

Abstract—The head movement based control methods in the

3D graphic applications requires the real-time face position

estimation. Therefore, the tracking method at the high speed

and with the minimal latency is needed. This is especially hard

to achieve when the face is tracked with the use of the high

resolution video image on mobile devices. In the article, we

present several methods for an acceleration of the face position

estimation method based on the fuzzy skin color classifier and

other color-based face tracking methods. The acceleration is

achieved through a highly parallel GPU computation, the

precalculation of the classifier weights and through the

combined computations on the GPU and the CPU. The achieved

computation time is independent of the used skin color

classification method, allowing for use of very complex

classifiers. The presented methods provides the robust head

position tracking on the high resolution video image of

1920x1080 pixels, at 300 frames per second, on the mobile

device with a low computing power.

I. INTRODUCTION

HE head position tracking can be used as

a multiplatform control method on desktop computers,

laptops, game consoles and hand-held mobile devices. In the

latter case it is especially important as the available

touch-based control methods are not suitable for many

interactive applications, due to the low precision and the

fingers obscuring the screen. Moreover, when we are using

the hand-held mobile device, the change of a relative head

position does not require the actual movement of the head

and can be changed by the rotation of the device.

The face tracking can be used, inter alia, for three-

dimensional imaging technique called the Head-Coupled

Perspective (HCP abbreviated) [1][2][3][9] which gives the

impression of the depth of the presented 3D scene by

dynamically linking the perspective of the rendered scene

with the current head position. The rough head tracking in

three degrees of freedom is sufficient for this imaging

technique. For the depth sensation more important than the

face tracking accuracy are its smoothness (i.e. the lack of the

jittering and the unnoticeable difference between two

consecutive estimated head positions), a high frequency of

tracking and its low latency (i.e. short time between the

actual head movement and the application response). These

requirements are difficult to achieve in the case of the face

tracking on the high resolution video image. Also it must be

taken into account, that the head tracking is just one of the

costly calculations that the interactive application needs to

perform in a real time. On the mobile devices the additional

limitation is their low computing power.

On the mobile devices it is possible to estimate the

relative position of the user’s face on the basis of other

internal device sensors like the accelerometer or the

gyroscope [6][7]. The rotation and the orientation of the

device can be determined based on the readings from these

sensors and therefore the head position relative to the screen

can be estimated. The information from these sensors is

delivered quickly (with frequency of 200 Hz on Android

devices) and do not require time consuming computations

[19]. Moreover, the tracking range of the sensors is not

limited by the camera field of view. The drawback of the

sensor based tracking is that their readings are noisy, what is

especially noticeable in the HCP technique where a slight

head movement results in the big displacement of the far

background of the scene. Filtering of the sensor signals takes

into account earlier sensor readings and generates the

additional delay in the application response to the head

movement. Yet, it may be unnoticeable with use of the

Extended Kalman Filter [19]. Still, sensors like

accelerometer or gyroscope are not able to notice the actual

movement of the head itself, omission of which can destroy

the 3D impression. Therefore, the additional use of the video

based head tracking can highly improve the quality of the

sensor based tracking [6][7]. Unfortunately, the face tracking

methods chosen in these articles, are too slow. The tracking

is several times slower than the sensors input, so its usage is

limited to the occasional sensor reading correction. The use

of a very rapid head tracking method may provide the actual

head movement tracking, as well as the signal noise

reduction without the delay generation.

The article presents the face tracking method that is able

to find face coordinates in a few milliseconds and is based

on the fuzzy skin color classifier first proposed in [1]. The

low computational time is achieved through the parallel

calculations on the GPU and the CPU and through the

precalculation of all possible color weights assigned by the

fuzzy classifier.

In the next section the existing rapid head tracking method

are discussed. The third section presents the face position

T

Fast GPU and CPU computing for Head Position Estimation

Michał Szkudlarek1
 and Maria Pietruszka

2

Institute of Information Technology

Lodz University of Technology

ul. Wólczańska 215, 90-924 Łódź, Poland
1
michal.szkudlarek@dokt.p.lodz.pl,

2
maria.pietruszka@p.lodz.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 231–240

DOI: 10.15439/2015F410

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 231

estimation method with use of the fuzzy skin color

segmentation. In the fourth section we describe precisely the

methods for accelerating the color-based head position

tracking. The fifth section presents the test results of the

proposed solutions and the sixth section contains the

conclusions and considered future work.

II. RELATED WORKS

Fast head position finding in the camera image is possible

with various head tracking and detection methods. They can

be based, among others, on the background subtraction

[1][2][4], template matching [2], Haar-like feature based

learning [16][17][18] or the Local Binary Pattern based

learning [9][15].

In [2], for the head tracking the template matching method

is used, which compares the low resolution face image with

the input frame fragments. To reduce the search space, the

background subtraction is performed to reject still,

unchanged pixels. This method of the face tracking proved to

be rapid, but the used subtraction is sensitive to the

illumination changes, which is frequent in the natural light. It

is not applicable on the mobile devices in which camera is

not still and moves with the device. Additionally, the

template matching method is sensitive to the head tilting, a

natural movement when controlling the application with head

movement.

For the fast head detection in the camera image, the most

popular method is based on the Haar-like features, proposed

by Viola and Jones [18]. Method is based on the detection of

simple rectangular features, used then for the AdaBoost

learning algorithm. With the use of the Integral Image,

wherein each pixel represents the sum of values of all pixels

from the input image above and to the left of it, it is possible

to quickly evaluate the features on the given position and

scale. Unfortunately the calculation of the Integral Image is

time consuming and requires 2*N operations for the image

of N pixels. The complexity of the feature calculations is of

O(M*N) for features of M scales. In [16] the acceleration of

this method is proposed, with use of the GPU, but still it

reaches only 19 fps for an image of 1280x960 pixels. In [17]

a head tracking method based on Haar-like feature detection

is proposed, working at theoretical 500 fps. The search of the

entire frame of 512x512 pixels can be executed at 200 fps,

on a rather powerful GPU (934 GFLOPS). The search

frequency of the high-resolution image of 1920x1080 pixels,

on the hand-held device would not exceed 20fps.

A faster tracking method, also based on the AdaBoost

learning, but using the Local Binary Pattern is proposed in

[9]. The LBP method considers the surroundings of the

pixels. Thanks to the calculation on GPU and CPU [15], for

a picture of 1024x1024 pixels, method can process at 10fps,

but on the mobile device of very low computational power.

On current hand-held devices even high-resolution image

could be processed at about 25 fps.

Due to the low computational complexity and the

possibility of use on the mobile devices, the face tracking

methods based on the skin color classification are

important[1][4][5][14]. Such a classifiers extract from the

RGB space (or other color space) a subspace containing the

RGB values corresponding to the possible shades of the skin

color. Fuzzy classifiers that determines the pixel degree of

membership may provide a smoother tracking with the same

resolution image [1]. Multiplatform version of the method

described in [1] is presented in Section III.

Despite the linear complexity of the skin color based

tracking method, analysis of high resolution images still can

be very time consuming, especially on hand-held mobile

devices. In this article, we proposed accelerating methods,

enabling face tracking on frame of 1920x1080 pixels at

about 300 fps, even on the devices with a low processing

power.

III. THE FUZZY SKIN-COLOR CLASSIFIER

To maintain the multiplatform usability of the fuzzy head

tracking method, first proposed in [1], and to allow its usage

on hand-held mobile devices, the omission of the

background subtraction is necessary. It is impossible to use

due to the continuous motion of the hand-held device and

hence its camera.

In the proposed multiplatform head tracking method, the

user’s head position is determined based on the degree of

membership μS(p) of all the pixels to the fuzzy skin-color

pixels multiset S:

 { }RGBS XpppS ∈= :)(,µ (1)

 ()()DBBGGRRS ffpfpfpp +⋅+⋅+⋅= ,1min,0max)(µ (2)

Where:

XRGB = {<r,g,b>:r,g,b∈ [0,255]} – the multiset of all the

image pixels.

p=<pR ,pG ,pB> – the components R, G, B of the pixel p.

f=<fR ,fG ,fB, fD> – the vector of the color filter.

The vector of the color filter, specified in the classifier

calibration, defines a plane in the RGB space. This plane

separates most of the skin color pixels from the background

pixels that we are trying to discard. The filter vector

specifies also the “positive” side of that plane and tells us

which of the two subspaces contains skin-color pixels. The

fuzziness of the multiset S provides a gradient boundary

between the subspaces. The further the pixel color resides

from the plane on its “positive” side, the higher is its degree

of membership.

The usage of the RGB space instead of other color model,

in which the skin colors are easier to distinguish and isolate,

is motivated by the additional computation time needed to

perform the transformation from the original RGB image

provided by the camera to the more preferable color model.

232 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

The usage of just two components (e. g. H and S in HSV

model) does not compensate this time in the processing. As

the skin tone is separable in the RGB space, the

computational complexity remains the major factor in

choosing the color model.

To determine the position of the face on the image and its

distance from the camera, it is necessary to calculate the

cardinality of the S multiset, defined as the sum of the

degrees of membership of all N image pixels:

 ∑ =
=

N

i iS pS
1

)(µ (3)

We are using all the N pixels of the image as the

skin-color face pixels, because the background pixels with

the degrees of membership equal 0 does not affect the

results. This degrees (Eq. 2) are also the weights of the

pixels used to determine the coordinates CX and CY of the

centroid C of all the skin-color pixels, calculated as the ratio

of the weighted sum of the image pixel coordinates to the

cardinality of multiset S:

 ∑ =
⋅=

N

i iiSX xp
S

C
1

)(
1 µ (4a)

 ∑ =
⋅=

N

i iiSY yp
S

C
1

)(
1 µ (4b)

Where:

 ii yx , – coordinates of pixel pi

The found centroid coordinates are considered the

coordinates of the head center in the image and are used to

determine face position in the plane parallel to the screen

and the camera. The ratio of the cardinality of the S multiset

to the cardinality of multiset of all the image pixels can be

used as the A measure of the face area in the image and used

to calculate the head distance from the screen:

RGBX

S
A = (5)

What is, according to (Eq. 3):

 ∑ =
=

N

i iS p
N

A
1

)(
1 µ (6)

The algorithm of finding the face position on the camera

image is shown in the Fig. 1. The non-modified algorithm is

later referred to as “Version CPU 1” in comparison with the

accelerated variants of the algorithm.

The filter f (Eq. 2), in contrast to most of the skin-color

classifier methods, is not designed to match all colors that

may belong to the skin of any person, of any race, skin tone,

in all possible lightning condition. The primary objective of

the filter f is to extract the user face from the current

environment visible in the camera. It requires determining

the optimal values of the filter parameters for each

application usage.

Fig. 1 The algorithm of finding the face position on the camera image

(pseudocode).

Manual finding of the optimal values may be hard task for

the user, and certainly it is uncomfortable and time-

consuming. Therefore, in [8] we proposed the automatic

method of finding the optimal values of skin-color filter. The

method of automatic parameters calculation is based on the

analysis of the image with arbitrarily marked area of the face.

The user moves the head to place it in the oval-shaped mask

visible in the preview of the camera. Once approved, several

consecutive frames of the video image are capture for the

analysis. Pixels of the obtained images are then use as factors

in the objective functions G(f) which maximum is searched.

To accelerate the computation of the optimum parameters

the clustering of the input data transformed to the RGB space

is performed with fast grid-based clustering method

proposed in [8] where the entire process is described in

detail.

The automatic parameters calculation allows for extracting

most of the face pixels even from a difficult background with

colors close to the skin tone or in the poor lightning. The

automatically calculated parameters provide the method

stability, ensuring that the |S| value in the Equations (4a) and

(4b) does not tend to zero. Still, in some particularly difficult

conditions the method does not filter out all of the

background pixels, assigning a small part of these pixels with

high weights. In practice, the tracking is then still effective.

Although the unfiltered pixels “attract” the found centroid to

their center of gravity, reducing the amplitude of the

estimated head movement determined by the tracking, still

the direction of the motion is preserved and its speed is

proportional to the actual speed of the head movement. As a

result, the perspective of the virtual scene can still be

coupled with the head movements, resulting in an immersive

sense of depth in the Head-Coupled Perspective technique or

effective control in other applications. Therefore, although

the method is error-prone in cases when additional

skin-colored body parts (e.g. neck or chest) or other faces are

visible to the camera, the method still provides sufficient

results for proposed applications. Especially on the

hand-held mobile devices, the user head is always the biggest

skin-colored object visible to the camera and cannot be

dominated by other objects. When the head leaves the field

of view, due to the device rotation, it may be also recorded

by other internal sensors which can then substitute the head

tracking.

sumOfWeights = 0; CX = 0; CY = 0;

For each p in XRGB

{

 weight = max(0, min(1, pR · fR + pG · fG + pB · fB + fD));

 CX += weight * p.xCoordinate;

 CY += weight * p.yCoordinate;

 sumOfWeights += weight;

}

CX = CX / sumOfWeights;

CY = CY / sumOfWeights;

A = sumOfWeights / N;

MICHAŁ SZKUDLAREK, MARIA PIETRUSZKA: FAST GPU AND CPU COMPUTING FOR HEAD POSITION ESTIMATION 233

To minimalize the resulting errors of classification in the

particularly difficult conditions, we can utilize more

computationally complex skin-color models, like described

in [14] Gaussian model or used in [10] elliptical Gaussian

chrominance probability density function. We can also

transform pixel colors to another color space, e.g. HSV,

normalized RGB or CIE-XYZ (with all components divided

by the sum of all components), or proposed in [10] the STV

space. The possible skin colors in these spaces are easier to

separate [10] and the impact of the lightning on the

classification is reduced. Unfortunately, both methods of

improvement increase the computational cost of calculating

the pixels weights, almost proportionally increasing the

computation time, which actually need to be reduced.

Therefore, besides the direct computation time reduction, it

is desirable to decouple the head tracking cost from the

complexity of the used skin color classifier.

IV. ACCELERATING THE HEAD POSITION TRACKING

The computational cost of the presented above head

tracking method is of the order O(N), where N is the number

of image pixels. The method requires a few operations per

pixel, and each is processed once and individually. Although

the linear computation cost seems to be low, for high

resolution video image of 1920 x 1080 pixels the processing

of the full frame in the real time is hard to achieve, even

without the additional CPU load.

The accelerating methods that decrease the problem size,

reduce at the same the tracking quality. The downscaling of

the input image [15][16] requires additional computation,

decreases the number of input data and reduces the angular

resolution of the tracking. Searching for the face only in the

neighborhood of the previously found head position

[9][16][17] makes the tracking sensitive to the fast motion of

the head, providing just a slight acceleration, due to the large

area occupied by the face on the image of the narrow-angle

camera.

The described below accelerating methods reduce the

computational cost of the head tracking without decreasing

the number of the analyzed pixels, to maintain high quality

of the tracking. When the lower quality of the tracking is

allowed, these methods can be successfully combined with

the problem size reduction for the further tracking

acceleration.

A. The Head Tracking Acceleration on the GPU

The acceleration of the head tracking can be achieved by

transferring the calculations to the graphics processor unit,

which allow for the parallel analysis of many pixels. Besides

the possible computation time reduction, this approach may

additionally decrease the energy usage of the mobile devices

during the frame processing [9]. The use of the Nvidia®

CUDA® framework allow for using the full capabilities of

graphics processors compatible with this architecture. Such

GPUs are widely installed on the laptop computers and they

are recently available on the hand-held mobile devices. The

tests of the methods described below are performed on the

laptop computer equipped with the Intel® Core™ i5-2450M

mobile processor and the Nvidia® GeForce® GT 630M

mobile GPU.

As the classification of the pixel colors in our method is

performed for each pixel individually, the acceleration is

seemingly easy to achieve by performing the computations

on the graphics card. The parallelization of the calculation of

the pixels degrees of membership to the skin-color multiset S

is trivial on GPU. Each thread must calculate the weight of

one pixel, according to Equation 2. A part of the kernel (i.e.

a function in CUDA executed in parallel by multiple threads

on GPU) responsible for the pixels weights calculation is as

follows:

A constant delay is generated by the transfer of the image

to the GPU memory. For an image of 1920x1080 pixels, the

transfer takes about 2 milliseconds.

For the further analysis, the calculation of the head

position is split into two parts:

1) Calculating the degrees of membership from Eq. 2.

2) Finding the centroid coordinates (Eq. 4) and the sum of

all the pixel weights need in Eq. 6.

On the CPU, the second part of the calculation represents

only a small fraction of all the computations. Conversely, on

the GPU the computation of the second part can be several

times longer than the first part. The time of 2) on the

graphics processor depends largely on the used algorithm.

Below, different methods of accelerating computation on

GPU are compared.

1) Version GPU 1 – Atomic adding to one global value

In the naive approach to calculate the coordinates of the

centroid, all the threads can add its calculated values directly

to the output sums, using the atomic add function:

Atomic functions in CUDA allows multiple threads to

modify common data, with the guarantee of receiving the

correct result, which means that every thread perform the

operation exactly once, without data loss from the

simultaneous access to the output value.

Unfortunately, in this approach the summing is performed

sequentially, as only one thread at a time increases the output

sum. Moreover this variant requires a very frequent access to

the very slow global memory. It is very inefficient approach,

which do not use the full power of the GPU and prolongs

the calculation compared to the CPU computing.

[…]

atomicAdd(x,weight*(index%width));

atomicAdd(y,weight*(index/width));

atomicAdd(w,weight);

uint index=threadIdx.x + blockIdx.x*blockDim.x;

Pixel p=frame[index];

float weight=f[0]*p.r + f[1]*p.g + f[2]*p.b+ f[3];

if(weight>0.0f){ if(weight>1.0f)weight=1.0f; }

else weight=0.0f;

[…]

234 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

2) Version GPU 2 – Atomic adding to the shared memory

The acceleration can be obtained when first the thread

values are atomically added to local sums of the blocks in the

faster shared memory, and then only this local sums are

atomically added to the global output values, by one thread

per block:

In this approach a part of the internal aggregations is

executed in parallel between several thread blocks.

Therefore this variant is more than three times faster than the

Version GPU 1.

3) Version GPU 3 – Parallel aggregation with divide and

conquer

Although in Version GPU 2 part of the summation is

performed in parallel between blocks, still only one thread

per block can add its value to the local sum at the same time.

To execute more parallel addition inside a thread block it is

possible to use the divide and conquer method, decreasing

the complexity order of the summation for each N-thread

block from O(N) to O(logN). In this case, half of the block

threads must sum up pairs of values calculated by the

consecutive threads. In the next steps, the sums from

previous step are summed in pairs until there is only one

final sum of all the block values (Fig. 2).

Fig. 2 The parallel aggregation in block

The kernel realizing directly this approach is as follows:

This approach decrease the computational time by 40%

compared with the Version GPU 2. The acceleration is less

than expected due to the highly divergent branching of the

code in the condition (0==threadIdx.x%(s<<1)), what is

discussed by Harris [11] on an analogous example.

4) Version GPU 4 – Without divergent branching

Further acceleration can then be obtain by alternatively

engaged threads, as shown in Fig. 3.

Fig. 3 The parallel aggregation without the divergent branching and

bank conflicts

This approach omits the problem of divergent branching,

without additional shared memory bank conflicts. Analogous

solution for similar problem was used in [13].

The internal aggregation in this version looks as follows:

__shared__ float tempX[THREADS_PER_BLOCK];

__shared__ float tempY[THREADS_PER_BLOCK];

__shared__ float tempW[THREADS_PER_BLOCK];

[…]

uint s,temp;

for(s=1;s<THREADS_PER_BLOCK;s<<=1)

{

 if(0==threadIdx.x%(s<<1))

 {

 __syncthreads();

 temp=threadIdx.x+s;

 tempX[threadIdx.x]+=tempX[temp];

 tempY[threadIdx.x]+=tempY[temp];

 tempW[threadIdx.x]+=tempW[temp];

 }

}

if(0 == threadIdx.x)

{

 atomicAdd(x,tempX[0]);

 atomicAdd(y,tempY[0]);

 atomicAdd(w,tempW[0]);

}

__shared__ float sX,sY,sW;

sX=0.0f;

sY=0.0f;

sW=0.0f;

[…]

atomicAdd(&sX,weight*(index%width));

atomicAdd(&sY,weight*(index/width));

atomicAdd(&sW,weight);

__syncthreads();

if(0 == threadIdx.x)

{

 atomicAdd(x,sX);

 atomicAdd(y,sY);

 atomicAdd(w,sW);

}

MICHAŁ SZKUDLAREK, MARIA PIETRUSZKA: FAST GPU AND CPU COMPUTING FOR HEAD POSITION ESTIMATION 235

This variant is 2.5 times faster than Version GPU 3.

5) Version GPU 5 – Multiple aggregation per thread

In the Version GPU 4 during the iterative aggregation an

average of ¾ of the block threads is idle, from the half in the

first iteration, to all but one in the final aggregation. At the

same time, due to the limit of thread number per block, we

receive a large number of blocks. The possible solution,

proposed by Harris for similar problem [11], is to use

threads to iteratively add up a greater number of values. In

our case it requires also the calculation of more pixel weights

(i. e. degrees of membership to skin color multiset) per

thread. Such a solution can significantly better harness the

GPU computational power. Before we get to the inter-thread

aggregation, all the threads are engaged in a long non-

synchronized work.

After this modification, kernel is as follows:

Due to the reduced number of blocks, this variant is 2.5

times faster than Version GPU 4.

6) Version GPU 6 – Double memory access

Further acceleration by about 10% can be obtained by

adding two values per iteration and grouping operations. It is

the result of the GPU’s memory access, where reading two

consecutive 4-bytes words has a similar cost to reading just

one word [12]. The number of blocks is halved:

__shared__ float tempX[THREADS_PER_BLOCK];

__shared__ float tempY[THREADS_PER_BLOCK];

__shared__ float tempW[THREADS_PER_BLOCK];

uint ti = threadIdx.x;

uint index = ti+blockIdx.x * THREADS_PER_BLOCK;

uint gridSize = THREADS_PER_BLOCK * gridDim.x;

Pixel p;

float weight;

tempX[ti]=0; tempY[ti]=0; tempW[ti]=0;

while(index<N)

{

p=frame[index];

weight=f[0]*(p.r)+ f[1]*(p.g)+ f[2]*(p.b)+ f[3];

if (weight>0){if(weight>1.0f) weight=1.0f;}

 else weight=0.0f;

tempX[ti]+=weight*(index%width);

tempY[ti]+=weight*(index/width);

tempW[ti]+=weight;

index+=gridSize;

}

uint s,temp;

for(s= THREADS_PER_BLOCK>>1;s>0;s>>=1)

{

 if(ti<s)

 {

 __syncthreads();

 temp=ti+s;

 tempX[ti]+=tempX[temp];

 tempY[ti]+=tempY[temp];

 tempW[ti]+=tempW[temp];

 }

}

if(0 == ti)

{

 atomicAdd(x,tempX[0]);

 atomicAdd(y,tempY[0]);

 atomicAdd(w,tempW[0]);

}

[…]

uint s,temp;

for(s = THREADS_PER_BLOCK>>1; s>0; s>>=1)

{

 if(threadIdx.x<s)

 {

 __syncthreads();

 temp=threadIdx.x+s;

 tempX[threadIdx.x]+=tempX[temp];

 tempY[threadIdx.x]+=tempY[temp];

 tempW[threadIdx.x]+=tempW[temp];

 }

}

if(0 == threadIdx.x)

{

 atomicAdd(x,tempX[0]);

 atomicAdd(y,tempY[0]);

 atomicAdd(w,tempW[0]);

}

236 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

7) Version GPU 7 – Aggregation in local memory

In versions GPU 5 and GPU 6 designed on the basis of

[11], highly ineffective is the iterative aggregation of all the

values calculated by the thread to the shared memory. During

this aggregation other threads do not need any access to this

temporary sum. Our proposed solution is to aggregate the

thread values in its local memory, as it is faster than the

shared memory. Only the final thread sum should be copied

to the shared memory for access of other threads.

This approach decrease the computational time by 10%

compared with the Version GPU 6.

8) Version GPU 8 – Multiple pixels per thread with

atomic adding to shared memory

The divide and conquer parallelization in the Version

GPU 4 leads to a four times faster computing, compared to

Version GPU 2, where the tread values are atomically added

to the block sum. But since each thread aggregates weights

of hundreds of pixels, the synchronization of threads before

each iteration of inter-thread summing is very time

consuming. It appears that the atomic summation to one

value is more effective in that case. Even though the

acceleration of such approach is only about 3%, the

additional profit is the reduction of the shared memory

occupancy and a slight kernel code simplification:

The final version of the kernel is almost 45 times faster

than the Version GPU 1.

B. The Head Tracking Acceleration on the CPU

Although the computation of head position on the GPU

can be very fast (with frame computation below 5 ms), it can

be insufficient in the 3D graphic applications like video

games, where the 3D rendering loads the GPU to its limits.

To maintain the performance of the application, we may

need to limit the GPU computations.

Unfortunately, the head position estimation on the CPU is

time consuming, as its computational cost is of the order

O(N). Even with an effective implementation of the

algorithm (Fig. 1), on the testing platform the 30 fps is not

achieved (see Table 1). Therefore it is desirable to accelerate

also the CPU computing.

1) Version CPU 2 – The weights precalculation

The acceleration on the CPU can be obtain with the

precalculation of all the possible values of μS(p) (Eq. 2) and

referring to them instead of calculating this value for every

input pixel individually. The number of all the RGB colors

with 8-bits channels is limited and amounts to 256
3
. It is 8

__shared__ float tempX,tempY,tempW;

if(0==threadIdx.x)

{

 tempX=0; tempY=0; tempW=0;

}

uint ti=threadIdx.x;

uint index=ti+blockIdx.x* THREADS_PER_BLOCK *2;

uint gridSize = THREADS_PER_BLOCK *2*gridDim.x;

Pixel p;

float weight,weight2;

unsigned int index2;

float tX,tY,tW;

tX=0; tY=0; tW=0;

while(index<N)

{

 index2=index + THREADS_PER_BLOCK;

 p=frame[index];

 p2=frame[index2];

 weight=f[0]*(p.r)+ f[1]*(p.g)+ f[2]*(p.b)+ f[3];

 weight2=f[0]*(p2.r)+f[1]*(p2.g)+f[2]*(p2.b)+f[3];

 if(weight>0) { if(weight>1.0f) weight=1.0f;}

 else weight=0.0f;

 if(weight2>0){if(weight2>1.0f) weight2=1.0f;}

 else weight2=0.0f;

 tX+=weight*(index % width)

+weight2*(index2 % width);

 tY+=weight*(index / width)

+ weight2*(index2 / width);

 tW+=weight + weight2;

 index+=gridSize;

}

atomicAdd(&tempX,tX);

atomicAdd(&tempY,tY);

atomicAdd(&tempW,tW);

__syncthreads();

if(0 == ti)

{

 atomicAdd(x,tempX[0]);

 atomicAdd(y,tempY[0]);

 atomicAdd(w,tempW[0]);

}

[…]

float tX,tY,tW;

tX=0; tY=0; tW=0;

while(index<N)

{

 […]

 tX+=weight*(index%width)+weight2*(index2%width);

 tY+=weight*(index/width)+weight2*(index2/width);

 tW+=weight + weight2;

index+=gridSize;

}

tempX[ti]=tX;

tempY[ti]=tY;

tempW[ti]=tW;

[…]

uint index = ti+blockIdx.x*THREADS_PER_BLOCK * 2;

uint gridSize = gridDim.x*THREADS_PER_BLOCK * 2;

[…]

while(index<N)

{

 index2=index + THREADS_PER_BLOCK;

 p=frame[index];

 p2=frame[index2];

 weight=f[0]*(p.r)+ f[1]*(p.g)+ f[2]*(p.b)+ f[3];

 weight2=f[0]*(p2.r)+f[1]*(p2.g)+f[2]*(p2.b)+f[3];

 if (weight>0){ if(weight>1.0f) weight=1.0f; }

 else weight=0.0f;

 if(weight2>0){if(weight2>1.0f) weight2=1.0f;}

 else weight2=0.0f;

 tempX[ti]+=weight*(index%width)

+weight2*(index2%width);

 tempY[ti]+=weight*(index/width)

+weight2*(index2/width);

 tempW[ti]+=weight + weight2;

 index+=gridSize;

}

MICHAŁ SZKUDLAREK, MARIA PIETRUSZKA: FAST GPU AND CPU COMPUTING FOR HEAD POSITION ESTIMATION 237

times more values than in a frame of 1920x1080 pixels, but

the precalculation can be performed only once before the

start of the application, as the colors weights change only

when the filter f values change.

The precalculated weights assigned by the classifier to all

the RGB values, can be stored in an array W[], in which the

pixel p weight is located at the given position:

 [])(2562562 ppppW SBGR µ=+⋅+⋅ (7)

With the indexing relevant to the input pixel format (i. e.

its byte order), the integer value written on the four bytes of

the pixel is also the position in the array W, at which the

pixel weight is stored.

With the use of the precalculated weights, the CPU

computations are faster only by 35%. Even though this

solution is interesting for other reason. As was mentioned in

the previous section, it is desirable to decouple the

computing time from the color classification method, for the

possible classification improvement without the reduce of

the tracking speed. With this solution, the usage of more

complex color model or the transformation to the other color

space, increases only the once performed precalculation time

and the tracking time remain unchanged, so that aim is fully

achieved.

Applying this concept for the GPU is not recommended,

as it results in prolonged, twice as long calculation time. This

is caused by the “random”, irregular access to the array W,

as the adjacent pixels can have different colors, distant in the

RGB space. As a result the global memory access time is

increased, slowing the entire computing. Moreover, on the

GPU computation cost is already almost independent of the

used color model. A slight gain from the precalculation may

be achieved only with use of a very complex color

classifiers.

2) Version CPU 3 – The precalculation and multicore

processing

The parallelization of the calculations is not limited to the

GPU computing. Most modern CPUs have at least two

independent processing units (called cores). Therefore, the

equal distribution of the calculations to more threads may

results in almost direct proportional time reduction.

By dividing the problem, i.e. the input frame, between

multiple CPU cores, we can compute pixel weights from

each part of the image, and the centroid of these pixels. The

centroid of all the partial centroids is also the centroid of the

whole image.

3) Version GPU 8 + CPU 3– The joint GPU and CPU

calculations.

As in the above example, the problem can be divided into

two parts, one of which is implemented on the CPU, and the

second on the GPU. Such division may be dictated by the

GPU limitation, or by the need for utilizing all the available

computing power for the further tracking acceleration.

In the second case, in order to achieve the greatest

acceleration, the division of the problem between the CPU

and the GPU should not be symmetrical as in multicore

processing. For the highest resulting speed, the two

processors should complete their computations at the rather

same time. If average times of the full frame computation on

CPU and GPU are respectively TC and TG, and they analyze

sub-images IC and IG of the image I (I= IC +IG), than the sizes

of the sub-images should be:

 I
TT

T
I

GC

G
C ⋅

+
= (8a)

 I
TT

T
I

GC

C
G ⋅

+
= (8b)

Hence, in our case, at the testing laptop, the highest speed

is achieved when 70% of the image pixels is processed on

the GPU (with Version GPU 8) and 30% on the CPU (with

Version CPU 3). The comparison of the computation times

of all the methods is presented in the next section.

4) Other possible acceleration methods

The possible further acceleration of the computation may

be achieved by the replacement of the floating point

operations with the fixed point calculations and especially

integer operations. In order to do this, we must upscale filter

f values by u to the integer values. The maximum weight

assigned by the classifier (1 in the Equation 2) must also be

upscaled by the same u value. This way the S multiset would

no longer meets the definition of the fuzzy set, but the results

of head position estimation would not change if we only

divide the A (Eq. 5 and 6) by the u. The problem of this

solution is that we may must restrict the maximum resolution

of the image or the resolution of the classifier (i.e. number of

different weights it may assign) to ensure that we do not

exceed the maximum of the 32 bits variables. Yet, it may be

acceptable in some applications and the resulting

acceleration may be significant.

Another way to accelerate CPU computation may be the

usage of Streaming SIMD Extensions which allow for

parallel processing of up to four values. However the usage

of SSE may be restricted and may depends on the target

platform. Altough this solution was not applied it is worth

consideration.

V. RESULTS

The fast head position tracking methods proposed in the

Section IV were compared with the original algorithm of

Version CPU 1 shown in Fig. 1. The tests was performed on

the laptop computer equipped with the mobile processor

Intel® Core™ i5-2450M (2x2,5GHz) with processing

performance of 34,5 GFLOPS and the mobile GPU Nvidia®

GeForce® GT 630M with 307,2 GFLOPS processing

performance.

The comparison of the average computation times for

frames of 1920x1080 pixels is shown in the Fig. 4 and in the

238 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Table 1. Although the times of CPU and GPU should not be

compared due to the different architectures, the scale of the

possible acceleration of the head tracking can be seen in the

Fig. 4. The computations on the GPU (Version GPU 8) are

over seven times faster, including the time of transfer to the

GPU memory, and it allows for tracking at 200 frames per

second. In an architecture where the camera image is saved

directly in the GPU memory, without need for additional

copying, over 300 fps can be achieved.

The acceleration methods basing on the CPU also give

good results and over three times faster computing compared

to the original algorithm. Using CPU with more processing

cores, the further acceleration is possible.

When the processing powers of GPU and CPU are not

restricted, the method combining the calculations on both

units may result in the greatest tracking speed. On the testing

platform the analysis of the full frame was performed in

about 3,6 milliseconds (Fig. 4 and Table 1).

Fig. 4 The processing times of one frame of 1920x1080 pixels

(average of 100 trials).

VI. CONCLUSIONS AND FUTURE WORK

Although the device used in the tests was not a hand-held

device, its CPU and GPU has respectively 50% and 15%

lesser processing performance than the Nvidia® Shield™

Tablet with Tegra K1 mobile processor equipped with CPU

ARM Cortex-A15 R3 (4x2,3GHz), with the processing

performance of 70,4 GFLOPS and CUDA-enabled GPU

Kepler with 364,8 GFLOPS processing performance. Also,

the popular smartphone processors Qualcomm®

Snapdragon™ 810 has a similar processing performance.

Hence, the testing laptop computer represents well the

computing power of the today hand-held devices.

The achieved head tracking times leave a large margin of

error for the real-time tracking with over 60 fps, even in the

case of a highly loaded GPU and CPU or when performed on

the devices with a lot less computing power. With the

achieved tracking times it becomes possible to use the found

head position for effective Head-Coupled Perspective

implementation in combination with the interactive 3D

applications on hand-held mobile devices.

The future work includes testing the proposed methods on

the actual hand-held devices and designing the model for

determining the head position relative to the device with use

of the internal sensors (accelerometer and gyroscope)

combined with the proposed fast head tracking method.

REFERENCES

[1] M. Szkudlarek, M. Pietruszka, “Head-Coupled Perspective in

Computer Game”, In: Journal of Applied Science, vol. 21, no. 2, pp.

165-179, 2013.

[2] J. Rekimoto, "A vision-based head tracker for fish tank virtual reality-

VR without head gear," Virtual Reality Annual International

Symposium, 1995. Proceedings, IEEE, pp.94-100, 1995.

[3] J. Francone, ”Using the User’s Point of View for Interaction on

Mobile Devices”, 23rd French Speaking Conference on Human-

Computer Interaction, pp. 41-48, New York, 2011.

[4] W. Gaver, G. Smets, K. Overbeeke, “A Virtual Window on media

space”. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (CHI '95), New York, pp.257-264, 1995.

[5] A. Bulbul, “A Face Tracking Algorithm for User Interaction in

Mobile Device”, CyberWorlds, 2009. CW '09. International

Conference on, IEEE, pp. 385 – 390, 2009.

[6] J. Hwang, J. Jung, and G. J. Kim. “Hand-held virtual reality: A

feasibility study”, in ACM Virtual Reality Software and Technology,

pp. 356–363, 2006.

[7] N. Joshi, A. Kar, and M. Cohen. “Looking at you: fused gyro and

face tracking for viewing large imagery on mobile devices”. In

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI '12), pp. 2211-2220, 2012.

[8] M. Szkudlarek, M. Pietruszka, “Fast Grid-Based Clustering Method

for Automatic Calculation of Optimal Parameters of Skin Color

Classifier for Head Tracking”. In Proceedings of 2015 IEEE 2nd

International Conference on Cybernetics (CYBCONF), 2015.

[9] M. B. Lopez, J. Hannuksela, O. Silven, F. Lixin, "Head-tracking

virtual 3-D display for mobile devices," Computer Vision and Pattern

Recognition Workshops (CVPRW), 2012 IEEE Computer Society

Conference on , pp.27-34, 2012.

[10] J.-C. Terrillon, M. David, "Automatic detection of human faces in

natural scene images by use of a skin color model and of invariant

moments," Automatic Face and Gesture Recognition, Proceedings.

TABLE I.

 THE PROCESSING TIMES OF ONE FRAME OF 1920X1080 PIXELS (AVERAGE OF 100 TRIALS).

 GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7 GPU 8 CPU 1 CPU 2 CPU 3
CPU

+ GPU

Transfer time [ms] 2,05 2,05 2,05 2,05 2,05 2,05 2,05 2,05 - - - 1,54

Calculation [ms] 131,34 38,59 23,19 9,68 3,81 3,36 3,06 2,94 36,74 23,12 12,34 2,12

Total time [ms] 133,39 40,64 25,24 11,73 5,86 5,41 5,11 4,99 36,74 23,12 12,34 3,66

 CPU 1 / Total time 0,28 0,90 1,46 3,13 6,27 6,79 7,19 7,36 1,00 1,59 2,98 10,04

Frames per Second 7,50 24,61 39,62 85,25 170,65 184,84 195,69 200,4 27,22 43,25 81,04 273,22

MICHAŁ SZKUDLAREK, MARIA PIETRUSZKA: FAST GPU AND CPU COMPUTING FOR HEAD POSITION ESTIMATION 239

Third IEEE International Conference on,pp.112-117, 1998.

[11] M. Harris, “Optimizing Parallel Reduction in CUDA”, NVIDIA

Developer Technology, 2007.

[12] J. Luitjens, S. Rennich, “CUDA Warps and Occupancy”, GPU

Computing Webinar, 2011.

[13] D. Xie, L.Dang, R. Tong, “Video Based Head Detection and Tracking

Surveillance System”, 9th International Conference on Fuzzy Systems

and Knowledge Discovery (FSKD 2012), IEEE, pp. 2832-2836, 2013.

[14] Y.-W. Wu, X.-Y. Ai, "Face Detection in Color Images Using

AdaBoost Algorithm Based on Skin Color Information," Knowledge

Discovery and Data Mining, 2008. WKDD 2008. First International

Workshop on , pp.339-342, 2008.

[15] M. B. López, H. Nykänen, J. Hannuksela, O. Silvén, M. Vehviläinen,

“Accelerating image recognition on mobile devices using GPGPU”,

IS&T/SPIE Electronic Imaging. International Society for Optics and

Photonics, pp. 78720R-78720R, 2011.

[16] B. Sharma, R. Thota, N. Vydyanathan, A. Kale, "Towards a robust,

real-time face processing system using CUDA-enabled GPUs," High

Performance Computing (HiPC), 2009 International Conference on,

pp.368-377, 2009.

[17] I. Ishii, H. Ichida, T. Takaki, "GPU-based face tracking at 500 fps",

Image Processing (ICIP), 2011 18th IEEE International Conference

on, pp.557-560, 2011.

[18] P. Viola, M. Jones, "Rapid object detection using a boosted cascade

of simple features," Computer Vision and Pattern Recognition, 2001.

CVPR 2001. Proceedings of the 2001 IEEE Computer Society

Conference on, vol.1, pp.I-511,I-518, 2001.

[19] J. Gośliński, M. Nowicki, P. Skrzypczyński, "Performance
Comparison of EKF-Based Algorithms for Orientation Estimation on

Android Platform," Sensors Journal, IEEE, vol. 15, no. 7, pp. 3781 -

3792, 2015.

240 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

