
Efficiency of formal verification of ArchiMate
business processes with NuSMV model checker

Piotr Szwed
AGH University of Science and Technology

E-mail: pszwed@agh.edu.pl

Abstract—We investigate an application of model checking
techniques to automated verification of business processes ex-
pressed in ArchiMate language. As a verification tool the state of
the art symbolic model checker NuSMV is used. The proposed
approach consists in fully automated translation of behavioral
elements embedded in ArchiMate models into a corresponding
representation in NuSMV language and then verifying its prop-
erties specified in CTL. Since our goal is to build an interactive
verification tool, we focus on time efficiency of the verification
process. We report results of tests performed on artificial process
models of various complexity, as well as on a real business
process example. The results show, that the described approach
can be applied successfully, however, verification of complex
business process specifications may face the problem of state
space explosion. In such a case, to make the verification feasible,
various reductions and simplifications can be applied.

Index Terms—ArchiMate, business process verification, model
checking, NuSMV

I. INTRODUCTION

T
HE GOAL of business process verification is to check

if processes intended to be used or already implemented

within an organization exhibit desired behavioral properties.

The analyzed models may represent combinations of manual

tasks performed by employees with operations supported by

IT tools, as well as fully automated specifications run by

process execution engines. In both cases process verification is

appreciated by business organizations, as it can detect potential

errors, design flaws and ambiguities.
Although graphical process modeling tools offer support

for local syntax checking, e.g. correct use of links between

elements of the diagram, some structural errors remain un-

detected, especially those resulting from incorrect use of syn-

chronization mechanisms [1]. Partial analysis of model behav-

ior can be performed by simulation techniques, however, only

application of formal methods can give unequivocal answer

that the verified system meets formally specified requirements.
Obviously, the landscape of business process modeling

notations is dominated by such languages, as BPMN [2] or

EPC [3], [4]. In this work, however, we decided to focus

on verification of process models defined in ArchiMate, a

contemporary, open and independent language intended for

description of enterprise architectures [5]. Although Archi-

Mate comprises a variety of elements intended to model im-

portant aspects of enterprise architectures, constructs allowing

to model behavior can be found only in the Business layer.

They include events, processes (also understood as activities),

interactions, collaborations and several types of junctions.

Formal system verification can by done either by deductive

reasoning or model checking [6]. Deductive reasoning consists

in formulating theorems specifying desired system properties

and proving or falsifying them using manual or automated

techniques. However, deductive reasoning methods gives very

little information on causes, if the verified property does not

hold.

Model checking allows to verify a concurrent system

modeled as a finite state transition graph against a set of

specifications expressed in a propositional temporal logic. It

employs efficient internal representations and quick search

procedures to determine automatically, whether the specifica-

tions are satisfied along the computational paths. Moreover, if

a specification is not met, the verification procedure delivers

a counterexample that can be used to analyze the source of

the error. The main problem faced by model checking is

state space explosion [7]. At the very beginning only small

examples could have been processed. A significant progress in

this technique was achieved with application of ordered binary

decision diagrams (OBBD) [8] allowing to model systems

consisting of millions of states and transitions.

Although formal tools reached the state of the art, they are

not commonly used in the engineering practice. According to

Huuck [9] three factors decide on successful application of

formal tools: they should be simple to use, the time spent

on model preparation and verification should be comparable

with other user activities, and, finally, a tool should provide

a real value, i.e. deliver information that was previously not

available.

We were motivated by an idea of developing a software

tool that fully automatically translates behavioral elements

of a business model expressed in ArchiMate language to

a corresponding finite-state graph required by the model

checker. Then, after running the verification and detecting

errors, valuable information about specifications not met and

counterexamples can be returned to the process designer.

The concept of verification system is presented in Fig. 1.

The business model is defined within Archi [10], a well known

ArchiMate modeling tool.

As a verification platform the state of the art symbolic model

checker NuSMV [11] is used. NuSMV allows to enter a model

comprising a number of communicating finite state machines

(FSM) and automatically checks its properties specified as

Computational Tree Logic (CTL) or Linear Temporal Logic

(LTL) formulas. We have developed an Archi plugin that

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1427–1436

DOI: 10.15439/2015F44

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1427

extracts a subgraph of ArchiMate behavioral elements and

transforms it into NuSMV model descriptions. Specifications

of desired properties are defined by a process designer, how-

ever, a part of them is generated automatically by an analysis

of the process structure.

ArchiMate

Model

NuSMV model

CTL

specification

Verification

results

User

Archi To

NuSMV

plugin

Archi NuSMV

Fig. 1. The concept of the verification system

This paper is a continuation of our previous work [12],

where an initial concept of a model checking verification

system dedicated to ArchiMate models was described. Since

our goal is to build an interactive verification tool, the main

concern in this work is the time efficiency of the verification

process. In order to assess it, we performed tests a for set

of artificial process models of various complexity, as well as

we verified a real business process example. In all cases we

collected information related to the size of state space and

processing time.

The paper is organized as follows: next Section II discusses

various approaches to the verification of business models.

Section III presents basic concepts of ArchiMate language.

It is followed by Section IV, which describes details of

the NuSMV model generation procedure. Section V reports

results of time efficiency tests. Section VI provides concluding

remarks.

II. RELATED WORKS

Application of formal methods to verification of business

processes was surveyed by Morimoto [1]. Author distin-

guished three prevalent approaches: based on automata, Petri

nets and process algebras. The first approach consists in

translating the process description into a set of communicating

automata (state machines) and performing model checking

with such tools, as SPIN [13] or UPPAAL [14]. In analysis

of Petri net models, basically simulation techniques are used,

especially in the case of more expressive colored Petri nets.

Model checking has an established position in verification

of business processes. It was applied in [15] to BPMN

models extended with temporal and resource constraints. In

[16] verification of of e-business processes was achieved by

translation to CSP language and checking refinement between

two specifications. In [17] authors implemented a system that

translated BPEL specification into NuSMV language, what

allowed them to check properties defined as CTL formulas.

Three types of correctness properties were analyzed: invari-

ants, properties of final states and temporal relations between

activities. The first two can be classified as safeness, the

last as the liveness property. Similarly, in work by Fu et

al. [18] CTL was applied to the verification of e-services

and workflows with both bounded and unbounded numbers

of process instances. The work [19] discusses verification of

data-centric business processes. The correctness problem was

expressed in the LTL-FO, an extension to the Linear Temporal

Logic, in which propositions were replaced by First Order

statements about data objects.

Wynn et al. [20] discuss verification tools developed for

models in YAWL language [21], with a special focus on

OR-joins and cancellation constructs. The verified process

properties are predefined. e.g. a soundness property is a

combination of three conditions: a process should always

complete, after the completion all its subprocesses should be

inactive and every its part should be executable. Verification

algorithms for YAWL are closely related to those of Petri nets,

i.e. analyzing reachability graphs and in hard cases applying

Petri nets reduction techniques.

In our previous works [22], [23] we proposed a method

for verification of ArchiMate behavioral specifications based

on deductive reasoning. The described approach consisted in

transforming ArchiMate model into a set of LTL formulas,

then extending it with formulas defining desired system prop-

erties and formally proving them using semantic tableaux

method.

Although verification of business processes have been inves-

tigated for at least 15 years, surprisingly, there is very little

information provided about efficiency of applied techniques.

This in particular concerns the formal verification with the

model checking approach. However, quantified results for a

quite complex process specified in YAWL are given in the

work [20] entitled remarkably “Business Process Verification

- Finally a Reality!”. Without reductions the soundness verifi-

cation of the process stages took about a few dozen seconds;

applying reductions decreased the verification time of the

whole process below ten seconds.

NuSMV [11] is a state of the art model checker that has

been succesfully used for various verification tasks including

formal protocol analysis [24], verification of requirements

specification [25] or planning tasks [26]. The package uses a

special language (named also NuSMV) to define the verified

model as a set of linked finite state machines, as well as its

specification in form of temporal logic formulas. The model

submitted to the verification tool must be manually coded

in NuSMV language or generated from another language

amenable to state transition system, e.g a state charts [27]

or reachability graphs of Petri nets [28].

III. ARCHIMATE

ArchiMate [5] is a contemporary, open and independent

language intended for description of enterprise architectures.

The definition of ArchiMate has been accompanied by an as-

sumption, that in order to build an expressive business model,

it is necessary to use the relationships between completely

different areas, starting from business motivation to business

processes, services and infrastructure.

1428 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

The language comprises five main modeling layers shortly

characterized below.

• Business layer includes business processes and objects,

functions, events, roles and services.

• Application layer contains components, interfaces, appli-

cation services and data objects.

• Technology layer gathers such elements as artifacts,

nodes, software, devices, communication channels and

networks.

• Motivation layer allow to express business drivers, goals,

requirements and principles.

• Implementation&Migration layer contains such elements,

as work package, deliverable and gap.

ArchiMate allows to present the architecture in the form of

views, which, depending on the needs, can include only items

from one layer or can show vertical relations between elements

belonging to different layers, e.g.: a relationship between a

business process and a function of the component software.

ArchiMate provides a small set of constructs that can be

used to model behavior. It includes Business Processes, Func-
tions, Interactions, Events and various connectors (Junctions),

which can be attributed with a logical operator specifying,

how inputs should be combined or output produced. According

to language specification casual or temporal relationships be-

tween behavioral elements are expressed with use of triggering
relation. On the other hand, ArchiMate models frequently use

composition and aggregation relations, e.g. to show that a pro-

cess is built from smaller behavioral elements (subprocesses

or functions).

In should be also noted that Business Activity present in

ArchiMate 1.0 specification was removed in version 2.0.

Instead, an atomic process should be used.

Although the set of behavioral elements seems to be very

limited when compared with BPMN [2], after adopting a

certain modeling convention its expressiveness can be similar

[29]. An advantage of the language is that in allows to

comprise in a single model a broad context of business

processes including roles, services, processed business objects

and elements of lower layers responsible for implementation

and deployment.

Another process modeling notation that can be almost

directly mapped on ArchiMate constructs is Event-driven
Process Chain (EPC) [3], [4]. All behavioral elements of both

languages are exactly the same: events, functions (or processes

in ArchiMate) and various joins and splits (XOR, OR and

AND).

IV. MODEL GENERATION

This section discusses language patterns that can be used to

model ArchiMate elements in NuSMV, as well as details of

the translation procedure.

A. ArchiMate model

The internal structure of an ArchiMate model constitutes a

graph of nodes linked by directed edges. Both nodes and edges

are attributed with information indicating the type of element

or relation. While generating NuSMV code describing behav-

ioral aspects of ArchiMate model, we focus on components of

the Business layer: processes (interactions, functions), events

and various junctions.

It should be noted that ArchiMate behavioral constructs

have no precisely defined semantics. In fact, translation

from ArchiMate specification to NuSMV assigns a semantics,

which, although arbitrarily selected, follows a certain intuition,

e.g. how to interpret an activity or an event.

Definition 1 (ArchiMate model). ArchiMate model AM is a

tuple 〈V,E,C,R, v, e〉, where

• V is a set of vertices,

• E ⊂ V × V is a set of edges,

• C is a set of ArchiMate element types,

• R is a set of relations,

• vt : V → C is a function that assigns element types to

graph vertices

• et : E → R assigns relation types to edges.

As we focus on business layer elements that are used to

specify behavior, it is assumed that C ={Process, Function,

Interaction, Event,Junction, AndJunction, OrJunction, Other}

and R ={triggering, association, composition, other}.

We will discuss the procedure of NuSMV model generation

on a small process example presented in Fig. 2. The whole

process is activated upon occurrence of the event Start. Then

the subprocess P1 is launched, which is followed by P2. If

P2 terminates correctly, a decision is made whether additional

subproces P3 should be executed or the control flow leads

to event End directly. However, execution of P2 can be

interrupted by the event Interrupt, which redirects back to the

process P1.

B. NuSMV model

The basic structural unit in NuSMV language is a module
understood as a set of variables and statements that assign

initial values to variables and define a transition relation.

Depending on the module definition, we may distinguish input

variables corresponding to stimuli, internal state variables and

output variables (actions).

Definition of a module introduces a new type that can be

instantiated. Hence, it is possible to declare a variable of

a module type and bind it during declaration resembling a

constructor call to a number of input variables. Subsequent

variables definitions may reference outputs of other modules

instances as their inputs. This allows to define a system of

communicating state machines of desired complexity, which

propagates input stimuli to its components causing subsequent

state changes and generation of output signals. Typically, the

model integration is achieved within the special main module,

however, it can be distributed among lower level modules,

which are referenced from main.

Fig. 3 shows the structure of NuSMV model corresponding

to the process in Fig. 2. Although the structure of the presented

process is clearly sequential, it is realized by a number of

concurrent state machines (modules) linked by their output

PIOTR SZWED: EFFICIENCY OF FORMAL VERIFICATION 1429

Fig. 2. Sample ArchiMate process specification

Junction_0 :

xorFork

P1:

atomicProcess
Start: event P2:

atomicProcess

Interrupt: event

P3 :

atomicProcess

End : eventJunction :

xorJoin

Junction_Befor

e_End : xorJoin

Fig. 3. Linked NuSMV modules used to model the process in Fig. 2

and input variables. The reusable modules correspond to the

language constructs: processes, events, forks, joins, etc.

After conducting an analysis of components used to de-

scribe ArchiMate processes the following basic modules were

identified and implemented:

• atomicProcessn: n-ary atomic process has exactly one

input, one primary output and n additional outputs, which

can be activated if one of n exceptions occurs. The

exception should be modeled in ArchiMate as an event

linked with the process by the association relation.

• event: has only one input and one output (a boolean flag).

Multiple recipients may use this flag as trigger.

• andFork: used to model AndJunction in Archmate. The

module construction is analogous to event.

• andJoinn: n-ary andJoin produces output signal, if all

n inputs are set to TRUE.

• xorForkn: n-ary xorFork have one input and n outputs.

Upon module activation, only one among possible outputs

will be triggered.

• xorJoinn: n-ary xorJoin has n inputs and sets the output

flag if any of them is set. Moreover it tracks the number

of inputs, e.g. if two from n inputs are activated, the

output flag will be set twice.

Fig. 4 shows the state diagram of the module

atomicProcess1. The number “1” appearing in the

module name indicates the number of additional outputs,

which can be set as a result of exception occurrence. The

process is activated by the input signal trigger. Upon the

signal arrival it changes the state from idle to started.

Then a choice can be made between the states finished
and interrrupted1. Synchronously, the corresponding output

variable is set: either outflag or exccptflag1 to TRUE. The

output variable, whichever is set, will be cleared during the

transition to idle state.

idle started

finished

interrupted1

[trigger]

[]/outflag=TRUE

[]/excptflag1=TRUE

[]/outflag=FALSE

[]/excptflag1=FALSE

atomicProcess1

trigger

outflag

excptflag1

Fig. 4. State machine modeling an atomic process

The NuSMV code for the module is given in Fig. 5. It

should be mentioned, that in the case of a process having n ex-

ceptional outputs, we generate module atomicProcess_n

with states interrupted1,. . . , interrruptedn and n output flags

exceptflag1,. . . , exceptflagn.

Basically, all modules corresponding to ArhiMate language

elements were implemented as state machines, which receive

input(s), change their internal states and produce outputs.

However, due to performance issues we provided also al-

ternative synchronous implementations, which immediately

compute output values based on inputs. An example of

synchronous process implementation is given in Fig. 6. Its

definition uses an invariant that restricts acceptable combina-

tions of variables instead of a transition relation. Basically,

synchronous implementations allow to reduce interleaving,

what makes the internal model representation in NuSMV

smaller and speeds up the verification process. However,

synchronous implementations are rather intended to be used

1430 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

MODULE atomicProcess1(trigger)
VAR

state : {idle,started,finished,interrupted1};
outflag : boolean;
excptflag1 : boolean;

ASSIGN
init(state) := idle;
next(state) :=

case
state = idle & trigger: {started};
state = started : {finished,interrupted1};
state = finished & !outflag : idle;
state = interrupted1 & !excptflag1 : idle;
TRUE : state;

esac;
init(outflag) := FALSE;
next(outflag) :=

case
state = finished : TRUE;
state = idle : FALSE;
TRUE : outflag;

esac;
init(excptflag1) := FALSE;
next(excptflag1) :=

case
state = interrupted1 : TRUE;
state = idle : FALSE;
TRUE : excptflag1;

esac;
SPEC

AG (trigger = TRUE -> AF (outflag = TRUE | excptflag1 = TRUE))

Fig. 5. NuSMV code of the module atomicProcess1 (the number 1
indicates number of exceptional outputs)

for such elements as business events, forks or joins, than

processes, for which activation and termination should be

modeled as two distinguishable events separated by time.

MODULE atomicProcessSynchro1(trigger)
VAR

outflag : boolean;
excptflag1 : boolean;

INVAR
(!trigger & !outflag & !excptflag1) |
(trigger & outflag & !excptflag1) |
(trigger & !outflag & excptflag1)

Fig. 6. Synchronous process implementation, a simplification of the state
machine in Fig. 4

It should be mentioned that in the generated code is

compatible with with the input language of nuXmv [30], the

NuSMV succesor released at the end of 2014. In particular,

the process keyword is not used and the choice between

synchronous and asynchronous execution of model elements

is entirely done within the generated model.

C. Generation procedure

The generation procedure consists of the following stages:

1) Refactoring. With relation to the numbers of inputs and

outputs, it is expected that elements fall into one of two

classes: 1 : m (one input and m outputs) or n : 1 (m

inputs and one output). Hence elements with the arity

n : m are replaced by two two elements: the first is an

appropriate xorJoin or andJoin of arity n : 1. The second

is an atomic process, event or fork of arity 1 : n.

2) Assigning representation. For each ArchiMate element

an appropriate NuSMV module type is selected and

configured based on element type and numbers of

inputs/outputs. Only required modules are generated,

e.g. if the specification uses only processes with one

and three exceptional outputs, only modules defin-

ing atomicProcess1() and atomicProcess3()

will be generated.

3) Main module generation. This step comprises declara-

tion of variables and linking them. For roots (modules

without inputs) appropriate initial variables and transi-

tions are added as well.

4) Generation of specification. The implemented procedure

analyses the graph of elements and generates CTL

specifications. See Section IV-D.

The generated NuSMV code for the main module is

presented in Fig. 7. It can be noticed that variables defi-

nition are unordered and the code contains forward refer-

ences, e.g. the output variable Junction.output is ref-

erenced before P1 definition. The event Stop has two inputs.

As the result of model refactoring an OrJunction (variable

Junction_Before_End) was introduced into the model.

For the event Start constituting a root element, the boolean

variable Start_trigger with corresponding transition was

added. The initial value of Start_trigger is FALSE, and

the next value is chosen from {FALSE,TRUE}.

MODULE main
VAR

P1 : atomicProcess(Junction.output);
P2 : atomicProcess1(P1.outflag);
P3 : atomicProcess(Junction_0.outflag2);
Start : event(Start_trigger);
End : event(Junction_Before_End.output);
Junction : xorJoin(Interrupt.outflag,Start.outflag);
Junction_0 : xorFork(P2.outflag);
Interrupt : event(P2.excptflag1);
Junction_Before_End : xorJoin(P3.outflag,Junction_0.outflag1);
Start_trigger : boolean;

ASSIGN
init(Start_trigger) := FALSE;
next(Start_trigger) := {FALSE,TRUE};

Fig. 7. Generated NuSMV main module code for the process in Fig. 2

D. Generation of specification

As a specification language we use CTL, which allows

to formulate properties applying to a tree of computations

(paths) starting from a given state. As the tree defines a set

of imaginable futures, CTL is called the branching time logic.

CTL formulas are combinations of two types of operators path
quantifiers and linear-time operators.

The path quantifiers are:

• Ap – p holds for every path in a tree and

• E p – there exists a path in a tree, for which p holds

Temporal operators include:

• F p – p holds true sometime in the future,

PIOTR SZWED: EFFICIENCY OF FORMAL VERIFICATION 1431

• Gp – p holds true globally in the future,

• X p – p holds true next time and

• pU q - p holds true until q holds true.

Usually a specification formally describing requirements is

entered by a user. However, we tried to derive some liveness
requirements based on control flows within ArchiMate model

(see Definition 1).
The implemented procedure generating a set of specifica-

tions comprises four steps:

1) Build a set of paths Π = {πi} within the ArchiMate

model,

2) Restrict elements in πi to events only (elements from

the set Evt)

3) Build a partial mapping R : Evt → 2Evt

4) Generate the specification for each pair (ei, R(ei)) in R

In the first step (1) a depth-first search starting from roots
(ArchiMate elements having no predecessors) is performed.

It returns a set of paths Π = {πi} comprising ArchiMate

elements linked by control flow relation. For a path πi =
(eib, . . . , eie), its last element eie is either a final element

in the model (without successors) or a branching element

(already present in πi). The set of obtained paths reflects only

topological relations within the process model. The procedure

does not attempt to interpret the model according to any

behavioral semantics. This is left to the verification tool.
For the example presented in Fig. 2 the set of paths Π

comprises three elements:
π1 = (Start, Junction, P1, P2, Junction_0,

Junction_Before_End, End)

π2 = (Start, Junction, P1, P2, Junction_0,

P3, Junction_Before_End, End)

π3 = (Start, Junction, P1, P2, Interrupt,

Junction)

Any requirements specification must reference terms, in

which the model is expressed. We decided to focus on ele-

ments of Event type, which in business process definitions are

typically used to mark important process states (e.g. initial,

final and intermediate events).
In the step (2) the paths from Π are restricted to ArchiMate

elements being events. For the discussed example the restricted

set of paths Πr={(Start, End), (Start, Interrupt)}.
In the next step (3) a partial mapping R : Evt → 2Evt

is built. The mapping R assigns all (potentially) reachable

events to first events appearing in paths from Π. Continuing

the example from Fig. 2, the mapping R contains only one

pair: (Start, {End,Interrupt}).
Finally, in the step (4) for each event e ∈ domR, a pair

(e,R(e)) is converted into a set of specifications taking the

form of (1), where G = {AG,EG}, F = {AF,EF} and

O = {
∨
,
∧
}.

G((f → F(O
li∈R(f)

li))) (1)

Fig. 8 gives specifications generated for the process

from Fig. 2. The specification AG (Start.outflag ->

SPEC

AG(Start.outflag

-> AF(Interrupt.outflag & End.outflag))

SPEC

AG(Start.outflag

-> AF(Interrupt.outflag | End.outflag))

SPEC

AG(Start.outflag

-> EF(Interrupt.outflag & End.outflag))

SPEC

AG(Start.outflag

-> EF(Interrupt.outflag | End.outflag))

SPEC

EG(Start.outflag

-> AF(Interrupt.outflag & End.outflag))

SPEC

EG(Start.outflag

-> AF(Interrupt.outflag | End.outflag))

SPEC

EG(Start.outflag

-> EF(Interrupt.outflag & End.outflag))

SPEC

EG(Start.outflag

-> EF(Interrupt.outflag | End.outflag))

Fig. 8. Generated CTL specifications for the process in Fig. 2

EF (Interrupt.outflag | End.outflag)). is

equivalent to the statement: for every path, starting with
Start event, it is possible to reach a state, where End or
Interrrupt events occur. This requirement is obviously true

for the discussed example. On the other hand specifications,

where conjunction of reachable events occurs are false.

An example false specification is AG(Start.outflag

-> AF(Interrupt.outflag & End.outflag)),

what was justified by a counterexample trace comprising

20 elements produced by NuSMV. The types of generated

specification are controlled by program parameters. In

particular, generation of specifications using conjunctions of

reachable events can be switched off.

V. EXPERIMENTS

The goal of the conducted experiments was to assess the

efficiency of the workflow shown in Fig. 1, in which:

1) An ArchiMate specification is prepared with Archi tool.

2) With “one-click” a corresponding NuSMV model is

generated.

3) A set of specifications for the obtained model is checked

by calling NuSMV.

In particular we were focused on the time efficiency of

the third step, as it seemed to be crucial for the presented

approach. During the experiments NuSMV was launched as

an external process in the interactive mode, then commands to

load models, report numbers of variables and check automat-

ically generated specifications were submitted. The NuSMV

output was grabbed and information on models processed, as

well as the execution times were collected.

A. Artificial test cases

Tests reported in this section aimed at assessing the rela-

tionship between a process complexity and the time required

to check CTL specifications with NuSMV. Obviously, process

1432 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

specifications can form very diverse structures, however, we

assumed that the key feature characterizing the process com-

plexity is the numbers of branches and loops in the control

flow. Hence, the basic process pattern, which was analyzed,

comprised several branches and loops placed between two

events Start and Stop. Fig. 9 shows an example, in which four

subprocesses are arranged to form two branches and two loops.

We have prepared a number of test cases being variations of

this pattern and the results were summarized in Table I.

Fig. 9. Test case 4p2b2l: a process consisting of four subprocesses forming
two branches and two loops

Each case name in Table I is encoded as a string:

n pm{b|ab} k l, where n–number of processes, m–number of

branches and k–number of loops. Symbol ’b’ appearing in the

case name means that the XOR branches (xorJoins) were used,

wheras ’ab’ corresponds to parallel branches placed between

two AndJoins.

The column marked as CC gives the value of cyclomatic

complexity, a commonly used measure that can be interpreted

as the number of independent paths in the specification [31].

It is calculated according to following formula: cc = e-n+2p,

where where e is the number of edges, n is the number of

nodes and p is the number of connected components. The for-

mula is applicable to sequential processes. For processes con-

taining parallel activities the number of independent paths can

be smaller, as activities starting and finishing synchronously

actually build up a single control flow paths. Corrected values

of cyclomatic complexity are added in parentheses.

Subsequent columns give numbers of state variables, total

numbers of states and numbers of reachable states. Dia is a

system diameter, i.e. the longest path from the initial state.

Columns T and TPS give total execution times and the

execution time divided by the number of specifications (For

each case 8 specifications were automatically generated and

tested.)

NuSMV uses internally OBDD as a representation of a

state transition system. It is well known, that the size of

OBDD depends heavily on the variable ordering [8], [32],

[33]. Selecting an optimal ordering is a NP-hard task, however

several heuristics can be used to improve the ordering and in

consequence reduce the model size, as well as the processing

time. The corresponding option offered by NuSMV is called:

dynamic variable ordering. The column TD gives the total

processing time for dynamic variable ordering (the sift algo-

rithm described in [34] was applied), whereas TDPS shows

TD divided by the number of specifications.

The test cases are arranged into three groups. The first

comprises process specifications with various numbers of

branches, however without any loops. As it can be observed,

in spite of growth of problem size, the numbers of reachable

states and processing times remain relatively small.

The second group contains hard cases, i.e. those with several

OR branches and loops. This makes both the numbers of

reachable states very high and for the most complex case

24p12b12 (24 processes, 12 branches and 12 loops) the time

spent to check one specification ranges to 80 seconds.

The third group includes cases with parallel branches that

are synchronized at an AndJoin. This makes the space of

reachable states much smaller, as well as keeps execution times

relatively small (up to 560ms for the case 24p12ab12l). It can

be noticed that for the cases 7p2ab5l, 8p3ab5l, 9p4ab5l and

10p5ab5l the numbers of reachable states are equal. This is

a natural consequence of the model structure. Regardless of

the number of parallel subprocesses, they all start and finish

in the same states synchronized by the AndJoin.

Table I shows that applying dynamic variable ordering can

be beneficial for complex models, e.g. for 16p8b8l, 20p10b10l

and 24p12b12l it allowed to reduce the processing time up to

90%. For smaller models it was inefficient.

B. Business process example

In this section we present results of performance tests for a

medium size business process from the banking domain. The

process evaluates a credit order sent over Internet and issues an

approval or a rejection decision. Its description was prepared

with Archi based on the EPC model published in [35] (on the

page 44).

The process definition comprises five views presented in

Fig. 10, Fig. 11 and Fig. 12. Following the modeling approach

typical for the EPC, multiple events defining process states or

conditions are used. Moreover, the events mark boundaries

of subprocesses represented by the views. They bind them

into a coherent model comprising branches or loops, whose

endpoints are indicated by the referenced events. Due to

limited space the presented models are restricted to behavioral

elements, i.e. they do not comprise information on engaged

roles, involved systems and processed data, which can be

specified in ArchiMate.

The process is divided into three stages. The first, presented

in Fig. 10, aims at collecting customer data for the received

credit order. The subprocess handles two cases: when a cus-

tomer is new or already present in the database of the banking

system, what may influence the credit decision.

The next stage shown in Fig. 11 ends with three conditions:

the credit order is accepted (green credit decision), rejected

(red credit decision) or inconclusive (gray credit decision).

The final stage (Fig. 12) comprises activities, whose goals

are to prepare the credit offer (in the case of green credit

PIOTR SZWED: EFFICIENCY OF FORMAL VERIFICATION 1433

TABLE I
RESULTS OF PERFORMANCE TESTS.

Name CC Vars Total states Total states Reachable Dia T [ms] TPS

[ms]
TD

[ms]
TDPS

[ms]

2p2b0l 2 15 2
12

· 3
2
· 4

1 147456 910 14 24.47 3.06 40.14 5.02

3p3b0l 3 19 2
15

· 3
3
· 5

1 4423680 1830 14 38.18 4.77 86.03 10.75

4p4b0l 4 23 2
18

· 3
4
· 6

1
1.27402 · 10

8 3118 14 50.37 6.30 110.30 13.79

5p5b0l 5 27 2
21

· 3
5
· 7

1
3.56726 · 10

9 4810 14 57.27 7.16 205.65 25.71

8p8b0l 8 39 2
30

· 3
8
· 10

1
7.04482 · 10

13 12670 14 135.37 16.92 355.86 44.48

12p12b0l 12 55 2
42

· 3
12

· 14
1

3.27222 · 10
19 30990 14 357.63 44.70 663.00 82.87

4p2b2l 4 27 2
21

· 3
4
· 4

1
· 5

1
3.39739 · 10

9 91926 25 1032.42 129.05 596.09 74.51

6p3b3l 6 35 2
27

· 3
6
· 5

1
· 6

1
2.93534 · 10

12 342294 25 1025.12 128.14 1356.48 169.56

8p4b4l 8 43 2
33

· 3
8
· 6

1
· 7

1
2.36706 · 10

15 941906 25 3808.37 476.05 2895.52 361.94

10p5b5l 10 51 2
39

· 3
10

· 7
1
· 8

1
1.8179 · 10

18 2153330 25 11216.15 1402.02 7116.50 889.56

16p8b8l 16 75 2
57

· 3
16

· 10
1
· 11

1
6.82405 · 10

26
1.36819 · 10

7 25 74301.78 9287.72 7552.02 944.00

20p10b10l 20 91 2
69

· 3
20

· 12
1
· 13

1
3.21085 · 10

32
3.44569 · 10

7 25 240468.40 30058.55 22965.01 2870.63

24p12b12l 24 107 2
81

· 3
24

· 14
1
· 15

1
1.43403 · 10

38
7.47279 · 10

7 25 640779.35 80097.42 70495.57 8811.95

7p2ab5l 7(6) 37 2
29

· 3
7
· 8

1
9.39309 · 10

12 109038 25 978.63 122.33 1428.27 178.53

8p3ab5l 8(6) 39 2
30

· 3
8
· 8

1
5.63586 · 10

13 109038 25 1011.67 126.46 1195.66 149.46

9p4ab5l 9(6) 41 2
31

· 3
9
· 8

1
3.38151 · 10

14 109038 25 1340.40 167.55 1362.44 170.30

10p5ab5l 10(6) 43 2
32

· 3
1
0 · 8

1
2.0289 · 10

15 109038 25 1059.06 132.38 1811.73 226.47

16p8ab8l 16(9) 61 2
44

· 3
16

· 11
1

8.33015 · 10
21 265530 25 6205.62 775.70 4423.14 552.89

20p10ab10l 20(11) 73 2
52

· 3
20

· 13
1

2.0414 · 10
26 418078 25 3257.10 407.14 7084.61 885.58

24p12ab12l 24(13) 85 2
60

· 3
24

· 15
1

4.88429 · 10
30 614578 25 4484.91 560.61 12463.37 1557.92

Fig. 10. Collect data

Fig. 11. First stage of the credit decision

decision), process credit order rejection for the red credit

decision or reevaluate the submitted documents, if the decision

was inconclusive (gray). The third case loops back the control

flow to the results of the second stage.

Based on this specification the NuSMV model was

generated. During the refactoring phase several joins were

added before events: Ready to check, Green credit decision,

Gray credit decision and Red credit decision events. An

automatically generated specification checked during the

experiment was the following:

AG(Credit_order_arrived.outflag ->

AF(Credit_offer_sent.outflag |

Contentual_problems.outflag |

Credit_order_rejected.outflag)).

It expresses the requirement that each credit order ends with

a conclusive decision (an offer is sent or the order is rejected)

or there are some problems related to the collected documents

(conentual problems) that need further processing.

The cyclomatic complexity of the whole model was equal

cc = 55−42+2·1 = 15(14). The value in the parentheses takes

into account parallel tasks: Create and send correspondence
and Archive documents.

Performing model checking for interleaving semantics of

events, forks and joins failed. Without dynamic variable or-

1434 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 12. Final stages of the credit decision

dering NuSMV consumed about 6GB memory. After applying

dynamic ordering, the memory footprint was smaller (less then

500kB). However, in both cases the verification processes did

not terminate in an acceptable time. This result was somehow

disappointing, because based on the cyclomating complexity

value, we were expecting that the verification is feasible.

For the synchronous semantics of events, binary forks and

joins the model verification succeeded. The total number of

states was equal 253 · 317 · 52 ≈ 2.90798 · 1025. The number

of reachable states was equal 3.05508 · 109 (i.e. greater by

2 orders of magnitude than the most complex processes in

Table I). Without dynamic variable ordering the procesisng

time was really long: 768522.57 ms = 12.5 min. However,

applying dynamic variable reordering (sift method) reduced it

to 41706.78 ms. We consider this result acceptable.

VI. CONCLUSIONS

This paper investigates the problem of automatic verifica-

tion of behavioral specification embedded within ArchiMate

models. We propose an approach consisting in fully auto-

matic translation of ArchiMate specification into a model in

NuSMV language and then verifying it with the NuSMV

model checker. Requirements specification in form of CTL

formulas can be entered by user, but the implemented tool

is capable of generating specifications based on analysis of

control flows.

The main concern of our work was the time efficiency of

the verification process. We tested it on a set of of artificial

business process specifications, as well as on a real business

process example.

The results show, that the described approach can be applied

in an interactive verification tool, however, due to state space

explosion problem, verification of complex business process

specifications can still be a challenge for symbolic model

checkers. Hence, dedicated model generation techniques fo-

cusing on keeping models compact, e.g. simplifying the

models, avoiding interleaving and generating partial models,

should be employed.

Although the presented considerations are related to pro-

cesses defined ArchiMate language, the results of tests are

applicable to process models defined in other languages in-

cluding BPMN and EPC.

REFERENCES

[1] S. Morimoto, “A survey of formal verification for business process
modeling,” in Proceedings of the 8th international conference on Com-
putational Science, Part II, ser. ICCS ’08. Berlin, Heidelberg: Springer-
Verlag, 2008. doi: 10.1007/978-3-540-69387-1_58. ISBN 978-3-540-
69386-4 pp. 514–522.

[2] OMG, “Business Process Model and Notation (BPMN) version
2.0,” OMG, Tech. Rep., January 2011. [Online]. Available: http:
//www.omg.org/spec/BPMN/2.0

[3] A. Scheer, Aris - Business Process Modeling, ser. ARIS - Business
Process Modeling. Springer, 1999, no. v. 2. ISBN 9783540644385

[4] A.-W. Scheer and M. Nüttgens, “ARIS architecture and reference models
for business process management,” in Business Process Management.
Springer, 2000, pp. 376–389.

[5] The Open Group, Open Group Standard. Archimate 2.1 Specificattion.
Van Haren Publishing, Zaltbommel, 2013. ISBN 978 94 018 0003 7

[6] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” ACM Computing Surveys (CSUR), vol. 28, no. 4, pp.
626–643, 1996.

[7] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking
and the state explosion problem,” in Tools for Practical Software
Verification. Springer, 2012, pp. 1–30.

[8] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys (CSUR), vol. 24, no. 3,
pp. 293–318, 1992.

PIOTR SZWED: EFFICIENCY OF FORMAL VERIFICATION 1435

[9] R. Huuck, “Formal verification, engineering and business value,” in
Proceedings First International Workshop on Formal Techniques for
Safety-Critical Systems, Kyoto, Japan, November 12, 2012, ser. Elec-
tronic Proceedings in Theoretical Computer Science, P. C. Olveczky
and C. Artho, Eds., vol. 105. Open Publishing Association, 2012. doi:
10.4204/EPTCS.105.1 pp. 1–4.

[10] P. Beauvoir, “Archi, archimate modelling tool,” 2015, [Online; accessed
March 2015]. [Online]. Available: http://www.archimatetool.com/

[11] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An opensource
tool for symbolic model checking,” in Computer Aided Verification.
Springer, 2002, pp. 359–364.

[12] P. Szwed, “Verification of ArchiMate behavioral elements by
model checking,” in Computer Information Systems and Industrial
Management, ser. Lecture Notes in Computer Science, K. Saeed and
W. Homenda, Eds. Springer International Publishing, 2015, vol.
9339, pp. 132–144. ISBN 978-3-319-24368-9. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-24369-6_11

[13] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on
software engineering, vol. 23, no. 5, pp. 279–295, 1997.

[14] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime, “Uppaal-tiga: Time for playing games!” in Computer Aided
Verification. Springer, 2007, pp. 121–125.

[15] K. Watahiki, F. Ishikawa, and K. Hiraishi, “Formal verification of
business processes with temporal and resource constraints,” in Systems,
Man, and Cybernetics (SMC), 2011 IEEE International Conference on.
IEEE, 2011, pp. 1173–1180.

[16] B. Anderson, J. V. Hansen, P. Lowry, and S. Summers, “Model checking
for e-business control and assurance,” Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, vol. 35, no. 3,
pp. 445–450, 2005. doi: 10.1109/TSMCC.2004.843181

[17] M. Mongiello and D. Castelluccia, “Modelling and verification of BPEL
business processes,” in Model-Based Development of Computer-Based
Systems and Model-Based Methodologies for Pervasive and Embedded
Software, 2006. MBD/MOMPES 2006. Fourth and Third International
Workshop on. IEEE, 2006, pp. 5–pp.

[18] X. Fu, T. Bultan, and J. Su, “Formal verification of e-services and work-
flows,” in Web Services, E-Business, and the Semantic Web. Springer,
2002, pp. 188–202.

[19] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu, “Automatic verification of
data-centric business processes,” in Proceedings of the 12th International
Conference on Database Theory. ACM, 2009, pp. 252–267.

[20] M. T. Wynn, H. Verbeek, W. M. van der Aalst, A. H. ter Hofstede, and
D. Edmond, “Business process verification-finally a reality!” Business
Process Management Journal, vol. 15, no. 1, pp. 74–92, 2009.

[21] W. M. Van der Aalst and A. H. Ter Hofstede, “YAWL: yet another
workflow language,” Information systems, vol. 30, no. 4, pp. 245–275,
2005.

[22] R. Klimek and P. Szwed, “Verification of ArchiMate process
specifications based on deductive temporal reasoning,” in Proceedings

of the 2013 Federated Conference on Computer Science and Information
Systems, Kraków, Poland, September 8-11, 2013., M. Ganzha, L. A.
Maciaszek, and M. Paprzycki, Eds., 2013, pp. 1103–1110. [Online].
Available: http://fedcsis.org/2013/

[23] R. Klimek, P. Szwed, and S. Jedrusik, “Application of deductive reason-
ing to the verification of ArchiMate behavioral elements,” Informatyka
Ekonomiczna, vol. 29, pp. 76–97, 2013.

[24] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L.
McMillan, and L. A. Ness, “Verification of the futurebus+ cache
coherence protocol,” Formal Methods in System Design, vol. 6, no. 2,
pp. 217–232, 1995.

[25] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso, “Model
checking early requirements specifications in tropos,” in Requirements
Engineering, 2001. Proceedings. Fifth IEEE International Symposium
on. IEEE, 2001, pp. 174–181.

[26] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, “Mbp: a
model based planner,” in Proc. of the IJCAIŠ01 Workshop on Planning
under Uncertainty and Incomplete Information, 2001.

[27] E. Clarke and W. Heinle, “Modular translation of statecharts to smv,”
Citeseer, Tech. Rep., 2000.

[28] M. Szpyrka, A. Biernacka, and J. Biernacki, “Methods of translation of
Petri nets to NuSMV language,” in Proceedings of the 23th International
Workshop on Concurrency, Specification and Programming, Chemnitz,
Germany, September 29 - October 1, 2014., ser. CEUR Workshop
Proceedings, L. Popova-Zeugmann, Ed., vol. 1269. CEUR-WS.org,
2014, pp. 245–256. [Online]. Available: http://ceur-ws.org/Vol-1269/
paper245.pdf

[29] P. Szwed, W. Chmiel, S. Jedrusik, and P. Kadluczka, “Business processes
in a distributed surveillance system integrated through workflow,” Au-
tomatyka/Automatics, vol. 17, no. 1, pp. 127–139, 2013.

[30] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuxmv symbolic model
checker,” in CAV, ser. Lecture Notes in Computer Science, A. Biere and
R. Bloem, Eds., vol. 8559. Springer, 2014. ISBN 978-3-319-08866-2
pp. 334–342.

[31] T. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, vol. SE-2, no. 4, pp. 308–320, Dec 1976. doi:
10.1109/TSE.1976.233837

[32] H. R. Andersen, “An introduction to binary decision diagrams,” Lecture
notes, available online, IT University of Copenhagen, 1997.

[33] P. Szwed and A. Ligeza, “Application of OBDD diagrams in verification
of tabular rule systems,” Schedae Informaticae, vol. 14, 2005.

[34] R. Rudell, “Dynamic variable ordering for ordered binary decision dia-
grams,” in Proceedings of the 1993 IEEE/ACM international conference
on Computer-aided design. IEEE Computer Society Press, 1993, pp.
42–47.

[35] B. Weiß, “Business process modelingand analysis in banks,” 2011,
[Online; accessed April 2015]. [Online]. Available: http://www.bpm.
scitech.qut.edu.au/seminars/2011/BurkhardWeissBPMSeriesTalk.pdf

1436 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

