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Abstract—Multi-sensor based classification of professionals’
activities plays a key role in ensuring the success of an his/her
goals. In this paper we present the winning solution to the
AAIA’15 Tagging Firefighter Activities at a Fire Scene data mining
competition. The approach is based on a Random Forest classifier
trained on an input data set with almost 5000 features describing
the underlying time series of sensory data.

I. INTRODUCTION

H
UMAN activity recognition based on sensor inputs,

cf., e.g., [1], [7], [14], is essential in many practical

applications. In particular, a fire scene constitutes a dynamic

environment in which valid, precise, and fast human decisions

play a key role. Here, the aim is to achieve success in

an emergency rescue mission, having in mind safety of the

involved firemen [4] and his/her ability to save other peoples’

lives and – in the second place – property, wealth, etc. It

is worth noting that an automated decision support system

may be used to increase the widely-conceived quality of an

agents’ behavior. One of its most fundamental components

relies on a proper detection of an action a fireman is actually

performing at a given moment. The topic of AAIA 2015 Data

Mining Competition: Tagging firefighters’ activities at a fire

scene [8] aimed to deliver accurate model for recognising

firefighters movements and activities based on multi-sensor

data. In consecutive sections we explain the winning approach

in very detail. The proposed solution was implemented in the

R environment for statistical computing [11]. The solution

is available on–line as a Git repository at https://github.com/

janekl/AAIA15_Data_Mining_Contest.

The paper is organized as follows. In the section to follow,

we describe the analyzed data set and define the evaluation

metric used. In Section III we discuss main challenges that the

data set brought. In Section IV we present the winning solution

in detail and indicate its advantages, limitations, and possible

extensions for future work. Finally, Section V concludes the

paper.

II. PROBLEM STATEMENT

The main purpose here is to design a model for a

classification problem with two class attributes. The first

class denotes the main activity of a firefighter. This class

is referred to as posture class and it has 5 distinct labels

(crawling, crouching, moving, standing and

stooping). The second class, called action class denotes

a particular activity of a firefighter and consists of 16

labels (4 labels associated with movement along ladder

or stairs: ladder_down, ladder_up, stairs_down,

stairs_up, 2 labels regarding forward movement:

walking and running, labels describing firefighters’

operational movements: manipulating, nozzle_

usage, signal_hose_pullback, signal_water_

first, signal_water_main, signal_water_stop,

striking and throwing_hose and a no_action

label).
The evaluation metric employed in the competition is the

weighted average of balanced accuracy for the two classes.

Below we recall the definition of this measure. For each label

li within a class attribute we define classification accuracy as

acc(li) =
|{j : l(xj) = li ∧ p(xj) = li}|

|{j : l(xj) = li}|
,

where l(xj) = li denotes the true label for instance xj and

p(xj) denotes the label assigned by a classifier. If a class

attribute C assumes L possible labels, then the balanced

accuracy score for that class is defined as

BAC(C) =
1

L

L∑

i=1

acc(li).

Now, we may consider the weighted average of balanced

accuracy scores for posture and action classes, which is given

by

EvaluationMetric =
1

3
BAC(posture) +

2

3
BAC(action).
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Fig. 1. Plot of the raw series (red) along x-axis of the accelerometer
recordings at right hand for pair of labels (moving, running) and the
smoothed series with 20-moving average filter (blue).

During the competition, the solutions were evaluated against

approximately 10% of test data. An evaluation metric is the

essence of a contest for both its organizers and participants.

Through design of an evaluation metric, the organizers define

their goal that they want to achieve. On the other hand, the

participants need to tailor their models to optimize a given

evaluation metric.

To train a statistical model, a training set consisting of

20.000 instances, each tagged with a pair of labels for posture

and action class, was used. Each instance consists of basic

statistics on the vital functions of a firefighter and a set of

42 time series which came from x/y/z–axis recordings from

gyroscopes and accelerometers attached at 7 points on the

body of a firefighter (left hand, right hand, left arm, right

arm, left leg, right leg, torso). Each time series consists of

400 recordings (every 4-5 ms) over ca. 2 seconds. Test set

consists of 20.000 instances as well. The goal was to develop

a model for tagging instances in the test set with a pair of

labels for the two class attributes. Both the training and test

data set are of size approximately 2.4 GB (uncompressed csv

files).

III. MAIN CHALLENGES

A. The same action, different results

Among one of the many challenges we find that the data

set was inherently noisy. Moreover, the samples of activities

in the training and test sets were due to activities of different

firefighters. We observed that this had a significant impact on

the classifier’s score: our scores in terms of the evaluation

metric were as high as 98% on a hold-out validation set.

This is a considerably high score bearing in mind that the

given classification problem is presumably not an easy task.

However, in related studies as high accuracy scores were

reported [10], [5]. The scores on the official leader-board

were significantly lower – with the best scores being equal

to ca. 85% during preliminary evaluation. The fact that an

instance may come from different source is a great challenge

in any application domain.

B. Imbalance of labels distribution

Another problem which required proper handling was re-

lated to the imbalance of labels proportion within each class

attribute. Table I presents the pair of labels within action and

posture for the test set.

Since the evaluation metric in the competition was the dis-

cussed balanced accuracy score, no label was distinguished

and misclassification rate has equal weight for every label

within each class. This metric treats each label within a class as

being equally important (equal weights), regardless of its a pri-

ori distribution in the data. This distribution of labels varied

significantly on the training set. For example, only about 0.5%
of all instances constitute for the signal_hose_pullback

label while about 32% for the manipulating label within

the action class. This means that we are given over 60 times

more instances having the former label. Such an uneven

distribution of labels requires proper handling by a model.

To overcome the problem of imbalanced label distribution,

we trained individual classifiers in an ensemble (to be precise,

using the below-discussed Random Forest method) based on

a stratified subsamples of training set in which each label

was represented in an equal amount. The proper balancing

of the training set enabled to tailor a model for the evaluation

metric employed in the competition.

IV. THE WINNING SOLUTION

Let us describe the implemented approach towards feature

extraction and model building for activity tagging problem.

The model used was based on the Random Forest classifier

which is an ensemble of decision trees. It is observed that

in practical situations it often yields high accuracy scores

[2], [6]. Another advantage of the Random Forest classifier

is that it is a fast method: its training and prediction phase

can be parallelized. Is is also relatively easy to handle (i.e.,

its parameter setup) as compared to other advanced ensemble

methods. Both the described below feature extraction and

the final model training procedures (included in the GitHub

repository) can be performed on a single machine within

a couple of hours. In our computations we used a 4–core 2.0

GHz CPU 16 GB RAM machine. The described parameter

optimization steps were performed on a cluster of 10 8–

core 3.40 GHz CPU 16 GB RAM machines to speed up

the computations.

A. Feature extraction

Our approach was particularly focused on the phase dealing

with features’ extraction. The extracted features were based

on literature [5], [9], [10] as well as the authors’ experimental

ideas. The processed training/test dataset is of size about 1.4

GB. For each activity we derived over 4700 features describing

a particular activity. First of all, we filtered the data with

a moving average window of size 20, see Figure 1. Since

the sensor recordings were gathered at a 4.5 ms. resolution,

this roughly corresponds to averaging the arriving over a

window of 0.1 second. This step was not crucial for the model

performance, however, it allowed to filter out the noise slightly.
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TABLE I
COUNTS FOR PAIRS OF LABELS FOR THE TWO CLASSES – TRAINING SET.

crawling crouching moving standing stooping

ladder_down 0 0 465 0 0
ladder_up 0 0 476 0 0

manipulating 0 1764 331 2356 1898
no_action 0 87 0 491 0

nozzle_usage 0 492 0 443 0
running 0 0 4324 0 0

searching 459 0 0 0 0
signal_hose_pullback 0 0 0 98 0

signal_water_first 0 0 41 496 0
signal_water_main 0 46 0 405 0
signal_water_stop 0 0 0 277 0

stairs_down 0 0 644 0 0
stairs_up 0 0 1157 0 0
striking 0 0 0 1022 0

throwing_hose 0 0 0 234 930
walking 0 0 1064 0 0

Next, for each of the time series, we derived basic summary

statistics: quantiles (denoted with qx in Tables III and IV

for x ∈ {0.01, 0.05, 0.1, 0.2, . . . , 0.9, 0.95, 0.99}), standard

deviation (sd), skewness, kurtosis, amplitude (defined as the

difference between 0.99-quantile and 0.01-quantile of the

series), the signal energy (ener; defined as the sum of squares

of consecutive recordings), the ratio between its maximal

absolute value and the median and minimal and maximal of the

first differences of a series (deriv1min and deriv1max).

We extracted a set of quantiles and standard deviations on

the time series processed by the Fast Fourier Transform, to its

real, imaginary and modulus (ModFFT) parts independently.

Additionally, we recorded first 5 Fourier coefficients of the

real and imaginary part of the transformed series. We also

extracted quantiles and standard deviation of the periodogram

(Period) of each time series. Further, for each pair of time

series we computed the linear correlation coefficients (cor).

We also extracted several experimental features for counting

the number of peaks in the series based on their sub-chunks

in which they exceeded the mean by one or two standard

deviations. We imposed a constraint that the minimal length of

a sub-chunk is 5 (for the filtered series). Finally, we counted

the number of times a given series crosses 0 and its mean.

Another property of Random Forest model is that it has

an inherent method of evaluation of feature relevance. Ta-

bles III and IV present the 50 most important features for

two individual classification tasks for the two class attributes.

The criterion of our choice according to which features are

evaluated is the mean decrease in Gini Impurity Index for

classification (column M.D.Gini). As far as the vital func-

tions are concerned, median respiratory rate reading med.rr

is present in the top 50 list for action classification problem.

Let us note that the number of features derived is large and

some of them do not posses a clear interpretation. However,

due to Random Forest model described in the next section

– which includes an inherent method of selecting relevant

attributes – we were able to handle and select relevant content

from this rich set of features.

B. Classification model

For the purpose of tagging the activities we used the

balanced Random Forest [2]. By the balanced Random Forest

classifier we mean an ensemble of trees that are trained on

subsamples of training set in which every label within a given

class is represented in an equal amount. This model was used

in a stepwise approach. In the first step, we trained the model

which aimed to recognize the posture of a firefighter. In the

second one, we trained the model to recognise the main action

of a fireman, given posture class attribute. This approach

is analogous to the classifier chaining method in multilabel

classification tasks [12]. In the tagging phase for new data we

plug the predicted posture labels by the first model as an input

for the model for the action class. The combined predictions

complete the tagging phase for test set.

The idea behind such a chaining method was driven by

the fact that some combinations of activities and posture

labels are mutually exclusive. For example, the posture cannot

be equal to standing when the main activity is equal

to ladder_up. When individual classifiers were trained,

such inconsistencies were very common. We managed to

reduce them by employing the mentioned stepwise approach.

However, we did not succeed in eliminating them at all: our

final submission still contained some fraction of prediction

labels that were mutually exclusive. By mutually exclusive

pairs of labels we mean such a combination of pairs of labels

that were not observed in the training set (see Table II; these

pairs are given in bold). Another way of reducing conflicts

was to aggregate different submissions by, e.g., majority

voting. We observed that aggregating individual submissions

often produced a new submission with a higher preliminary

evaluation score than each of the individual ones. This serves

as a method for providing more stable and accurate predictions

since, e.g., they are based on a larger number of trees.

We also experimented with one-vs-all and single class (i.e.,

a single class was obtained by mapping each pair of labels

within (posture, action) classes to an individual class) versions

of the model. However, the best results were achieved by
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TABLE II
COUNTS FOR PAIRS OF PREDICTED LABELS FOR THE TWO CLASSES – TEST SET.

crawling crouching moving standing stooping

ladder_down 0 1 459 209 0
ladder_up 0 2 452 118 0

manipulating 0 1576 12 1639 2438
no_action 0 71 0 467 31

nozzle_usage 0 454 0 1060 0
running 0 13 3974 0 2

searching 513 42 0 0 0
signal_hose_pullback 0 0 0 96 0

signal_water_first 0 3 10 580 0
signal_water_main 0 55 0 174 0

stairs_down 0 0 533 0 0
stairs_up 0 0 1442 0 0
striking 0 13 7 1026 49

throwing_hose 0 0 0 196 982
walking 0 2 1251 46 2

the described chaining method.

C. Parameter tuning

Due to the discussed issue of performing activities by

different people, the model’s parameter tuning process poses a

real challenge. We were primarily interested in the parameters

responsible for balancing the classifier (parameter sampsize

in R’s randomForest package), the minimal number of

instances in the leafs (parameter nodesize) and the num-

ber of sampled features to perform a test split (parameter

mtry). In our methodology we experimentally set parameters

by monitoring out–of–bag error accuracy estimates for each

of the classes. Additionally, we run 3–fold cross validation

for different pairs of parameters (mtry, nodesize). Our

conclusions was that the parameter nodesize should be

set to 1, i.e., the trees should be grown to maximal depth.

Moreover, given nodesize = 1, setting parameter mtry

to a couple of hundreds already provided stable and high

accuracy scores. Finally, to balance training sets, in our initial

trials we sampled more instances of most represented labels,

i.e., moving within posture class and manipulating and

running within action class as indicated by lower out–of–

bag error estimates for those labels. However, significantly

better preliminary scores were obtained just by sampling each

of the labels in an equal amount. Although choosing parameter

values based on leader–board score is quite a dangerous way

of tuning them, we took this risk for those parameters as the

test set instances differ significantly from the training set ones.

In any case, sampling each of the labels equally appears to

be a reasonable setup. The described sampling procedure was

a crucial step of achieving high evaluation scores. Another

advantage of this methodology is that the models are training

using fewer instances from the training set. This may in turn

prove useful to a reduce overfitting of the model to the training

data. The number of trees in the forest was set to 700, i.e., a

relatively large number accounting for the computation time

of the model.

D. Final submission

During the competition, we submitted over 100 proposals,

which were based on different ideas and changes in model

parameters and enrichment of the training data with new

features. Most of them relied on experiments with different

setup of Random Forest model, but we also tried the Gradient

Boosting Machine (GBM) model (tree-based) [3], [13]. How-

ever, the performance of a less complex Random Forest model

was satisfactory and we devoted more time for optimising

this model. Moreover, we primarily focused on the feature

extraction step.

The best performing model consists of 700 trees, it has

the number of attributes for performing test split equal to

300, stratified over class attribute with sample size of 400

for each posture and 90 for action label. The final submission

was derived by majority voting of three classifiers (in fact,

two–stage classifiers) with weights 1.5 (to avoid ties), 1, 1

respectively:

1) Random forest model with the minimum size a leaf in

a single tree equal to 1 (attribute nodesize = 1)

2) Random forest model with nodesize = 3 and

3) Random forest model with nodesize = 1 trained

on the dataset with exclusion of features associated

with left arm of sensory data and a subset of quantiles

(0.01, 0.05, 0.2, 0.4, 0.6, 0.8, 0.95, 0.99).

The preliminary evaluation scores were 0.858, 0.8573, and

0.8567 for consecutive models. The averaging step was aimed

to reduce the variance of a single model as well as to resolve

the mentioned conflicts due to contradictory labels. We used

this method as we concluded by our previous experimenta-

tion with averaging that it yields higher evaluation scores.

However, in case of our final submission, it yielded a not

significantly lower preliminary evaluation score than the best

one used for aggregating. In any case, we believed that it

would produce more stable and accurate predictions on the

whole test set. The third model was trained on a subset

of attributes since we observed that some recordings in the

test set have constant values of these which we interpret as

missing values. We also excluded a part of quantiles with the
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aim to reduce overfitting of the model to the training sample

(however, this appeared not to be of help in this case). The

final submission yielded score of 0.8577 during preliminary

evaluation and 0.8391 on the whole test set – it was ranked

the first among 79 submitted proposals.

E. Unsolved puzzles a.k.a. future work

By the end of the challenge, we were still left with some

unsolved problems that became evident after the solutions

were submitted.

First of all, our final submission still contained some

mutually exclusive pairs of labels e.g. ladder_down and

standing or walking and standing. This problem was

limited to some extent by the two–stage classification as well

as submissions averaging.

The other problem with our submissions was that our model

never predicted the activity signal_water_stop. Perhaps

feeding the classifier with more instances with this particular

label could resolve this issue. This could also possibly apply to

signal_hose_pullback label within action class as there

where merely 98 instances tagged with this activity. Finally,

as we already mentioned, our preliminary evaluation scores

based on out–of–bag predictions from the Random Forest

model were overly optimistic: the scores on training data

were about 98% of the evaluation metric while the evaluation

of our solution on the whole training data yielded much

lower score of about 84%. This issue could be addressed

by, e.g., performing evaluation and optimisation of a model

via cross-validation, where the validation folds would contain

activities performed by different firefighters. However, this

could not be performed as the information on, e.g., firefighters

identifiers performing a given action was not made available

to the participants. Another possibility would be to derive

more robust features with better generalisation properties for

different people performing the same activities.

V. CONCLUSIONS

The AAIA’15 Data Mining Competition: Tagging Firefighter

Activities at a Fire Scene contest was a very interesting and

absorbing event. Taking part in such competitions requires

some persistence as only few tested ideas prove to give

an improvement for the classification score. It is enough to

mention that our winning solution was submitted within 24

hours of the competition’s deadline.

In our approach, we employed Random Forest classifier and

spend much more time on pre-processing data and engineering

new features. We believe that the key to success were good

data. Using a more sophisticated model may constitute for

improvement in classification, however, as in this competition

raw time series data needed to be processed, we regarded

feature engineering as a more important step. Moreover, proper

balancing of training sample provided major gains in the

evaluation metric employed in this competition.

The code for our submission is available at GitHub. Further

enhancements of the proposed solution are possible. We hope

that it will serve as a benchmark for even better performing

models for the task of tagging activities at a fire scene.
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TABLE IV
EVALUATION OF FEATURE IMPORTANCE ACCORDING TO MEAN DECREASE

IN GINI IMPURITY INDEX FOR THE ACTION CLASS.

Rank Feature name M.D.Gini
1 cor.acc_left_leg_x.gyr_left_leg_y 12.03
2 cor.acc_right_leg_x.gyr_right_leg_y 10.56
3 cor.gyr_left_leg_y.gyr_right_leg_y 10.50
4 q50.acc_left_hand_x 8.71
5 q60.acc_left_hand_x 8.40
6 q30.acc_left_hand_x 8.31
7 q40.acc_left_hand_x 7.95
8 q70.acc_left_hand_y 7.87
9 q20.acc_right_hand_y 7.85

10 q30.acc_right_leg_x 7.54
11 deriv1max.acc_left_arm_z 7.17
12 ModFFT.sd.gyr_left_leg_y 7.15
13 q20.acc_right_arm_z 7.15
14 Period.sd.acc_left_leg_z 7.12
15 ener.gyr_left_leg_y 7.12
16 Period.sd.gyr_left_leg_y 6.97
17 q20.acc_torso_x 6.92
18 q20.acc_left_hand_x 6.90
19 q70.gyr_left_leg_y 6.74
20 q10.gyr_left_leg_y 6.70
21 q70.acc_left_hand_x 6.57
22 q20.acc_right_leg_x 6.56
23 q40.acc_left_leg_x 6.27
24 sd.gyr_left_leg_y 6.21
25 q10.acc_right_arm_z 6.20
26 q30.acc_left_leg_x 6.06
27 q50.acc_left_leg_x 5.91
28 q10.acc_left_hand_x 5.83
29 q40.acc_right_arm_z 5.76
30 ModFFT.sd.acc_left_leg_z 5.64
31 q30.acc_right_arm_z 5.59
32 q95.acc_left_hand_y 5.48
33 q80.gyr_right_hand_y 5.40
34 q80.acc_left_hand_x 5.37
35 ener.acc_right_arm_z 5.37
36 q20.acc_left_leg_x 5.31
37 q90.acc_right_leg_z 5.04
38 q80.gyr_left_leg_y 4.98
39 ener.gyr_right_hand_y 4.85
40 Period.sd.gyr_right_arm_x 4.81
41 q70.acc_torso_x 4.78
42 ener.acc_left_leg_x 4.68
43 deriv1min.acc_left_arm_z 4.68
44 ener.acc_left_hand_x 4.48
45 q60.acc_left_leg_x 4.43
46 q40.acc_left_arm_x 4.43
47 q95.acc_torso_x 4.41
48 q05.gyr_right_hand_y 4.38
49 sd.acc_left_leg_z 4.33
50 Period.sd.acc_right_leg_z 4.28

TABLE III
EVALUATION OF FEATURE IMPORTANCE ACCORDING TO MEAN DECREASE

IN GINI IMPURITY INDEX FOR THE POSTURE CLASS.

Rank Feature name M.D.Gini
1 q40.acc_right_leg_x 38.16
2 q20.acc_right_leg_x 36.25
3 q30.acc_right_leg_x 34.59
4 q01.acc_torso_x 34.23
5 q10.acc_torso_x 32.50
6 q70.acc_left_leg_z 30.99
7 q05.acc_torso_x 29.25
8 q20.acc_torso_x 29.12
9 q30.acc_torso_x 27.50

10 q50.acc_right_leg_x 27.04
11 q80.acc_left_leg_z 25.88
12 ener.acc_right_leg_x 25.79
13 q90.acc_left_leg_z 24.90
14 q60.acc_left_leg_z 23.37
15 q10.acc_right_leg_x 22.35
16 q40.acc_torso_x 21.73
17 q50.acc_torso_x 20.85
18 q40.acc_left_leg_x 19.65
19 q30.acc_left_leg_x 18.86
20 q60.acc_right_leg_x 18.42
21 q95.acc_left_leg_z 17.89
22 q60.acc_torso_x 16.08
23 q20.acc_left_leg_x 14.87
24 q70.acc_right_leg_x 14.65
25 q50.acc_left_leg_x 14.09
26 q60.gyr_left_leg_y 13.17
27 med.rr 12.71
28 q70.gyr_left_leg_y 12.48
29 q80.gyr_right_leg_y 12.24
30 q50.acc_right_hand_x 12.13
31 cor.acc_torso_x.acc_torso_z 11.33
32 q70.acc_torso_x 10.53
33 q99.acc_left_leg_z 10.24
34 q40.acc_right_hand_x 9.84
35 q60.acc_right_hand_x 9.57
36 q80.gyr_left_leg_y 9.46
37 q50.acc_left_leg_z 9.14
38 q40.acc_left_leg_z 8.95
39 q90.acc_torso_x 8.71
40 q95.acc_torso_x 8.62
41 ener.acc_left_leg_x 8.44
42 q60.acc_left_leg_x 8.31
43 Period.sd.acc_right_leg_x 8.09
44 q30.acc_left_leg_z 7.74
45 ener.acc_right_hand_x 7.74
46 q80.acc_torso_x 7.63
47 sd.acc_right_leg_x 7.55
48 ModFFT.sd.acc_right_leg_x 7.22
49 q80.acc_right_leg_x 6.73
50 q90.gyr_right_leg_y 6.65
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