

Abstract— We propose a novel software platform based on

the notion of context-awareness which allows rapid and easy

development of context aware applications. One of the

fundamental goals of the proposed platform is extensibility,

allowing the platform to react to new requirements without

making fundamental and substantial changes. The Context

Aware Application Development Platform- PCAD- has inspired

from an operating system and modeled as a layered

architecture. It exhibits a plug-and-play behavior very similar

to devices and device drivers found on an operating

system/kernel. The platform offers functions such as data

management, notification, security and privacy as services. The

platform provides a public interface to application developers in

their development of context-aware applications. It covers a

wide range of disparate application domains such as smart city

and livestock monitoring applications.

I. INTRODUCTION

PPLICATIONS using information and communication

technologies collect and process a diverse range of data

using machines connected through communication networks.

This phenomenon is captured in the term the Internet of

Things. The Internet of Things is a complex interconnection

of heterogeneous devices that include sensors, cameras,

micro chips and RFID based products, and which generate

large amount of data obtained from various domains. For this

reason platforms or architectures must be designed in

anticipation of the increase in the number of devices, and the

varying demands of users and applications in different

contexts. In order for a platform to be successful, it is

imperative that it recognizes the context in which users and

applications are operating, and enable service customization

for a particular user. The creation of smart applications and

environments then becomes a possibility by using context-

aware computing, which acquires, analyzes, and interprets

relevant context information, and responds to contextual

changes.

Temperature, humidity, traffic congestion, road

conditions, sea pollution, and river level are some examples

 This work is supported by the Scientific and Technological Research

Council of Turkey – TUBITAK under Grant 114E938.

of context information. Such context information can be used

alone or in combination within context-aware applications to

provide custom services in various domains, such as

transportation, health and medical systems, tracking and

control of environment, energy, agriculture, industry, sport

events, and tourism. However, the effective use of this

context information requires its efficient and effective

acquisition, storage, processing and reasoning. In this way,

productivity, economic output and quality of life can be

increased.

This paper describes a novel, service-based software

platform proposal based on the notion of context-awareness.

The platform basically follows a middleware approach,

which draws on the techniques taken from operating system

design. The primary goal of the proposal is to offer a

platform to simplify the development of context-aware

applications by relieving the applications from complex

context data management issues. In an open, dynamic and

continuously changing environment, context data must be

acquired, managed and ultimately offered to applications

which will interpret the data according to the situation. The

platform separates context acquisition from the application

code and handles many context data management issues on

behalf of the applications. The fundamental design force of

the proposal is that the platform is agile, robust, and capable

of reacting to new requirements without the need for

fundamental and substantial changes.

The rest of the paper is organized as follows. The

motivation section explains the rationale and design issues

that motivated this work. Related works section includes an

overview of the existing systems based on context-aware

features. Section 4 presents the technical architecture of the

platform. Section 5 gives a practical scenario from a smart

city parking application, and finally, Section 6 draws

conclusions about the proposed system.

II. MOTIVATION

Dey et al. has listed three characteristics of a context

aware system as (i) information and services are presented to

a user, (ii) a service is executed, and (iii) context is linked to

information for later retrieval [1], [2]. Therefore, a service

A

A Platform for Context-Aware Application Development: PCAD

Ufuk Celikkan
Izmir University of Economics

 Dept. of Software Engineering

Sakarya Cad. 156 35330

Izmir, Turkey

Email: ufuk.celikkan@ieu.edu.tr

Kaan Kurtel
Izmir University of Economics

Dept. of Software Engineering

Sakarya Cad. 156 35330

Izmir, Turkey

Email: kaan.kurtel@ieu.edu.tr

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1481–1488

DOI: 10.15439/2015F49

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1481

based software infrastructure support facilitates building

context aware systems as it simplifies system creation by

placing common context aware computing features in the

infrastructure as services. A fundamental advantage of a

service-based infrastructure approach is that the resources

(i.e. data, sensors, devices, services) are shared, making

maintenance and evolution of the infrastructure much easier

[3]. Such an infrastructure is best realized in the form of a

middleware, in which the infrastructure acts as a foundation

on which other systems can be built. It takes responsibility

for acquisition, storage, processing and interoperability of

the context data, and provides services such as alarm,

notification and security to the applications.

An architecture used in building the service-based

infrastructure must possess certain attributes in order to be a

viable option in creating context aware systems. Notable

among those attributes are extensibility, robustness,

scalability, and ease of use. Extensible architectures allow

the addition or removal of components without breaking or

taking down the system, and facilitate the seamless

deployment of new sensors, devices and services. The entire

system can evolve in a step-wise fashion. Robustness

requires that the infrastructure operates in the case of a

malfunction and terminates peacefully when breakage is

unavoidable, while scalability ensures that infrastructure is

able to serve many users and collect data from a diverse

range and number of sensors. The amount of administrative

effort must also be minimized to maintain the efficiency of

services, devices and sensors. Finally, no matter how well

the architecture is designed, it must be efficient and simple to

use. Efficiency is measured in terms of time and space,

which are influenced by the data storage, response and real

time requirements of the system.

An Operating Systems inspired approach is the most

suitable proposition in designing context aware infrastructure

architectures. The primary aspect of Operating System

architectures is the abstraction of inner details through

layering and providing a high-level interface to allow

uniform access to the functions of the system contained in its

layers. Two typical examples from the UNIX world are the

POSIX and device driver interfaces. POSIX interface allows

the applications interact with OS services such as file system,

network stack and devices, and device driver interface allows

the seamless integration of new devices and drivers to OS

kernel.

For the reasons mentioned above, a service based

middleware architecture inspired by an OS is used in the

design of PCAD system. The sensors, devices, services and

more importantly, the applications are separated from each

other, yet interact with one another. The loose coupling of

components permits plugability and reduces fragility, the two

essential characteristics of an extensible and robust system.

A prototype of the platform is currently under

implementation together with two sample applications that

utilize the platform. One of these is a livestock monitoring

application that monitors livestock physiological data and

notifies the farmer and the veterinary physician of potential

livestock health problems. The second application is an

implementation of a smart city parking scenario described in

Section 5. Both applications will allow the evaluation of the

effectiveness, robustness and performance of the platform

applied to diverse domains. It will also demonstrate that the

platform facilitates rapid context-aware application

development.

Despite being an important issue in context aware

systems, we have chosen not to address context modeling.

Context is defined by [2] as: “any information that can be
used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the

interaction between a user and an application, including the

user and applications themselves”. A piece of information is

considered context data only if it is interpreted, otherwise, it

is simply information belonging to an environment [4]. For

applications and services to adapt their behavior based on

the particular context, they need to be able to do reasoning.

The method chosen for modeling the context has direct

influence on the kind of reasoning performed [5], [6].

Therefore it is very important to choose a modeling

technique that will facilitate not only easy reasoning, but also

sharing of context with others. Since our primary focus is to

define the platform itself and the interactions among the

components, we defer the discussion of context modeling for

our future work.

III. RELATED WORK

Many context aware architectures proposed in the past

have borrowed ideas and features from operating system

designs. Gaia project [7] describes one such architecture

which is heavily influenced by operating system design. It

extends the OS concepts by incorporating context-awareness.

It has a context file system that organizes data by context and

a Unix-like signal event mechanism to create channels to

connect context data suppliers to consumers through a

handle called ContextType. Another architecture influenced

by operating system design is Context Toolkit in which a

widget model is adapted resembling the device driver model

of an OS. In the widget model, widgets are software

components that provide an interface to a hardware sensor.

In other words a widget acts like a device driver to a sensor.

Context Broker Architecture (CoBrA) [8] employs an

intelligent context broker to provide a centralized context

model shared by devices, agents and services. One of the

responsibilities of the context broker is to ensure that user

privacy is protected through policies by allowing the user to

control how contextual information is shared. The issue of

how to control access to shared information is of key

importance in operating systems.

There are other architectures based on layered architecture

model which have the goal of abstracting sensor data

management from users. SOCAM, Service Oriented Context

1482 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Aware Middleware [9], project is a middleware architecture

that supports the building of context aware services in

pervasive environments. Context aware services, which may

also be applications, can obtain context using the context

middleware layer from context providers. As expected from

a middleware-based architecture, in SOCAM, context aware

application code is separated from context acquisition and

reasoning. Another example of a centralized middleware

approach is found in CASS project [10], where the

middleware itself is a server responding to context

management requests of mobile context aware applications.

Context acquisition is done by the sensor nodes and context

data is sent to the server. Storage, modeling and reasoning

tasks are performed by the middleware server. Consequently

CASS applications neither need to communicate with the

context source directly, nor are they affected by context-

based inferences and behaviors. Another layered architecture

tailored towards mobile devices that addresses the

shortcomings and special needs of mobile devices is the

Hydrogen [11] project. One of its three layers, the

Management layer is responsible for storing context

information and sharing it using XML protocol. A second

layer, the Adapter layer, delivers information obtained from

context sources, i.e. sensors, to the Management layer. The

Application layer, where the application code resides, can

access context data synchronously or asynchronously.

A common benefit of these architectures is their capability

to prevent coalescing of application code with the context

management functions by decoupling context sensing and

acquisition from the application code.

In addition to architectures and frameworks several

context aware systems for different domains have been built

or proposed in the literature. Context aware systems for

pervasive environments are surveyed in [12] and web

services based systems are studied in [13] and a

classification of context aware systems is given in [14].

IV. PCAD ARCHITECTURE

Context-Aware Application Development Platform-

PCAD- has been inspired by operating systems design and

modeled as a layered architecture. PCAD’s primary goal is

to offer extensible, scalable, robust, secure and general

purpose software architecture for use by developers in

several industrial processes and sectors. The platform

particularly addresses the following design issues:

1) Extensibility

2) Security and Privacy

3) Simplicity (be applicable and pragmatic)

4) Generic (not domain specific)

5) Service Based

The platform itself adapts a middleware and blackboard

[4] model, providing common services to the applications.

This is similar to the conceptual separation of user and

kernel services in an OS. Among the services provided by

PCAD are data storage, alarm, notification, a simple rule

engine and reporting facilities. One can view the platform as

a layer providing kernel-like services, while the applications

provide user level services and the physical sensors and their

software act like devices and device drivers providing data to

applications. The applications subscribe themselves to the

sensors through the platform, after which they are notified by

the context providers when a context data becomes available.

The applications and the sensor software are bound to the

platform using standard protocols (e.g., REST, web sockets,

and raw socket). The architecture exhibits a plug-and-play

behavior similar to the devices and their associated drivers

found in operating system/kernel. The sensors can be added

and removed, and applications can be registered to the newly

added sensor without needing to modify the platform. The

platform provides a public interface to enable the rapid and

easy development of applications from various domains by

application developers. It relieves the applications from

implementing common services and functions, thus fulfilling

one of the fundamental principles of software engineering –

reusability.

A. PCAD Services

PCAD’s functionality is made available to applications

through services. The services of PCAD and its architectural

resemblance to Operating System architecture is shown in

Figure 1. The list of services available in PCAD is given in

Table I and explained in detail below.

Rule Services

A very simple and generic syntax will be designed in the

form of if-then rules. The rules will be specified in an XML

file, and will be verified against the Rule XML Schema using

XSD. A generic rule will be of the following format:

if <cond> then action

TABLE I.

PCAD SERVICES

Service name Service description

Rule Service (RS) Context processing

Data

Management

Service (DMS)

Stores context data and provides data upon

request through a uniform interface. Underlying

storage mechanism is transparent to the users.

Alarm and

Notification

Service (ANS)

Notifies the registered parties about context data.

Filters data if necessary.

Reporting

Services (RPS)

Generates detailed reports about context sources

including data and status of the context source.

Security and

Privacy Service

(SPS)

Ensures only authorized parties can access to

context data based on policies.

Interoperability

and

Communication

Service (ICS)

Data exchange among similar platforms using

standard communication protocols and message

formats.

UFUK CELIKKAN, KAAN KURTEL: A PLATFORM FOR CONTEXT-AWARE APPLICATION DEVELOPMENT: PCAD 1483

Application programs

Process

mngmt

Memory

mngmt

File

mngmt

Device

mngmt

Network

mngmt

CPU RAM Disks NICs

Application programs

Hardware

level

Kernel

level

User

level

PCAD

Physical sensors

Rule

services

Alarm and

notification

services

Data

mngmt

services

Sensor binding

Thread pool

Temp. RangeMotionGasHum.

Reporting

services

Virtual sensors

- Web sevices

- TCP/IP raw socket

- REST interface

Ports

Security

and

privacy

services

Inter-

operability

services

- Web sevices

- TCP/IP raw socket

- REST interface
App. binding

Time

 a) Generic OS Architecture [15] b) PCAD

Fig. 1 A Comparison of PCAD architecture and OS architecture

The condition in the rule can be a combination of

conjuncts and disjuncts. When the condition evaluates to

true, then the action is performed. This action could be

further used to trigger other rules. Below, one such example

is given:

if (raining and
 location=”main street”)

then congestion

When this rule is executed, firstly rain sensor data is

retrieved, followed by location information. If the condition

evaluates to true, which means that it is raining and the

location name is main street, then the congestion rule is

executed. Congestion rule simply retrieves the congestion

data for the main street using the congestion sensor and

returns it to the application.

The applications create a rule file in XML and hand over

to PCAD for context processing. Alternatively, applications

may perform their own context processing, thus opting out

using the Rule service of PCAD.

Data Management Services

Data Management Services is responsible for storing of

data received from multiple sources and making the data

available to those requesting it. It provides a uniform

interface for the transparent access of data by the

applications. This interface let users of this service insert,

update, delete and filter information. It is essential that the

sensor data, whether collected synchronously or

asynchronously, is stored without any loss. DMS could store

data simply in a relational database, or it can use a cloud

service. The underlying storage mechanism is transparent to

the applications.

Alarm and Notifications Services

The Alarm and Notification Services (ANS) follow the

paradigm of observer design pattern [16]. The applications

attach themselves to a sensor of interest to acquire context

information. There are two modes to query the presence of

sensor data. In the asynchronous mode, ANS periodically

queries the sensor and then reads and stores that data. It then

immediately makes the data available to the applications that

showed interest. In synchronous mode, the sensor software

interrupts the ANS for a reading. Asynchronous mode

requires support from the sensor software, which must notify

ANS for data availability. This is generally not the

conventional method of interacting with a sensor, and

therefore is not available in most cases. The ANS provide

sensor data to applications using either pull or push method.

In the pull model, the applications receive only a minimal

notification, and applications or users ask for specific details

thereafter. In the push model, ANS sends applications

detailed information about the sensor data.

A filtering mechanism will be employed to allow

applications to register themselves to specific conditions so

that they will be notified when such condition occurs. An

example filter is shown in Figure 2. An application named

myApp is only interested in data from the temperature sensor

temp001 between 9:00 AM and 12:00 PM, and only for

values 39 and above.

1484 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Reporting Services

Detailed reports presenting sensor data and sensor

availability shall be provided by the Reporting Services

(RPS). Visualization of the sensor status and data provides a

useful overview of the system, which is important because it

is not easy to understand and interpret raw data. The data is

presented to the user in different formats, such as tables,

charts and text. It was decided to select open source

reporting tools with an application programming interface.

BIRT [17] is one such tool with several APIs to design,

generate and render reports and charts.

Fig. 2 Example filter

Thread Pool

The platform will ensure that the context data received

from the sensors are properly stored and sent to the

applications in a timely manner. A pool of threads, as shown

in Figure 3, are to be created and tasks are assigned to

threads whenever needed. Each thread will have two sub

threads; one is responsible for real time delivery of raw data

to applications, and the other responsible for the storage and

processing of the context data.

Real-time support

A certain class of applications imposes constraints on the

sensor data delivery time. Context aware systems using

direct sensor access approach are better suited for meeting

the hard real time requirements. Such systems collect

information directly from the sensor without any intervening

components, thus, time lapse in reacting to the events

conforms to the real-time requirements. However, a

disadvantage of these systems is their inability to re-use

components due to the tight coupling of sensor device

drivers with the application [11]. In contrast, systems that are

built using layered architectures are considered superior

because they are extensible and allow modifications to the

architecture without modifying the applications. However,

meeting the hard real-time requirements is difficult in

layered architectures, as data flows through several layers

before it reaches the application. Therefore, layered

architectures are much more suited to soft real-time

requirements. Soft real-time systems can tolerate larger time

latencies and they still operate even when time constraints

are violated, albeit with degraded performance.

PCAD addresses the soft real-time requirement by

establishing a direct pipe or channel between the sensor

software and the applications, as depicted in Figure 4. A

dedicated thread is allocated to the channel, allowing raw

sensor data to be transmitted through this channel, while a

copy of the data is processed and stored by the platform

concurrently.

Thread

Pool

C
o

n
tro

lle
r

PCAD Services

Rules, Data Management & Cloud, Alarm & Notification, Reporting, Security

Application Bindings

Applications

Fig. 3 Thread Pool in PCAD

Thread

Pool

Real-time

channel

Regular

processing

Real-Time

Applications

PCAD Services

Non Real-Time

Applications

Sensors

Application Bindings

Fig. 4 Real-time support

Security and Privacy Services

Privacy is an important issue in PCAD as sensors will

acquire information about the environment, and share it with

different applications. As the sensor data is owned by the

platform rather than the applications, it is the platform’s
responsibility to protect the privacy of the data.

A very basic Role Based Access Control (RBAC) [18]

scheme mediates which sensor data is accessible to which

application. An RBAC-like access control mechanism is

preferred because it allows more complex policies to be

accommodated in the future. The idea is to assign

applications particular roles and assign access rights to roles,

and then control which application can access sensor data

based on those roles. Our use of RBAC will be much more

<?xml version="1.0" encoding="UTF-8"?>

<Configuration name="MyApp">

<Sensor name="TME3m" id="temp001" >

<TimeFilter start="09:00:00"end="12:00:00"

 onMatch="ACCEPT" onMismatch="DENY"/>

<ThresholdFilter value="39"

 onMatch="ACCEPT" onMismatch="DENY"/>

</Configuration>

UFUK CELIKKAN, KAAN KURTEL: A PLATFORM FOR CONTEXT-AWARE APPLICATION DEVELOPMENT: PCAD 1485

closely aligned with Mandatory Access Control mechanism,

where the sensor data is assigned privacy levels, and the

applications are given clearance levels. The set of roles will

be defined by the platform based on policy configurations.

For instance, a weather application does not need to access

to the transportation data.

The three basic elements of access control, Subject,

Object and Access Right have the following mappings in

PCAD: the subject is the software processes in which the

applications run. Object is our context resources. These

context resources may be physical or virtual sensors. Access

Right would be the read right of the context data, or querying

the status of the sensor providing the data.

Tables II-A, II-B and II-C show an example of role based

access control. In this example, the subject is the application

and the object is the sensor. Application1 has been assigned

roles role1 and role2, which gives application the right to

read sensor2 and sensor3, and to query the status of sensor1.

On the other hand application2 can only query the status of

the three sensors. RBAC makes it easy to put constraints, for

instance, we could limit the number of applications

collecting data from a sensor by limiting the number of

applications assigned to a role.

Two aspects of equal importance are the authenticity of

the sensor, and protection of the confidentiality and integrity

of the information it provides. The field of network and

information security has sufficiently matured in the provision

of security features to allow combination of symmetric and

asymmetric cryptography (digital certificates) to fulfill the

authentication, confidentiality and integrity requirements of

the platform.

Interoperability and Communication Services

According to a recent survey, interoperability is listed as

the number one quality driver for smart city applications

[19]. Interoperability is a necessity since data is owned by

other parties and managed by different platforms, similar to

PCAD and also for making PCAD data available to other

requestors. This creates a need for interoperability for

exchanging context information among different

applications. Interoperability and Communication Services

are responsible for context data exchange using standard

messaging format. As shown in Figure 5, PCAD uses XML

as the data exchange format.

Application programs

PCAD

Inter-

operability

Services

App. binding

<XML Data>
OTHER

PLATFORMS

OTHER

APPLICATIONS

<XML Data>

endpoint

External applications

Fig. 5 Context data exchange

Applications built on top of the PCAD platform use this

service to send context data to other applications. The

applications can also ask the platform to receive context data

from other platforms, including from another instance of the

PCAD platform. In such a case, the applications must let the

service know the endpoint information that has the data.

B. Sensor Layer

The sensor layer consists of physical and virtual sensors.

Examples of physical sensors are pH, humidity and

temperature. Unlike physical sensors, virtual sensors use

either Application Programming Interfaces or web services

to obtain data, such as GPS position or real-time camera

stream [20]. In many situations, data can be made

meaningful by aggregating individual context data obtained

from multiple physical and virtual sensors. This process,

called context aggregation, generates combined data that is

more accurate and relevant than information obtained from a

single source. Context aggregation function is implemented

also as a virtual sensor.

The sensor software will interact with the platform by

registering to the platform and sending raw data to the

platform, which is further formatted and processed by the

platform. Sensor layer interacts with the platform through

sensor binding layer.

C. Binding Layers

For the purpose of allowing applications and sensor

software to communicate with the platform, the platform

contains two binding layers. The first is between the

application software, and the platform and the second is

between the sensor software and the platform. These binding

layers are facades that simplify the application and the sensor

software’s interaction with the platform. The application

TABLE II.

A. AUTHORIZATION EXAMPLE

Authorization Description

read Allowed to acquire context data

query Allowed to query the status of the context

source

B. APPLICATION ROLE MAPPING

Subject Roles

role 1 role 2 role 3

application 1 * *

application 2 *

C. ACCESS CONTROL IN PCAD

Roles Sensors

sensor 1 sensor 2 sensor 3

role 1 query read read

role 2 read

role 3 query query query

1486 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

binding layer is used by the applications when they require

the services of the platform, such as receiving context data,

registering and deregistering for sensor data, creating reports

and receiving alarms and notifications. The sensor binding

layer is used by the platform to gather data from a sensor and

deliver it to the registered applications, possibly multiple

times. Therefore, it is possible for many applications to

access the same context data simultaneously, which may not

be possible with the direct access to sensor alternative.

The implementation of the binding layer employs widely

used protocols. Among the protocols supported are web

services, web sockets and REST.

V. A SCENARIO: SMART PARKING

In this section, we present a scenario to demonstrate the

interactions between an application PCAD and sensors. The

scenario involves a context aware smart city application

running on a mobile device developed for the purpose of

finding a parking space based on certain constraints.

One day Mr. Jones went out of the house and boarded his

car. Just he was about to approach to his workplace in

downtown, he remembered that he wasted time searching for

a parking place the previous week. He started the

application on his mobile phone and received the

coordinates and the route information about the nearest

parking location within a 500 meter radius on a map. He

thought, “I did a good job of using this context-aware [sic]

application to access to the information provided by the

smart [sic] city, otherwise I would have been late for my

appointment again.”

Following is the sequence of actions that take place in the

application and PCAD platform:

1) User invokes the smart city context aware application on

the mobile phone.

2) Smart city application starts a session with the PCAD

platform.

A communication session is opened using WebSockets.

The application and PCAD now begin to communicate

via the application binding layer for fulfilling user’s
specific request about an available parking place.

3) User requests route information about a parking place

within the 500 meter radius of his workplace.

The user’s operational parameters, such as the 500
meter constraint, are translated into rules and

registered with the Rule Services (RS) of CAS, using the

session established before. These rules get executed by

PCAD later on.

4) Smart city application sends user requests to PCAD via

application binding layer.

5) PCAD periodically requests ground parking data from

installed sensors, which includes sensor fingerprint (id,

location, time) and parking availability.

Since the actual parking status changes often due to

usage conditions, ground sensors are asked to send

parking availability information in real-time. The

frequency of sensor query is a configurable parameter.

The scenario is an example of soft real time application

because the latency of getting availability information is

not critical to the operation of the application. PCAD

collect these data via the sensor binding layer and

notifies the application via application binding layer

using alarm and notification services (ANS). The real

time channel is used to send the data to the application.

PCAD enforces data privacy by only providing parking

data to the application.

6) Smart city application determines the user’s location.
7) Smart city application finds optimal parking space for

the user.

Smart city application acquires user’s location
information from mobile device, and parking

availability and parking location information from

PCAD. The application then offers an optimal path

using this information together with other constraints,

such as shortest path, traffic signs or number of traffic

lights etc. The application either gets some of this

constraint information from PCAD or PCAD can

aggregate this information from other sources,

including other platforms using the interoperability and

communicating services (ICS). This part directly points

all other smart city applications working together.

8) Smart city application presents the information

including, coordinates and map to user.

This scenario shows how PCAD services are utilized by

the application, and how the actions are performed by the

actors of the system. Figure 6 shows the steps of interaction

described above. The figure illustrates how sensor

acquisition is decoupled from the application code.

This scenario can easily be adapted to other problems,

such as finding a charging station for an electric car. A

context-aware charge management system for electric

vehicles is described in [21]. A more elaborate problem on

parking lot management for charging stations is described in

[22], while a parking reservation system based on

telecommunication APIs is given in [23].

p

k

l

m

n

j

o

q

Smart City

Application
PCAD Car Parking

Sensors
User

Request route info

Request sensor data
Request PCAD service

Notification

Determine user location

Find optimal parking location

Send coordinates

and map data

loop

Invoke application

Start session

n

͌ ͌

Fig. 6 Interaction diagram of the scenario

UFUK CELIKKAN, KAAN KURTEL: A PLATFORM FOR CONTEXT-AWARE APPLICATION DEVELOPMENT: PCAD 1487

VI. CONCLUSIONS

In this paper we propose a Platform for Context-Aware

Application Development -PCAD based on operating system

principles for rapid development and deployment of context

aware applications. The platform has been inspired by Oper-

ating System design, and is based on a layered architecture

that is modular, extensible, and follows the design pattern

guidelines. The major premise of the platform was to provide

a robust environment influenced by the theories of the archi-

tectural design of an operating system, and enable applica-

tion developers to create context aware applications with

minimum effort. The platform provides several services to

both applications and sensor software. The platform has a

number of benefits: it supports a diverse range of context

sources, allows applications to access context sources syn-

chronously or asynchronously using filters, decouples appli-

cation code form context acquisition, and provides a simple

rule engine for context processing. The platform supports

soft-real time requirements by opening a direct channel be-

tween the context source and applications.

A prototype of the platform is currently under implementa-

tion along with two very distinct applications: livestock mon-

itoring and smart city parking. These context-aware applica-

tions will verify that applications from a wide range of dis-

parate domains can be built rapidly using the platform.

We purposefully omitted the treatment of context model-

ing, as our focus was to lay out the critical components of the

infrastructure. Context modeling work is deferred to our fu-

ture iterations of the platform. For this reason, our rule ser-

vice currently provides very rudimentary services.

ACKNOWLEDGMENT

The authors thank to the Scientific and Technological Re-

search Council of Turkey - TUBITAK for their support on

the 3001-Starting R&D Projects Funding Program for the

project of “Architecture, Design and Implementation of Con-

text Aware Service Platform”, Grant No: 114E938.

REFERENCES

[1] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of
Context and Context-Awareness,” in Proc. of the Workshop on the
What, Who, Where, When and How of Context-Awareness, ACM
Press, New York, 2000.

[2] A. K. Dey, “Understanding and using context,” Personal Ubiquitous
Computing, 2001, 5(1), pp. 4-7.

[3] J. I. Hong and J. A. Landay, “An Infrastructure Approach to Context-
Aware Computing,” Human-Computer Interaction, 2001, 16, pp.287–
303.

[4] T. Winograd, “Architectures for Context,” Human-Computer
Interaction, 2001, 16, pp. 401–419.

[5] M. Perttunen, J. Riekki and O. Lassila, “Context representation and
reasoning in pervasive computing: a review,” International Journal
of Multimedia and Ubiquitous Engineering, 2009, 4(4), pp. 1–28.

[6] T. Strang and C. Linnhoff-Popien, “A Context Modeling Survey,”
First Int. Workshop on Advanced Context Modelling, Reasoning and
Management at UbiComp, 2004.

[7] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, and et al., “A
middleware infrastructure for active spaces,” IEEE Pervasive
Computing, 2002, 1(4), pp. 74–83.

[8] H. Chen, “An Intelligent Broker Architecture for Pervasive Context-
Aware Systems,” PhD Thesis, University of Maryland, Baltimore
County, 2004.

[9] T. Gu, H. K. Pung, D. Q. Zhang, “A service-oriented middleware for
building context-aware services,” J. of Network and Computer
Applications, 2004, 28 (1), pp. 1-18.

[10] P. Fahy and S. Clarke, “CASS - a middleware for mobile context-
aware applications,” Workshop on Context Awareness, MobiSys,
2004, 2004.

[11] T. Hofer, W. Schwinger, M. Pichler, and et al., “Context-awareness on
mobile devices – the hydrogen approach,” in Proc. of the 36th Annual
Hawaii Int. Conf. on System Sciences, 2002, pp.292–302.

[12] M. Miraoui, C. Tadj and B. C. Amar, “Architectural Survey of
Context-Aware Systems in Pervasive Computing Environment,”
Ubiquitous Computing and Communication Journal, 2008, 3 (3),
pp. 68-76.

[13] H. L. Truong and S. Dustdar, “A survey on context-aware web service
systems,” Int. J. of Web Information Systems, 2009, 5(1), pp 5–31.

[14] J. Y. Hong, E. H. Suh and S. J. Kim, “Context-aware systems: A
literature review and classification,” Expert System with Applications,
2009, 36(4), pp. 8509-8522.

[15] S. Stallings, Operating Systems: Internals and Design Principles
(7. Ed.) Prentice Hall, 2012.

[16] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Elements of
Reusable Object-Oriented Software. Prentice Hall, 1994.

[17] BIRT. http://www.eclipse.org/birt/ [Accessed April 9, 2015]
[18] D. Ferraiolo, J. Cugini, R. Kuhn, “Role-based access control (RBAC):

Features and motivations,” in Proc. of the 11th Annual Conf. On
Computer Security Applications (New Orleans, LA, Dec. 11-15),
1995, pp. 241–248.

[19] G. Kakarontzas, L. Anthopoulos, D. Chatzakou, D. and A. Vakali,“ A
Conceptual Enterprise Architecture Framework for Smart Cities A
Survey Based Approach,” Int. Conf. on e-Busines, 2014.

[20] M. Baldauf, S. Dustdar and F. Rosenberg, “A survey on context-aware
system,” Int. J. of Ad Hoc and Ubiquitous Computing, 2007, 2(4),
pp. 263-277.

[21] N. Masuch, M. Lutzenberger, S. Ahrndt, A. Hessler and S. Albayrak,
“A context-aware mobile accessible electric vehicle management
system,” in Proc. of the 2011 Federated Conference on Computer
Science and Information Systems (FedCSIS), 18-21 Sept. 2011,
pp. 305-312.

[22] S. Gökay, C. Terwelp, C. Samsel, K-H Krempels K-H, S. Rabenhorst
and B. Greber, “Parking Lot Management for Charging Stations,” in
Proc. of the 3rd Int. Conf. on Smart Grids and Green IT Systems-
SMARTGREENS 2014, Barcelona, Spain, 2014.

[23] P. Trusiewicz and J. Legierski, “Parking Reservation – application
dedicated for car users based on telecommunications APIs,” in Proc.
of the 2013 Federated Conference on Computer Science and
Information Systems (FedCSIS), 8-11 Sept. 2013, pp. 865-869.

1488 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

