
Comparative Evaluation of the Stochastic Simplex
Bisection Algorithm and the SciPy.Optimize Module

Christer Samuelsson
German Research Center for Artificial Intelligence

Email: christer.samuelsson@dfki.de

Abstract—The stochastic simplex bisection (SSB) algorithm
is evaluated against the collection of optimizers in the Python
SciPy.Optimize module on a prominent test set. The SSB al-
gorithm greatly outperforms all SciPy optimizers, save one,
in exactly half the cases. It does slightly worse on quadratic
functions, but excels at trigonometric ones, highlighting its
multimodal prowess. Unlike the SciPy optimizers, it sustains a
high success rate. The SciPy optimizers would benefit from a
more informed metaheuristic strategy and the SSB algorithm
would profit from quicker local convergence and better multidi-
mensional capabilities. Conversely, the local convergence of the
SciPy optimizers is impressive and the multimodal capabilities
of the SSB algorithm in separable dimensions are uncanny.

I. INTRODUCTION

Stochastic optimization [1], i.e., using randomness to guide

search, is currently popular: genetic algorithms [2], particle

swarm optimization [3], and ant-colony optimization [4] are

celebrity approaches. These schemes are not only applied

to discrete problems, but also to continuous ones, especially

for objective functions where the gradient and Hessian are

not readily available, e.g., where the function value is only

obtainable by expensive simulation. They are also used to

optimize highly multimodal functions.

We here compare the performance of the stochastic simplex

bisection (SSB) algorithm [5] with that of the optimizers of

the Python SciPy.optimize module [6]. The former employs

a common stochastic optimization scheme, but unlike other

stochastic approaches, it applies the scheme to search space

regions, rather than to individual points. The latter are high-

quality, local optimizers that are available with most Python

distributions. The SSB algorithm has not previously been

tested against other optimizers. We here seek to rectify this.

The rest of the article is organized as follows. Section II

presents the stochastic simplex bisection algorithm. Section III

describes the optimizers of the Python SciPy.Optimize module.

Section IV details the experimental setup, and reports and

analyses the findings. It also contains a short digression on

the employed success criterion and its success regions.

II. THE STOCHASTIC SIMPLEX BISECTION ALGORITHM

Consider the simple problem where we wish to minimize

f(x), which is strictly convex on R. Assume further that we

have found x1 < x3 < x5, where f(x1) ≥ f(x3) ≤ f(x5),
i.e., that we have found an interval that has an interior point

x3 with a smaller function value than its end points. 1

Algorithm for Convex Functions

Choose x2 ∈]x1, x3[and x4 ∈]x3, x5[, i.e., choose

interior points x2 and x4.

If f(x2) ≤ f(x3), recurse on x1, x2, x3.

If f(x4) ≤ f(x3), recurse on x3, x4, x5.

Otherwise, recurse on x2, x3, x4.

We thus recurse on the subinterval that has an interior point

with a smaller function value than its end points. 2

The SSB algorithm generalizes this to non-convex functions

in n dimensions. It generalizes an interval to a simplex, rather

than to a hyperbox, The latter has 2n corners, and bisecting

it requires computing the function value in 2n−1 new corners.

The former has only n + 1 corners, and bisecting it only

requires calculating the function value in one new point.

Core SSB Algorithm

Given a set {Tk} of non-overlapping simplexes that

partition the original simplex T0, each equipped with

a positive score sk.

Select the next simplex Tk to bisect at random with

probability
sk

∑

k′ sk′

.

Select a bisection point at random roughly in the

middle of the longest edge of Tk.

Replace Tk with its two offspring.

This algorithm is complete in the sense that no portion of

the search space is ever discarded, and it avoids redundancy

by using non-overlapping simplexes. These are two common

pitfalls of stochastic optimization. The algorithm still reaps

the benefits of stochastic search in exploring more promising

regions earlier, in average, while granting also less promising

regions a non-zero chance of being explored.

It is often desirable to start from a hyperbox. For example,

constraints often take the form of bounds on the individual

variables of each dimension. The tested SSB algorithm restarts

the core SSB algorithm repeatedly from a hyperbox created

in the previous iteration. It uses an outer loop over epochs

that maintains the hyperbox, and an inner loop over rounds

that implements the core SSB algorithm. Note that although

partitioning a hyperbox into a set of simplexes is trivial in

1By strict convexity, one of the two end point values must be strictly larger,
i.e., either f(x1) > f(x3) or f(x3) < f(x5), or both.

2If f(x2) = f(x3), the algorithm could be clever and instead recurse on
x2, x23, x3, with x23 ∈]x2, x3[, where, by necessity f(x2) > f(x23) <
f(x3), due to strict convexity. Similarly for f(x4) = f(x3).

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 573–578

DOI: 10.15439/2015F47

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 573

two dimensions, it is a challenging and time-consuming task

in higher ones, see [7] and [8].

A. Outer Loop: Maintaining a Hyperbox

The tested SSB algorithm consists of two nested loops. The

outer loop over epochs maintains a hyperbox. Each epoch runs

the inner loop over rounds, where each round consists of one

simplex bisection, see Section II-B. The terms best point, very

best point, and epoch phases will be defined shortly.

The hyperbox is modified after each epoch. If the elapsed

epoch had enough best points, this is a hyperbox that contains

all best points and the very best point as interior points.

Otherwise, the previous hyperbox is increased in size and

re-centered around the current very best point, which may

have changed during the epoch. In the tested SSB algorithm,

the padding is 100 percent of the interval length in each

dimension, when there are enough best points, and the old

interval length is quadrupled, when there aren’t. It turns out

that in the former case, the simple scheme of updating the

lower and higher bounds of the hyperbox in each dimension,

for each new best point, works well in practice.

A best point is any point found during the second phase

of an epoch that is the best this far in that epoch. The best

points thus start over each epoch. The very best point, on the

other hand, is the globally best point found in any round of

any epoch.

The first phase of each epoch consists of the first quarter of

its rounds. The rest of its rounds constitute the second phase.

Other choices than one quarter were tested, but found less

effective, albeit one third only marginally so. Typical figures

are 60 epochs of 500 rounds each, but this can be varied

with the search conditions, cf. Section IV. Higher dimensions

require more rounds; fewer function evaluations entail fewer

epochs and much fewer rounds.

The outer loop may seem somewhat ad hoc. It captures the

idea, that if there has been non-trivial local improvements,

search should focus on these improvements, yet also consider

the globally best point found. We note that any new best point

must be a bisection point, or the midpoint of a simplex, with a

lower function value than its corner points. In one dimension,

these cases coincide. For convex functions, such an interval

must contain the minimum, which our introductory algorithm

exploits. For non-convex functions, or in several dimensions,

the area surrounding such a point merits further investigation.

B. Inner Loop: Bisecting Simplexes

The inner loop over rounds bisects simplexes. Each bisec-

tion replaces one simplex with two new ones. In the first phase,

the simplexes are processed as a first-in-first-out (FIFO) queue

to create an initial grid. In the second phase, the next simplex

to bisect is selected randomly with probability

sk
∑

k′ sk′

where sk is the score of the kth simplex. Binary trees provide

an efficient way of stochastic selection that allows adding and

deleting scored elements. Indexing the K simplexes in a binary

tree yields O(log2 K) time complexity for lookup, addition,

and deletion, whereas naively using a list swells this to O(K).
We define the simplex scores sk as follows. Let {Tk =

⟨x(1)
k , . . . ,x

(n+1)
k ⟩} be a collection of n-dimensional sim-

plexes with (dropping the index k for clarity),

x̄ =
1

n+ 1

n+1
∑

i=1

x
(i) ; f̄ =

f(x̄) +
∑n+1

i=1 f
(

x
(i)
)

n+ 2

where x̄ is the midpoint and f̄ is the average function value

over the corners and the midpoint.

f− = min
(

f(x̄),min
i

f
(

x
(i)
))

; δ =
f̄ − f−

4
f⋆ = f− − δ ; f⋆ ← max

(

0, f⋆ − fvb
)

f⋆ is a combined measure of the lowest function value f−

and an estimate δ of how much it might potentially decrease,

judging by the average value f̄ . We make f⋆ offset-invariant

by subtracting the lowest function value fvb, in the very best

point, then cap it to be at least zero.

s = l · exp (−λf⋆) ; l = max
ij

∣

∣

∣
x
(i) − x

(j)
∣

∣

∣

λ = λ0 ·max

(

1,
1

fw − fvb

)

The simplex score is l · exp(−λf⋆), where l is the length of

its longest edge. λ is λ0 times the reciprocal of the difference

between the highest function value fw of the corners of the

bounding box and the lowest function value fvb. This renders

the score scale-invariant. λ
λ0

is capped to be at least one; λ0

defaults to one. Thus, all simplexes must be rescored whenever

a new very best point is found. As this happens rather seldom,

it incurs very little overhead in practice.

Each round only creates two new simplexes: the longest

edge of the selected simplex is bisected. All corners remain

the same, save one of the two connected by this edge. Let these

corners be x
(i) and x

(j). The edge bisection point x̄′—the new

corner—is also randomized to counter-act any symmetries of

the objective function f(x) in its argument x:

x̄
′ = (0.5 + θ)x(i) + (0.5− θ)x(j) for θ ∼ U(−α, α)

An empirically good choice is α = 0.05 (max 10% random-

ness). x̄′ replaces x
(i) in one offspring simplex and x

(j) in

the other one. Thus only three new function values need be

calculated for each bisection: f(x̄′) and the function values of

the midpoints of the two new simplexes.

C. Related Work

The SSB algorithm uses a typical stochastic optimization

scheme. It maintains a set of elements, each with a positive

score; randomly selects some elements based on the scores;

uses these elements to explore the search space, often creating

new elements in the process; and updates the set of elements

and their scores according to the findings. The scheme is

however here applied to regions of the search space, not to

points in it, as in, e.g., [9], [10], [11], [12], [13], and [14].

574 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

The simplex method [15], Chapter 9, doesn’t actually use

simplexes. To create new points, controlled random search

[11] generates random simplexes. These may overlap and

are not guaranteed to cover the search space. Nor are they

subdivided. DIRECT [16] uses hyperboxes that partition the

search space. It avoids the 2n complexity by directional search

from their midpoints, ignoring their corners. Each hyperbox

potentially containing the global minimum is trisected, rather

than bisected, along each dimension in turn. There is no

randomized selection.

III. THE OPIMIZERS OF THE SCIPY.OPTIMIZE MODULE

The optimizers from the Python SciPy.Optimize module that

we tested were code named “Nelder-Mead,” “Powell,” “CG,”

“BFGS,” “L-BFGS-B,” “TNC,” and “SLSQP.” We did not

provide the gradient nor the Hessian of the objective functions.

Whenever an optimizer used these, it had to estimate them

itself numerically.

The SciPy module also contains the “Anneal,” “COBYLA,”

“dogleg,” and “trust-ncg” optimizers. Anneal proved too slow

and performed too poorly to be included. COBYLA was not

robust enough for large-scale testing. The dogleg and trust-ncg

optimizers require explicit gradients, which were not provided.

Nelder-Mead uses the simplex method, see [17], [18].

Powell is a modification of Powell’s algorithm, a conjugate

direction method, that performs sequential one-dimensional

minimizations, see [19], [20]. CG uses a nonlinear conjugate

gradient method by Polak and Ribiere, a variant of the

Fletcher-Reeves algorithm described in [21], pp. 120–122.

BFGS uses the quasi-Newton method of Broyden, Fletcher,

Goldfarb, and Shanno, see [21], p 136, and L-BFGS-B uses the

L-BFGS-B algorithm for bound constrained minimization, see

[22], [23]. TNC uses a combined Newton and conjugate gradi-

ent method, aka a truncated Newton method, see [21], p 168,

and [24]. SLSQP uses sequential least squares programming,

see [25].

IV. EXPERIMENTS

A very reasonable baseline, seeing that the SSB algorithm

essentially adds structure to randomized search, is to evaluate

it against unstructured randomized search conducted by each

ScyPy optimizer. In each trial, the ScyPy optimizer was

repeatedly restarted in a new random point, until a limit on

the total number of function evaluations had been exceeded.

A. Experimental Setup

We tested all two-dimensional objective functions of Fig-

ure 2 (last page), most of which are from [26]. Function 0

comes from [5], Function 20 from [27], and Functions 21, 22,

24, and 25 are of our own design. All functions have unique

global minima, except Function 0, due to symmetry in x and

x+ y, and Functions 12, 14, and 17, which have four global

minima, due to symmetry in ±x,±y. Functions 16 and 17

were corrected using [28]. We did not provide the gradient

nor the Hessian of these objective functions.

We investigated the frugal function evaluation scenario,

where computing function values comes at a premium, and

restricted the number of function evaluations to four thousand.

The domain was [−80, 120] × [−80, 120], which is typically

larger than that of the test set: often [−10, 10] × [−10, 10]
or even [−5, 5] × [−5, 5]. It was made asymmetric in x and

y, since many test functions have their global minimum in

x = 0. As in [5] and [28], success was defined as finding

any argument with a function value within 10−6 of the known

global minimal value. See Section IV-C for a discussion on

this success criterion.

No attempt was made to optimize the optimizers. The SciPy

optimizers were used with their default parameter settings,

and the search parameters of the SSB algorithm were taken

over from [5], Section 5.3: λ0 was set ten; epoch phase one

consisted of the first five of its 50 rounds in total; once the

system had made 4000 function evaluations, the current epoch

and the algorithm were terminated.

In each trial, the SciPy optimizer was repeatedly run starting

from a randomized point and the best candidate point of the

trial was updated if the new one was better. The trial continued

until 4000 function evaluations had been exceeded. The best

result in the trial determined success or failure.

B. Experimental Results

Table I shows their respective success rates in 1000 trials.

To analyze these results, we need to consider the nature of

each test objective function. These can be classified into:

• unimodal quadratic forms, Fcns 2, 6, 8;

• oligo-modal 3 polynomials, Fcns 3, 4, 5, 10, 18;

• multimodal damped trigonometrics, Fcns 0, 1, 12–17, 25;

• mixed trigonometrics and quadratics, Fcns 9, 11, 20, 24;

• other (unimodal) functions, Fcns 7, 21, 22.

In exactly half of the cases (Functions 0, 1, 9, 11–17, and

22–25), the SSB algorithm stands head and shoulders above

the competition, except for Powell’s algorithm in two of these

cases, namely Functions 1 and 9. This includes all seriously

multimodal functions. Clearly, when faced with numerous local

optima, the extra structure afforded by the SSB algorithm

outweighs the benefit of highly accurate local search.

Conversely, it includes no unimodal or oligo-modal func-

tion, except Function 22. This stands to reason, as any adept

local optimizer should succeed for these functions, even when

starting from a randomized point some distance away. See

Section IV-C for a discussion of Functions 2, 21, and 22.

Function 7 is very hard, and defeats all optimizers. It has a

concave valley, kinks, and a very anisotropic variable coupling.

The gradient is ill-defined and unbounded in the valley bottom,

and especially ill-behaved in the optimum. Memento mori.

Viewing the results from another angle, we note that the

SSB algorithm performs under 50% in only five cases of 22.

In two of these, it still outperforms all other algorithms, and

in a third case, all algorithms come up empty-handed. In one

of the two remaining cases, Function 3, the SSB algorithm

3. . . apologies for mixing Greek and Latin roots. . .

CHRISTER SAMUELSSON: COMPARATIVE EVALUATION OF THE STOCHASTIC SIMPLEX BISECTION ALGORITHM 575

Optimizer

Fcn BFGS CG L-BFGS-B Simplex Powell SLSQP TNC SSB

0 0 0 0 0 0 0 0 27

1 45 57 76 17 835 52 52 896

2 1000 1000 1000 1000 1000 1000 1000 989

3 999 1000 1000 1000 1000 996 921 188

4 521 725 741 998 109 975 716 661

5 949 493 1000 1000 951 1000 1000 765

6 1000 1000 1000 1000 1000 1000 1000 862

7 0 0 0 0 0 0 0 0

8 1000 1000 1000 1000 966 1000 1000 872

9 50 89 140 545 1000 149 34 897

10 448 1000 960 1000 984 920 1000 844

11 297 239 289 136 222 269 202 638

12 397 259 440 380 251 391 310 890

14 91 112 251 52 136 201 57 808

16 42 34 75 9 109 159 163 857

17 83 68 147 17 10 243 34 815

18 996 1000 1000 1000 1000 1000 998 906

20 125 156 160 975 1000 460 48 256

21 1000 750 1000 0 1000 1000 585 829

22 0 0 0 0 304 0 0 626

24 2 0 13 14 111 0 2 139

25 121 19 265 73 205 221 635 803

TABLE I
SUCCESS RATE IN 1000 TRIALS OF THE SCIPY OPTIMIZERS AND THE SSB ALGORITHM.

is hampered by quadratic terms and a dominating variable

coupling, and it lags behind the competition.

The other remaining case is Function 20. It has dominating

quadratic terms and strong trigonometric confusion terms. The

SSB algorithm outperforms half of the SciPy optimizers, but

not the SLSQP, Simplex, and Powell optimizers, the latter two

which excel. By contrast, all SciPy optimizers perform under

50% in more than half of the cases, except Powell’s algorithm,

which performs under 50% in exactly half of the 22 cases.

C. A Digression on Success Regions

The success criterion |f(s) − f(x∗)| < ϵ, where x∗ is a

known global optimum, is certainly reasonable for practition-

ers, who care mainly about finding a good enough solution

s. But when evaluating optimization algorithms, one must be

careful not to draw incorrect conclusions from this criterion.

For example, when comparing performances on Functions 2,

21, and 22 in Table I, one might be tempted to conclude that

the discontinuity in the gradient in the global optimum caused

by the absolute value does some damage to gradient-based

methods, and wreaks havoc with the simplex method, while

the additional concavity of the square root foils all algorithms,

save Powell’s method and the SSB algorithm.

This analysis fails to take into account that the success

region of Function 2 is a circle with diameter 2
√
ϵ, while

that of Function 21 is a square with diagonal 2ϵ, and that

of Function 22 is a concave diamond shape with diagonal

Fig. 1. |f(x, y)− f(0, 0)| = 0.5 for Fcns 2, 21, and 22.

2ϵ2. The alchemy-like Figure 1 illustrates this for the unre-

alistically large ϵ = 0.5. The ratios of their surface areas are

πϵ : 2ϵ2 : 2
3ϵ

4. This makes the latter two increasingly harder to

hit, which is a potentially greater difficulty for the optimizers,

given strict limitations on the number of function evaluations.

V. SUMMARY AND CONCLUSIONS

We evaluated the stochastic simplex bisection (SSB) algo-

rithm against the optimizers of the Python SciPy.Optimize

module on a prominent test set. The former employs a com-

mon stochastic optimization scheme, but unlike other stochas-

tic approaches, it applies the scheme to search space regions,

rather than to individual points. The latter are readily available,

576 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

high-quality, local optimizers. This is the first evaluation of the

SSB algorithm against other optimizers.

The experiments were conducted in two dimensions on a

prominent test set. The domain was mostly larger, by an order

of magnitude in each direction, than the domains indicated

by the test set, and the number of function evaluations was

limited to a few thousand. The SSB algorithm used the latter

as a termination criterion and returned its very best point. Each

ScyPy optimizer was repeatedly restarted in a random point,

until it had exceeded the function evaluation limit, and the

overall best result was returned. In both cases, if the returned

solution was within 10−6 of the known global minimal value,

it was deemed a successful trial. Each optimizer was tested

1000 times on each test function.

The SSB algorithm greatly outperformed all SciPy optimiz-

ers, save one, in exactly half the cases. It did slightly worse

on polynomial functions, but excelled at trigonometric ones,

highlighting its multimodal prowess. And unlike the SciPy

optimizers, it sustained a high success rate.

We conclude that the SciPy optimizers would benefit from

a more informed metaheuristic strategy and that the SSB

algorithm would profit from quicker local convergence and

better multidimensional capabilities. Conversely, the local

convergence of the SciPy optimizers is impressive and the

multimodal capabilities of the SSB algorithm in separable

dimensions are uncanny.

ACKNOWLEDGMENT

This work was funded by the BAULT network and the

METALOGUE project. BAULT, building and using lan-

guage technology, is a multidisciplinary research commu-

nity at the University of Helsinki. METALOGUE is a Sev-

enth Framework Programme collaborative project funded by

the European Commission, grant agreement number 611073

(http://www.metalogue.eu).

REFERENCES

[1] M. Wahde, Biologically Inspired Optimization Algorithms. WIT Press,
2008.

[2] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, no. 2-3, pp. 95–99, 1988. doi:
10.1023/A:1022602019183

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization,” 1995. doi:
10.1109/ICNN.1995.488968

[4] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization
by a colony of cooperating agents,” IEEE Trans. on Systems, Man, and

Cybernetics, vol. 26, no. 1, pp. 29–41, 1996. doi: 10.1109/3477.484436
[5] C. Samuelsson, “The stochastic simplex bisection algorithm,” in Procs.

15th Int.’l Conf. Computational Science, ser. ICCS/15. Elsevier, 2015.
doi: 10.1016/j.procs.2015.05.215 pp. 855–864. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915010236

[6] scipy, “scipy.optimize,” http://http://docs.scipy.org/doc/scipy/reference/
optimize.html#module-scipy.optimize, 2015, accessed: 2015-04-16.

[7] M. Haiman, “A simple and relatively efficient triangulation of
the n-cube,” Discrete & Computational Geometry, vol. 6, no. 1,
pp. 287–289, 1991. doi: 10.1007/BF02574690. [Online]. Available:
http://dx.doi.org/10.1007/BF02574690

[8] R. B. Hughes and M. R. Anderson, “Simplexity of the cube,”
Discrete Mathematics, vol. 158, no. 13, pp. 99 – 150, 1996. doi:
http://dx.doi.org/10.1016/0012-365X(95)00075-8. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0012365X95000758

[9] Q. Duan, S. Sorooshian, and V. Gupta, “Effective and efficient global
optimization for conceptual rainfall-runoff models,” Water resources

research, vol. 28, no. 4, pp. 1015–1031, 1992. doi: 10.1029/91WR02985
[10] N. Hansen and S. Kern, “Evaluating the CMA evolution strategy on

multimodal test functions,” in Parallel Problem Solving from Nature

VIII, X. Yao et al., Eds. Springer, 2004. doi: 10.1007/978-3-540-30217-
9_29 pp. 282–291.

[11] P. Kaelo and M. M. Ali, “Some variants of the controlled random search
algorithm for global optimization,” J. Optim. Theory Appl, vol. 130,
no. 2, pp. 253–264, 2006. doi: 10.1007/s10957-006-9101-0

[12] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution -

A Practical Approach to Global Optimization, ser. Natural Computing.
Springer-Verlag, 2006, iSBN 540209506.

[13] A. I. Vaz and L. N. Vicente, “A particle swarm pattern search method
for bound constrained global optimization,” J. of Global Optimization,
vol. 39, no. 2, pp. 197–219, Oct. 2007. doi: 10.1007/s10898-007-9133-5.
[Online]. Available: http://dx.doi.org/10.1007/s10898-007-9133-5

[14] X.-S. Yang, “Firefly algorithms for multimodal optimization,” in Procs.

5th Int.’l Conf. Stochastic Algorithms: Foundations and Applications,
ser. SAGA’09. Springer-Verlag, 2009. doi: 10.1007/978-3-642-04944-
6_14. ISBN 3-642-04943-5, 978-3-642-04943-9 pp. 169–178. [Online].
Available: http://dl.acm.org/citation.cfm?id=1814087.1814105

[15] N. Andréassson, A. Egrafov, and M. Patriksson, An Introduction to

Continuous Optimization. Studentlitteratur, 2005.
[16] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian

optimization without the Lipschitz constant,” J. Optim. Theory Appl.,
vol. 79, no. 1, pp. 157–181, Oct. 1993. doi: 10.1007/BF00941892.
[Online]. Available: http://dx.doi.org/10.1007/BF00941892

[17] J. A. Nelder and R. Mead, “A simplex method for function min-
imization,” The Computer Journal, vol. 7, pp. 308–313, 1965. doi:
10.1093/comjnl/7.4.308

[18] M. H. Wright, “Direct Search Methods: Once Scorned, Now Re-
spectable,” in Numerical Analysis 1995 (Proceedings of the 1995 Dundee

Biennial Conference in Numerical Analysis), ser. Pitman Research Notes
in Mathematics, D. F. Griffiths and G. A. Watson, Eds., vol. 344. Boca
Raton, Florida: CRC Press, 1996. doi: 10.1.1.47.6891 pp. 191–208.

[19] M. J. D. Powell, “An efficient method for finding the
minimum of a function of several variables without calculating
derivatives,” The Computer Journal, vol. 7, no. 2, pp.
155–162, 1964. doi: 10.1093/comjnl/7.2.155. [Online]. Available:
http://comjnl.oxfordjournals.org/content/7/2/155.abstract

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes 3rd Edition: The Art of Scientific Computing,
3rd ed. New York, NY, USA: Cambridge University Press, 2007. ISBN
0521880688, 9780521880688

[21] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York: Springer, 2006.

[22] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algo-
rithm for bound constrained optimization,” SIAM Journal on Scientific

Computing, vol. 16, no. 5, pp. 1190–1208, 1995. doi: 10.1137/0916069
[23] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-b:

Fortran subroutines for large-scale bound-constrained optimization,”
ACM Trans. Math. Softw., vol. 23, no. 4, pp. 550–560, Dec. 1997.
doi: 10.1145/279232.279236. [Online]. Available: http://doi.acm.org/10.
1145/279232.279236

[24] S. Nash, “Newton-type minimization via the Lanczos method,” SIAM

Journal on Numerical Analysis, vol. 21, no. 4, pp. 770–788, 1984. doi:
DOI:10.1137/0721052

[25] D. Kraft, A software package for sequential quadratic programming,
ser. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt
Köln: Forschungsbericht. Wiss. Berichtswesen d. DFVLR, 1988.
[Online]. Available: http://books.google.fr/books?id=4rKaGwAACAAJ

[26] Wikipedia, “Test functions for optimization,” http://en.wikipedia.org/
wiki/Test_functions_for_optimization.html, 2014, accessed: 2014-12-14.

[27] K. Mullen, D. Ardia, D. Gil, D. Windover, and J. Cline, “DEoptim:
An R package for global optimization by differential evolution,” J. of

Stat. Software, vol. 40, no. 6, pp. 1–26, 2011. [Online]. Available:
http://www.jstatsoft.org/v40/i06/

[28] A. Gavana, “Global optimization benchmarks and AMPGO,” http://
infinity77.net/global_optimization, 2015, accessed: 2015-01-09.

CHRISTER SAMUELSSON: COMPARATIVE EVALUATION OF THE STOCHASTIC SIMPLEX BISECTION ALGORITHM 577

Objective Functions

Fcns 21, 22, 24, 25 are novel; Fcn 0 from [5]; Fcn 20 from [27]; remainder from [26]. Fcns 16 and 17 corrected using [28].

f(x) = f(x1, . . . , xn) =
n
∏

k=1

f0

(

k
∑

i=1

xi

)

with (0)

f0(x) = sin(
√

1 + x2) · cos(2x(x+ 1)) · ln(1 + x2)√
1 + x2

f(x) = 20



1− exp



−0.2

√

√

√

√

1

n

n
∑

i=1

x2
i







+ e− exp

(

1

n

n
∑

i=1

cos(2πxi)

)

(1)

f(x) = f(x1, . . . , xn) =
n
∑

i=1

x2
i (2)

f(x) = f(x1, . . . , xn) =
n−1
∑

i=1

(

100 · (xi+1 − x2
i)

2 + (xi − 1)2
)

(3)

f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2 (4)

f(x, y) =
(

1 + (x+ y + 1)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)
)

· (5)

·
(

30 + (2x− 3y)2(18− 32x+ 12x2 + 48y − 36xy + 27y2)
)

f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2 (6)

f(x, y) = 100
√

|y − 0.01x2|+ 0.01|x+ 10| (7)

f(x, y) = 0.26(x2 + y2)− 0.48xy (8)

f(x, y) = sin2(3πx) + (x− 1)2
(

1 + sin2(3πy)
)

+ (y − 1)2
(

1 + sin2(2πx)
)

(9)

f(x, y) = 2x2 − 1.05x4 +
x6

6
+ xy + y2 (10)

f(x, y) = − cos(x) cos(y) exp
(

−(x− π)2 − (y − π)2
)

(11)

f(x, y) = −0.0001
(

| sin(x) sin(y)| exp
(∣

∣

∣

∣

∣

100−
√

x2 + y2

π

∣

∣

∣

∣

∣

)

+ 1

)0.1

(12)

f(x, y) = −| sin(x) sin(y)| exp
(∣

∣

∣

∣

∣

1−
√

x2 + y2

π

∣

∣

∣

∣

∣

)

(14)

f(x, y) = 0.5 +
sin2(x2 − y2)− 0.5

1 + 0.001(x2 + y2)2
(16)

f(x, y) = 0.5 +
cos2(sin(x2 − y2))− 0.5

1 + 0.001(x2 + y2)2
(17)

f(x) = f(x1, . . . , xn) =
1

2

n
∑

i=1

(

x4
i − 16x2

i + 5xi

)

(18)

f(x) = f(x1, . . . , xn) =
n
∑

i=1

(

x2
i + 10 · (1− cos(2πxi))

)

(20)

f(x) = f(x1, . . . , xn) =
n
∑

i=1

|xi| (21)

f(x) = f(x1, . . . , xn) =

n
∑

i=1

√

|xi| (22)

f(x) = f(x1, . . . , xn) =

n
∑

i=1

|xi|+
(

10 + x2
i

)

· (1− cos(2πxi)) (24)

f(x) = f(x1, . . . , xn) =
n
∑

i=1

1− sink(xi) with sink(x) =
sin(x)

x
(25)

Fig. 2. Fig. 2 List of objective functions

578 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

