color 

pixels multiset S:  

 { }RGBS XpppS ∈= :)(,µ  (1) 

 ( )( )DBBGGRRS ffpfpfpp +⋅+⋅+⋅= ,1min,0max)(µ (2)  

Where:  

XRGB = {<r,g,b>:r,g,b∈ [0,255]} – the multiset of all the 

image pixels. 

p=<pR ,pG ,pB>  –  the components  R, G, B of the pixel p. 

f=<fR ,fG ,fB, fD> – the vector of the color filter. 

The vector of the color filter, specified in the classifier 

calibration, defines a plane in the RGB space. This plane 

separates most of the skin color pixels from the background 

pixels that we are trying to discard. The filter vector 

specifies also the “positive” side of that plane and tells us 

which of the two subspaces contains skin-color pixels. The 

fuzziness of the multiset S provides a gradient boundary 

between the subspaces. The further the pixel color resides 

from the plane on its “positive” side, the higher is its degree 

of membership. 

The usage of the RGB space instead of other color model, 

in which the skin colors are easier to distinguish and isolate, 

is motivated by the additional computation time needed to 

perform the transformation from the original RGB image 

provided by the camera to the more preferable color model. 
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The usage of just two components (e. g. H and S in HSV 

model) does not compensate this time in the processing. As 

the skin tone is separable in the RGB space, the 

computational complexity remains the major factor in 

choosing the color model.  

To determine the position of the face on the image and its 

distance from the camera, it is necessary to calculate the 

cardinality of the S multiset, defined as the sum of the 

degrees of membership of all N image pixels: 

 ∑ =
=

N

i iS pS
1

)(µ  (3) 

We are using all the N pixels of the image as the 

skin-color face pixels, because the background pixels with 

the degrees of membership equal 0 does not affect the 

results. This degrees (Eq. 2) are also the weights of the 

pixels used to determine the coordinates CX and CY of the 

centroid C of all the skin-color pixels, calculated as the ratio 

of the weighted sum of the image pixel coordinates to the 

cardinality of multiset S:  

 ∑ =
⋅=

N

i iiSX xp
S

C
1
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1 µ  (4a) 
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C
1
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Where: 

 ii yx ,  – coordinates of pixel pi 

The found centroid coordinates are considered the 

coordinates of the head center in the image and are used to 

determine face position in the plane parallel to the screen 

and the camera. The ratio of the cardinality of the S multiset 

to the cardinality of multiset of all the image pixels can be 

used as the A measure of the face area in the image and used 

to calculate the head distance from the screen:  

 

RGBX

S
A =  (5) 

What is, according to (Eq. 3): 

 ∑ =
=

N

i iS p
N

A
1
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The algorithm of finding the face position on the camera 

image is shown in the Fig. 1. The non-modified algorithm is 

later referred to as “Version CPU 1” in comparison with the 

accelerated variants of the algorithm.  

The filter f (Eq. 2), in contrast to most of the skin-color 

classifier methods, is not designed to match all colors that 

may belong to the skin of any person, of any race, skin tone, 

in all possible lightning condition. The primary objective of 

the filter f is to extract the user face from the current 

environment visible in the camera. It requires determining 

the optimal values of the filter parameters for each 

application usage. 

 

Fig.  1 The algorithm of finding the face position on the camera image 

(pseudocode). 

 

Manual finding of the optimal values may be hard task for 

the user, and certainly it is uncomfortable and time-

consuming. Therefore, in [8] we proposed the automatic 

method of finding the optimal values of skin-color filter. The 

method of automatic parameters calculation is based on the 

analysis of the image with arbitrarily marked area of the face. 

The user moves the head to place it in the oval-shaped mask 

visible in the preview of the camera. Once approved, several 

consecutive frames of the video image are capture for the 

analysis. Pixels of the obtained images are then use as factors 

in the objective functions G(f) which maximum is searched. 

To accelerate the computation of the optimum parameters 

the clustering of the input data transformed to the RGB space 

is performed with fast grid-based clustering method 

proposed in [8] where the entire process is described in 

detail. 

The automatic parameters calculation allows for extracting 

most of the face pixels even from a difficult background with 

colors close to the skin tone or in the poor lightning. The 

automatically calculated parameters provide the method 

stability, ensuring that the |S| value in the Equations (4a) and 

(4b) does not tend to zero. Still, in some particularly difficult 

conditions the method does not filter out all of the 

background pixels, assigning a small part of these pixels with 

high weights. In practice, the tracking is then still effective. 

Although the unfiltered pixels “attract” the found centroid to 

their center of gravity, reducing the amplitude of the 

estimated head movement determined by the tracking, still 

the direction of the motion is preserved and its speed is 

proportional to the actual speed of the head movement. As a 

result, the perspective of the virtual scene can still be 

coupled with the head movements, resulting in an immersive 

sense of depth in the Head-Coupled Perspective technique or 

effective control in other applications. Therefore, although 

the method is error-prone in cases when additional 

skin-colored body parts (e.g. neck or chest) or other faces are 

visible to the camera, the method still provides sufficient 

results for proposed applications. Especially on the 

hand-held mobile devices, the user head is always the biggest 

skin-colored object visible to the camera and cannot be 

dominated by other objects. When the head leaves the field 

of view, due to the device rotation, it may be also recorded 

by other internal sensors which can then substitute the head 

tracking.  

sumOfWeights = 0; CX = 0; CY = 0; 

For each p in XRGB 

{ 

  weight = max(0, min(1, pR · fR + pG · fG + pB · fB + fD)); 

  CX += weight * p.xCoordinate; 

  CY += weight * p.yCoordinate; 

  sumOfWeights += weight; 

}  

CX = CX / sumOfWeights; 

CY = CY / sumOfWeights; 

A = sumOfWeights / N; 
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To minimalize the resulting errors of classification in the 

particularly difficult conditions, we can utilize more 

computationally complex skin-color models, like described 

in [14] Gaussian model or used in [10] elliptical Gaussian 

chrominance probability density function. We can also 

transform pixel colors to another color space, e.g. HSV, 

normalized RGB or CIE-XYZ (with all components divided 

by the sum of all components), or proposed in [10] the STV 

space. The possible skin colors in these spaces are easier to 

separate [10] and the impact of the lightning on the 

classification is reduced. Unfortunately, both methods of 

improvement increase the computational cost of calculating 

the pixels weights, almost proportionally increasing the 

computation time, which actually need to be reduced. 

Therefore, besides the direct computation time reduction, it 

is desirable to decouple the head tracking cost from the 

complexity of the used skin color classifier. 

IV. ACCELERATING THE HEAD POSITION TRACKING 

The computational cost of the presented above head 

tracking method is of the order O(N), where N is the number 

of image pixels. The method requires a few operations per 

pixel, and each is processed once and individually. Although 

the linear computation cost seems to be low, for high 

resolution video image of 1920 x 1080 pixels the processing 

of the full frame in the real time is hard to achieve, even 

without the additional CPU load.  

The accelerating methods that decrease the problem size, 

reduce at the same the tracking quality. The downscaling of 

the input image [15][16] requires additional computation, 

decreases the number of input data and reduces the angular 

resolution of the tracking. Searching for the face only in the 

neighborhood of the previously found head position 

[9][16][17] makes the tracking sensitive to the fast motion of 

the head, providing just a slight acceleration, due to the large 

area occupied by the face on the image of the narrow-angle 

camera. 

The described below accelerating methods reduce the 

computational cost of the head tracking without decreasing 

the number of the analyzed pixels, to maintain high quality 

of the tracking. When the lower quality of the tracking is 

allowed, these methods can be successfully combined with 

the problem size reduction for the further tracking 

acceleration.  

A. The Head Tracking Acceleration on the GPU 

The acceleration of the head tracking can be achieved by 

transferring the calculations to the graphics processor unit, 

which allow for the parallel analysis of many pixels. Besides 

the possible computation time reduction, this approach may 

additionally decrease the energy usage of the mobile devices 

during the frame processing [9]. The use of the Nvidia® 

CUDA® framework allow for using the full capabilities of 

graphics processors compatible with this architecture. Such 

GPUs are widely installed on the laptop computers and they 

are recently available on the hand-held mobile devices. The 

tests of the methods described below are performed on the 

laptop computer equipped with the Intel® Core™ i5-2450M 

mobile processor and the Nvidia® GeForce® GT 630M 

mobile GPU. 

As the classification of the pixel colors in our method is 

performed for each pixel individually, the acceleration is  

seemingly easy to achieve by performing the computations 

on the graphics card. The parallelization of the calculation of 

the pixels degrees of membership to the skin-color multiset S 

is trivial on GPU. Each thread must calculate the weight of 

one pixel, according to Equation 2. A part of the kernel (i.e. 

a function in CUDA executed in parallel by multiple threads 

on GPU) responsible for the pixels weights calculation is as 

follows: 

 
A constant delay is generated by the transfer of the image 

to the GPU memory. For an image of 1920x1080 pixels, the 

transfer takes about 2 milliseconds. 

For the further analysis, the calculation of the head 

position is split into two parts: 

1) Calculating the degrees of membership from Eq. 2. 

2) Finding the centroid coordinates (Eq. 4) and the sum of 

all the pixel weights need in Eq. 6. 

On the CPU, the second part of the calculation represents 

only a small fraction of all the computations. Conversely, on 

the GPU the computation of the second part can be several 

times longer than the first part. The time of 2) on the 

graphics processor depends largely on the used algorithm. 

Below, different methods of accelerating computation on 

GPU are compared. 

1) Version GPU 1 – Atomic adding to one global value 

In the naive approach to calculate the coordinates of the 

centroid, all the threads can add its calculated values directly 

to the output sums, using the atomic add function: 

 
Atomic functions in CUDA allows multiple threads to 

modify common data, with the guarantee of receiving the 

correct result, which means that every thread perform the 

operation exactly once, without data loss from the 

simultaneous access to the output value. 

Unfortunately, in this approach the summing is performed 

sequentially, as only one thread at a time increases the output 

sum. Moreover this variant requires a very frequent access to 

the very slow global memory. It is very inefficient approach, 

which do not use the full power of the GPU and  prolongs 

the calculation compared to the CPU computing.   

[…] 

atomicAdd(x,weight*(index%width));   

atomicAdd(y,weight*(index/width));  

atomicAdd(w,weight);  

 

uint index=threadIdx.x + blockIdx.x*blockDim.x; 

Pixel p=frame[index];  

float weight=f[0]*p.r + f[1]*p.g + f[2]*p.b+ f[3]; 

if(weight>0.0f){ if(weight>1.0f)weight=1.0f; } 

else weight=0.0f; 

[…] 
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2) Version GPU 2 – Atomic adding to the shared memory 

The acceleration can be obtained when first the thread 

values are atomically added to local sums of the blocks in the 

faster shared memory, and then only this local sums are 

atomically added to the global output values, by one thread 

per block: 

 
In this approach a part of the internal aggregations is 

executed in parallel between several thread blocks. 

Therefore this variant is more than three times faster than the 

Version GPU 1. 

3) Version GPU 3 –  Parallel aggregation with divide and 

conquer  

Although in Version GPU 2 part of the summation is 

performed in parallel between blocks, still only one thread 

per block can add its value to the local sum at the same time. 

To execute more parallel addition inside a thread block it is 

possible to use the divide and conquer method, decreasing 

the complexity order of the summation for each N-thread 

block from O(N) to O(logN). In this case, half of the block 

threads must sum up pairs of values calculated by the 

consecutive threads. In the next steps, the sums from 

previous step are summed in pairs until there is only one 

final sum of all the block values (Fig. 2). 

 

Fig.  2 The parallel aggregation in block 

The kernel realizing directly this approach is as follows: 

 
This approach decrease the computational time by 40% 

compared with the Version GPU 2. The acceleration is less 

than expected due to the highly divergent branching of the 

code in the condition (0==threadIdx.x%(s<<1)), what is 

discussed by Harris [11] on an analogous example.  

4) Version GPU 4 –  Without divergent branching  

Further acceleration can then be obtain by alternatively 

engaged threads, as shown in Fig. 3. 

 

Fig.  3 The parallel aggregation without the divergent branching and 

bank conflicts 

This approach omits the problem of divergent branching, 

without additional shared memory bank conflicts. Analogous 

solution for similar problem was used in [13]. 

The internal aggregation in this version looks as follows: 

__shared__ float tempX[THREADS_PER_BLOCK]; 

__shared__ float tempY[THREADS_PER_BLOCK]; 

__shared__ float tempW[THREADS_PER_BLOCK]; 

[…] 

uint s,temp; 

for(s=1;s<THREADS_PER_BLOCK;s<<=1) 

{ 

 if(0==threadIdx.x%(s<<1)) 

 { 

  __syncthreads(); 

  temp=threadIdx.x+s; 

  tempX[threadIdx.x]+=tempX[temp]; 

  tempY[threadIdx.x]+=tempY[temp]; 

  tempW[threadIdx.x]+=tempW[temp]; 

 } 

}  

if( 0 == threadIdx.x )  

{ 

 atomicAdd(x,tempX[0]); 

 atomicAdd(y,tempY[0]); 

 atomicAdd(w,tempW[0]); 

} 

 

__shared__ float sX,sY,sW; 

sX=0.0f; 

sY=0.0f; 

sW=0.0f; 

[…]  

atomicAdd(&sX,weight*(index%width)); 

atomicAdd(&sY,weight*(index/width)); 

atomicAdd(&sW,weight); 

  

__syncthreads(); 

  

if( 0 == threadIdx.x )  

{ 

 atomicAdd(x,sX); 

 atomicAdd(y,sY); 

 atomicAdd(w,sW); 

} 
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This variant is 2.5 times faster than Version GPU 3. 

5) Version GPU 5 – Multiple aggregation per thread 

In the Version GPU 4 during the iterative aggregation an 

average of ¾ of the block threads is idle, from the half in the 

first iteration, to all but one in the final aggregation. At the 

same time, due to the limit of thread number per block, we 

receive a large number of blocks. The possible solution, 

proposed by Harris for similar problem [11], is to use 

threads to iteratively add up a greater number of values. In 

our case it requires also the calculation of more pixel weights 

(i. e. degrees of membership to skin color multiset) per 

thread. Such a solution can significantly better harness the 

GPU computational power. Before we get to the inter-thread 

aggregation, all the threads are engaged in a long non-

synchronized work. 

After this modification, kernel is as follows: 

 
Due to the reduced number of blocks, this variant is 2.5 

times faster than Version GPU 4.  

6) Version GPU 6 – Double memory access 

Further acceleration by about 10% can be obtained by 

adding two values per iteration and grouping operations. It is 

the result of the GPU’s memory access, where reading two 

consecutive 4-bytes words has a similar cost to reading just 

one word [12]. The number of blocks is halved: 

__shared__ float tempX[THREADS_PER_BLOCK]; 

__shared__ float tempY[THREADS_PER_BLOCK]; 

__shared__ float tempW[THREADS_PER_BLOCK]; 

uint ti = threadIdx.x; 

uint index = ti+blockIdx.x * THREADS_PER_BLOCK; 

uint gridSize = THREADS_PER_BLOCK * gridDim.x;  

Pixel p; 

float weight;  

tempX[ti]=0;  tempY[ti]=0;  tempW[ti]=0; 

while(index<N) 

{ 

p=frame[index];  

weight=f[0]*(p.r)+ f[1]*(p.g)+ f[2]*(p.b)+ f[3]; 

if (weight>0){if(weight>1.0f) weight=1.0f;} 

 else weight=0.0f; 

tempX[ti]+=weight*(index%width); 

tempY[ti]+=weight*(index/width); 

tempW[ti]+=weight; 

index+=gridSize; 

} 

uint s,temp; 

for(s= THREADS_PER_BLOCK>>1;s>0;s>>=1) 

{    

 if(ti<s) 

 { 

  __syncthreads(); 

  temp=ti+s; 

  tempX[ti]+=tempX[temp]; 

  tempY[ti]+=tempY[temp]; 

  tempW[ti]+=tempW[temp]; 

 } 

} 

if( 0 == ti )  

{ 

 atomicAdd(x,tempX[0]); 

 atomicAdd(y,tempY[0]); 

 atomicAdd(w,tempW[0]); 

} 

 

[…] 

uint s,temp; 

for(s = THREADS_PER_BLOCK>>1; s>0; s>>=1) 

{    

  if(threadIdx.x<s) 

  { 

   __syncthreads(); 

   temp=threadIdx.x+s; 

   tempX[threadIdx.x]+=tempX[temp]; 

   tempY[threadIdx.x]+=tempY[temp]; 

   tempW[threadIdx.x]+=tempW[temp]; 

  } 

} 

if( 0 == threadIdx.x )  

{ 

 atomicAdd(x,tempX[0]);  

 atomicAdd(y,tempY[0]); 

 atomicAdd(w,tempW[0]); 

} 
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7) Version GPU 7 – Aggregation in local memory 

In versions GPU 5 and GPU 6 designed on the basis of 

[11], highly ineffective is the iterative aggregation of all the 

values calculated by the thread to the shared memory. During 

this aggregation other threads do not need any access to this 

temporary sum. Our proposed solution is to aggregate the 

thread values in its local memory, as it is faster than the 

shared memory. Only the final thread sum should be copied 

to the shared memory for access of other threads. 

 
This approach decrease the computational time by 10% 

compared with the Version GPU 6. 

8) Version GPU 8 – Multiple pixels per thread with 

atomic adding to shared memory 

The divide and conquer parallelization in the Version 

GPU 4 leads to a four times faster computing, compared to 

Version GPU 2, where the tread values are atomically added 

to the block sum. But since each thread aggregates weights 

of hundreds of pixels, the synchronization of threads before 

each iteration of inter-thread summing is very time 

consuming. It appears that the atomic summation to one 

value is more effective in that case. Even though the 

acceleration of such approach is only about 3%, the 

additional profit is the reduction of the shared memory 

occupancy and a slight kernel code simplification: 

 
The final version of the kernel is almost 45 times faster 

than the Version GPU 1. 

B. The Head Tracking Acceleration on the CPU 

Although the computation of head position on the GPU 

can be very fast (with frame computation below 5 ms), it can 

be insufficient in the 3D graphic applications like video 

games, where the 3D rendering loads the GPU to its limits. 

To maintain the performance of the application, we may 

need to limit the GPU computations. 

Unfortunately, the head position estimation on the CPU is 

time consuming, as its computational cost is of the order 

O(N). Even with an effective implementation of the 

algorithm (Fig. 1), on the testing platform the 30 fps  is not 

achieved (see Table 1). Therefore it is desirable to accelerate 

also the CPU computing. 

1) Version CPU 2 – The weights precalculation 

The acceleration on the CPU can be obtain with the 

precalculation of all the possible values of μS(p) (Eq. 2) and 

referring to them instead of calculating this value for every 

input pixel individually. The number of all the RGB colors 

with 8-bits channels is limited and amounts to 256
3
. It is 8 

__shared__ float tempX,tempY,tempW; 

if(0==threadIdx.x) 

{ 

 tempX=0; tempY=0; tempW=0; 

} 

uint ti=threadIdx.x; 

uint index=ti+blockIdx.x* THREADS_PER_BLOCK *2; 

uint gridSize = THREADS_PER_BLOCK *2*gridDim.x; 

Pixel p; 

float weight,weight2; 

unsigned int index2; 

float tX,tY,tW; 

tX=0; tY=0; tW=0; 

while(index<N) 

{ 

 index2=index + THREADS_PER_BLOCK; 

 p=frame[index];   

 p2=frame[index2]; 

 weight=f[0]*(p.r)+ f[1]*(p.g)+ f[2]*(p.b)+ f[3]; 

 weight2=f[0]*(p2.r)+f[1]*(p2.g)+f[2]*(p2.b)+f[3]; 

 if(weight>0) { if(weight>1.0f)  weight=1.0f;} 

  else weight=0.0f;   

 if(weight2>0){if(weight2>1.0f) weight2=1.0f;} 

 else weight2=0.0f; 

 tX+=weight*(index % width)  

+weight2*(index2 % width); 

 tY+=weight*(index / width) 

+ weight2*(index2 / width); 

 tW+=weight + weight2; 

 index+=gridSize; 

} 

atomicAdd(&tempX,tX);   

atomicAdd(&tempY,tY); 

atomicAdd(&tempW,tW); 

__syncthreads(); 

if( 0 == ti )  

{ 

 atomicAdd(x,tempX[0]); 

 atomicAdd(y,tempY[0]); 

 atomicAdd(w,tempW[0]); 

} 

[…] 

float tX,tY,tW; 

tX=0; tY=0; tW=0; 

while(index<N) 

{ 

 […] 

 tX+=weight*(index%width)+weight2*(index2%width); 

 tY+=weight*(index/width)+weight2*(index2/width); 

 tW+=weight + weight2; 

index+=gridSize; 

} 

tempX[ti]=tX; 

tempY[ti]=tY; 

tempW[ti]=tW; 

[…] 

uint index = ti+blockIdx.x*THREADS_PER_BLOCK * 2; 

uint gridSize = gridDim.x*THREADS_PER_BLOCK * 2; 

[…] 

while(index<N) 

{ 

 index2=index + THREADS_PER_BLOCK; 

 p=frame[index];   

 p2=frame[index2]; 

 weight=f[0]*(p.r)+ f[1]*(p.g)+ f[2]*(p.b)+ f[3]; 

 weight2=f[0]*(p2.r)+f[1]*(p2.g)+f[2]*(p2.b)+f[3]; 

 if (weight>0){ if(weight>1.0f) weight=1.0f; } 

  else  weight=0.0f;   

 if(weight2>0){if(weight2>1.0f) weight2=1.0f;} 

 else weight2=0.0f; 

 tempX[ti]+=weight*(index%width) 

+weight2*(index2%width); 

 tempY[ti]+=weight*(index/width) 

+weight2*(index2/width); 

 tempW[ti]+=weight + weight2; 

 index+=gridSize; 

} 
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times more values than in a frame of 1920x1080 pixels, but 

the precalculation can be performed only once before the 

start of the application, as the colors weights change only 

when the filter f values change. 

The precalculated  weights assigned by the classifier to all 

the RGB values, can be stored in an array W[], in which the 

pixel p weight is located at the given position:  

 [ ] )(2562562 ppppW SBGR µ=+⋅+⋅  (7) 

With the indexing relevant to the input pixel format (i. e. 

its byte order), the integer value written on the four bytes of 

the pixel is also the position in the array W, at which the 

pixel weight is stored. 

With the use of the precalculated weights, the CPU 

computations are faster only by 35%. Even though this 

solution is interesting for other reason. As was mentioned in 

the previous section, it is desirable to decouple the 

computing time from the color classification method, for the 

possible classification improvement without the reduce of 

the tracking speed. With this solution, the usage of more 

complex color model or the transformation to the other color 

space, increases only the once performed precalculation time 

and the tracking time remain unchanged, so that aim is fully 

achieved.  

Applying this concept for the GPU is not recommended, 

as it results in prolonged, twice as long calculation time. This 

is caused by the “random”, irregular access to the array W,  

as the adjacent pixels can have different colors, distant in the 

RGB space. As a result the global memory access time is 

increased, slowing the entire computing. Moreover, on the 

GPU computation cost is already almost independent of the 

used color model. A slight gain from the precalculation may 

be achieved only with use of a very complex color 

classifiers.  

2) Version CPU 3 – The precalculation and multicore 

processing 

The parallelization of the calculations is not limited to the 

GPU computing. Most modern CPUs have at least two 

independent processing units (called cores). Therefore, the 

equal distribution of the calculations to more threads may 

results in almost direct proportional time reduction. 

By dividing the problem, i.e. the input frame, between 

multiple CPU cores, we can compute pixel weights from 

each part of the image, and the centroid of these pixels. The 

centroid of all the partial centroids is also the centroid of the 

whole image.  

3) Version GPU 8 + CPU 3– The joint GPU and CPU 

calculations. 

As in the above example, the problem can be divided into 

two parts, one of which is implemented on the CPU, and the 

second on the GPU. Such division may be dictated by the 

GPU limitation, or by the need for utilizing all the available 

computing power for the further tracking acceleration. 

In the second case, in order to achieve the greatest 

acceleration, the division of the problem between the CPU 

and the GPU should not be symmetrical as in multicore 

processing. For the highest resulting speed, the two 

processors should complete their computations at the rather 

same time. If average times of the full frame computation on 

CPU and GPU are respectively TC and TG, and they analyze 

sub-images IC and IG of the image I (I= IC +IG), than the sizes 

of the sub-images should be:  

 I
TT

T
I

GC

G
C ⋅

+
=  (8a) 

 I
TT

T
I

GC

C
G ⋅

+
=  (8b) 

Hence, in our case, at the testing laptop, the highest speed 

is achieved when 70% of the image pixels is processed on 

the GPU (with Version GPU 8) and 30% on the CPU (with 

Version CPU 3). The comparison of the computation times 

of all the methods is presented in the next section.  

4) Other possible acceleration methods 

The possible further acceleration of the computation may 

be achieved by the replacement of the floating point 

operations with the fixed point calculations and especially 

integer operations. In order to do this, we must upscale filter 

f values by u to the integer values. The maximum weight 

assigned by the classifier (1 in the Equation 2) must also be 

upscaled by the same u value. This way the S multiset would 

no longer meets the definition of the fuzzy set, but the results 

of head position estimation would not change if we only 

divide the A (Eq. 5 and 6) by the u. The problem of this 

solution is that we may must restrict the maximum resolution 

of the image or the resolution of the classifier (i.e. number of 

different weights it may assign) to ensure that we do not 

exceed the maximum of the 32 bits variables. Yet, it may be 

acceptable in some applications and the resulting 

acceleration may be significant. 

Another way to accelerate CPU computation may be the 

usage of Streaming SIMD  Extensions which allow for 

parallel processing of up to four values. However the usage 

of SSE may be restricted and may depends on the target 

platform. Altough this solution was not applied it is worth 

consideration. 

V. RESULTS 

The fast head position tracking methods proposed in the 

Section IV were compared with the original algorithm of 

Version CPU 1 shown in Fig. 1. The tests was performed on 

the laptop computer equipped with the mobile processor 

Intel® Core™ i5-2450M (2x2,5GHz) with processing 

performance of 34,5 GFLOPS and the mobile GPU Nvidia® 

GeForce® GT 630M with 307,2 GFLOPS processing 

performance. 

The comparison of the average computation times for 

frames of 1920x1080 pixels is shown in the Fig. 4 and in the 
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Table 1. Although the times of CPU and GPU should not be 

compared due to the different architectures, the scale of the 

possible acceleration of the head tracking can be seen in the 

Fig. 4. The computations on the GPU (Version GPU 8) are 

over seven times faster, including the time of transfer to the 

GPU memory, and it allows for tracking at 200 frames per 

second. In an architecture where the camera image is saved 

directly in the GPU memory, without need for additional 

copying,  over 300 fps can be achieved.  

The acceleration methods basing on the CPU also give 

good results and over three times faster computing compared 

to the original algorithm. Using CPU with more processing 

cores, the further acceleration is possible. 

When the processing powers of GPU and CPU are not 

restricted, the method combining the calculations on both 

units may result in the greatest tracking speed. On the testing 

platform the analysis of the full frame was performed in 

about 3,6 milliseconds (Fig. 4 and Table 1). 

 

Fig.  4 The processing times of one frame of 1920x1080 pixels 

(average of 100 trials). 

VI. CONCLUSIONS AND FUTURE WORK 

Although the device used in the tests was not a hand-held 

device, its CPU and GPU has respectively 50% and 15% 

lesser processing performance than the Nvidia® Shield™ 

Tablet with Tegra K1 mobile processor equipped with CPU 

ARM Cortex-A15 R3 (4x2,3GHz), with the processing 

performance of 70,4 GFLOPS and CUDA-enabled GPU 

Kepler with 364,8 GFLOPS processing performance. Also, 

the popular smartphone processors Qualcomm® 

Snapdragon™ 810 has a similar processing performance. 

Hence, the testing laptop computer represents well the 

computing power of the today hand-held devices. 

The achieved head tracking times leave a large margin of 

error for the real-time tracking with over 60 fps, even in the 

case of a highly loaded GPU and CPU or when performed on 

the devices with a lot less computing power. With the 

achieved tracking times it becomes possible to use the found 

head position for effective Head-Coupled Perspective 

implementation in combination with the interactive 3D 

applications on hand-held mobile devices. 

The future work includes testing the proposed methods on 

the actual hand-held devices and designing the model for 

determining the head position relative to the device with use 

of the internal sensors (accelerometer and gyroscope) 

combined with the proposed fast head tracking method. 
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