
Analysis of notification methods
with respect to mobile system characteristics

Piotr Nawrocki ∗, Mikołaj Jakubowski † and Tomasz Godzik ‡

∗AGH University of Science and Technology,

al. A. Mickiewicza 30, 30-059 Krakow, Poland

e-mail:piotr.nawrocki@agh.edu.pl
†e-mail:mkl.jakubowski@gmail.com
‡e-mail:tomek.godzik@gmail.com

Abstract—Recently, there has been an increasing need for
secure, efficient and simple notification methods for mobile
systems. Such systems are meant to provide users with precise
tools best suited for work or leisure environments and a lot
of effort has been put into creating a multitude of mobile
applications. However, not much research has been put at the
same time into determining which of the available protocols
are best suited for individual tasks. Here a number of basic
notification methods are presented and tests are performed for
the most promising ones. An attempt is made to determine which
methods have the best throughput, latency, security and other
characteristics. A comprehensive comparison is provided, which
can be used to select the right method for a specific project.
Finally, conclusions are provided and the results of all the tests
conducted are discussed.

I. INTRODUCTION

T
HE PURPOSE of this paper is the analysis and tests

of several selected notification methods for mobile plat-

forms. The reason for this research is the need to determine

the best way of sending simple as well as more advanced

messages about the events involved in the operation of grid

systems or telemetric networks. This makes it possible to

use the optimal approach in numerous projects that need to

inform users about their current status. This aspect is currently

of utmost importance for the industry as such notification

methods enable developers to engage users much more fully

and keep them in constant contact with their leisure and work

interests. These considerations have guided us throughout our

research and affected all our decisions on the selection and

ways of testing of the methods in question.

Several protocols and methods were considered based on

their purposes and current industry standards. The main

candidates were: CoAP (Constraint Application Protocol),

XMPP (Extensible Messaging and Presence Protocol) and

XMPP over SOAP (Simple Object Access Protocol), MQTT

(Message Queuing Telemetry Transport), MQTT-SN (Message

Queuing Telemetry Transport for Sensor Networks), AMQP

(Advanced Message Queuing Protocol), Cloud notification

systems (Google Cloud Messaging, Urban Airship), SMS

(Short Message Service) and Restful HTTP (Hypertext Trans-

fer Protocol).

Of course, these are not all the protocols that could be used

for mobile notifications, but these listed appear to hold the

most promise and therefore the purpose is to discern their

usefulness in the best way possible.

In addition to the protocols and methods above, we inves-

tigated other solutions, such as the Apple push notification

or Line application which, for various reasons, were not

considered further. The Apple push notification technology is a

good solution, but it is proprietary, i.e. limited to Apple devices

and that is why we decided to test more universal solutions

first. There are also solutions (applications) that use their own

protocols. A good example is Line application, which uses

a proprietary protocol. We considered testing this solution;

however, there are significant difficulties with accessing the

documentation for this protocol.

II. RELATED WORK

Mobile systems are a relatively new field of study and pick-

ing a specific topic such as comparing available notification

methods does not return many related work results. Some of

the protocols have been covered in separate articles and while

these took the sending of notifications into account, tests were

not always conducted in mobile systems.

The one available article [1] that compared notification

methods only covered cloud systems [2] and applications. It

discussed the following methods: C2DM (Google Cloud to

Device Messaging—the predecessor to GCM), Xtify, XMPP

and Urban Airship. As during our research that article was

relatively new, one might think that the information contained

there would still be relevant, but it turned out to be already

out of date. Google has meanwhile redesigned and rebranded

its notification system and Xtify was purchased by IBM. Only

Urban Airship is still available on the market in the same

configuration as previously. The article is more a comparison

of available commercial products than a real world testing

suite. As expected, the conclusion was that the fastest protocol

of the four tested was XMPP, but it had a characteristic slightly

different from the others.

Another article [3] only tested the MQTT protocol. The

author believed that it was the best possible choice and only

aimed to describe its main features and capabilities. Just a

single simple test and its averaged results together with the

amount of data transferred and power consumption over a

period of time were provided. In the conclusion, the author

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1183–1189

DOI: 10.15439/2015F6

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1183

described the MQTT protocol as being both lightweight and

perfect for mobile platforms.

In [4], the authors investigated XMPP in the field of

collaborative applications. Its main purpose was to assess the

usefulness of XMPP in exchanging location data between

mobile clients and web servers. No testing was conducted, but

a thorough description of XMPP and the Android platform

was provided while also taking into account the ways of

integrating them. The article described XMPP as a general

purpose messaging protocol that is easily extensible.

An important aspects in the context of notification methods

are SLA parameters [5] and the power consumption of battery-

powered devices. In [6], the authors discussed the problem

of sending notification data using GPRS connectivity from

remote telemetry stations [7]. They proposed the concept of

adaptive message aggregation which extends the MQTT-SN

protocol, adjusting its behaviour to the GPRS (General Packet

Radio Service) connectivity profile in order to decrease the

energy consumption related to data transmission.

III. NOTIFICATION METHODS

The following section generally describes and analyses the

possible notification methods for mobile devices mentioned in

the introduction. As a result of this analysis, it was decided

to select some of them in order to perform the thorough tests

described later in this paper.

A. SMS

It is possible to use the Short Message Service as a notifi-

cation mechanism. An application would have to intercept the

SMS messages received by an Android phone and analyse

them to check whether they contain notifications from the

system. One could just use simple text messages without a

dedicated client application, but this would severely limit the

functionality available to users.

This approach has several major issues. First, the cost

of sending multiple messages to numerous clients could be

immense. Secondly, it is not guaranteed that the message will

be delivered on time or (sometimes) even on the same day.

What is more, all text messages have a maximum undelivered

period (which cannot exceed 7 days), and this means that some

notifications would not be delivered at all.

B. Google Cloud Messaging

In order to simplify the development of applications and to

extend phone battery life, Google has created a simple built-

in notification system for the Android platform, which only

maintains a single connection at any time.

This approach has some obvious drawbacks. Firstly, the

number of messages sent concurrently is limited to four per

application and there is no guarantee that the message will

be delivered, especially while the service is shared. Secondly,

there is no specified maximum delay, which is not acceptable

for most modern systems. Moreover, in posts like [8] it is

claimed that the method is not all that well documented and it

is not easy to make an application work reliably with Google

Cloud Messaging (GCM). Another problem with GCM is that

some people do not trust Google not to abuse its capabilities,

citing privacy or security concerns. One must also keep in

mind that GCM can be used by some malware applications as

described in [9].

C. Restful HTTP

Another possible solution would be to use a RESTful HTTP

service based on a pull queue model [10]. Such an imple-

mentation would have to pull notifications from the server at

certain intervals or when the user turns on the application.

Currently creating such a service is a very simple process and

does not require additional knowledge from most developers,

which is the main advantage of this approach.
However, using this method is very inefficient as it is

not clear at what intervals requests should be made. Using

too long an interval between requests may result in multiple

notifications being sent all at once, making the older messages

meaningless. Conversely, if the interval were too short, it

would use too much device resources. Moreover, much of the

workload is shifted to the mobile device and the amount of

data sent between server and client is sometimes doubled.
Some ideas for REST notification systems are discussed

in [11], however using a pure REST approach is highly

discouraged. Using the AMQP/REST mixed approach seems

much more plausible.

D. XMPP

XMPP is basically an open technology for real-time com-

munication, using XML (Extensible Markup Language) as the

base format for exchanging information. It was designed to be

easily extensible and one of its main uses are publish-subscribe

systems. It is the most mature protocol among all the solutions

selected as it was already in use in 1999. Throughout its

history it was used by companies such as Google in the Google

Talk communicator, by Microsoft in Skype or by Facebook in

WhatsApp Messenger.
The idea behind XMPP is similar to that of e-mail, with a

distributed server network in which each and every server can

create its own service. The XMPP standard enables message

encryption and XML support allows for the use of such

technologies as SOAP or EDI (Electronic Data Interchange).
A standard that is tightly coupled with XMPP is SOAP

over XMPP, which can be tested using the same means, as

sending a SOAP message is basically sending some content

over XMPP, which provides effective and reliable messaging—

both asynchronous and synchronous.
XMPP is a general purpose protocol that is easily extensible.

It was only designed to meet mobile platform requirements and

was not expected to outperform any other protocols. However,

its flexibility makes it a choice worth considering. In [4], a few

add-ons are mentioned like group chats or streaming services

with a possibility to transfer files.

E. SOAP over HTTP

SOAP is a lightweight protocol for message exchanges

that is independent from the system platform programming

1184 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

language. Its specification does not define a specific transport

layer protocol, but most implementations use HTTP. It is

important to mention, however, that HTTP is of no use for

asynchronous messaging and because of that SMTP is often

used instead. The protocol makes it possible to send many

short messages.

In the discussion on the use of SOAP in notification systems,

the following solutions should be considered: polling, both

endpoints having their SOA interfaces, using WS-notification

and using the message queueing solution encapsulated in

HTTP.

All the solutions above have been analysed and none of

them are easy to adapt to the needs of mobile notification

systems. The first solution requires the client to make requests

at certain points in time, which generates a lot of unnecessary

traffic and is quite resource-heavy on small devices. The

second idea is better, but would not work for most mobile

devices as not all requests would pass from the server to

the device since such HTTP requests are often blocked. A

good solution is to use WS-notification, but the problem with

making requests from the server is still present. What is more,

it is not a standard supported by all web servers. The final

solution uses queueing, but it involves a lot of unnecessary

technology, especially given that there are ready-made queue-

ing mechanisms that do not have to be encapsulated in HTTP

requests.

F. MQTT/MQTT-SN

MQTT is a publish-subscribe lightweight messaging pro-

tocol based on TCP/IP. It was designed to be open, simple,

lightweight and easy to implement, since it was intended to

be used in constrained environments with limitations such

as: expensive, low bandwidth, unreliable network, limited

processor or memory resources.

The entire protocol is based upon a central message broker,

which distributes messages published on a topic to all the

interested consumers. The “MQ” part of the name comes from

“Message Queueing”, however this protocol does not support

queuing by default. It has three types of quality of service for

message delivery, which are “At most once”, “At least once”

and “Exactly once”. It also has a mechanism that can be used

to inform interested parties about an abnormal disconnection

using the “Testament” and “Last Will” features.

What is interesting is the fact that MQTT has already

been used in numerous applications. The first implementation

of GCM(C2D)1 used exactly this protocol. DeltaRail’s latest

version of their IECC (Integrated Electronic Control Centre)

also uses MQTT for communications within their signalling

system, which is covered in [12].

This standard was created by IBM and because of that fact

the IBM MQTT client Java library was used for testing and the

Mosquitto open source message broker for distributing mes-

sages. Mosquitto’s simple construction allowed us to create a

1Android Developer Central - GCM Advanced Topic -
http://developer.android.com/google/gcm/adv.html

bash script sending a set number of messages. The Android

client connects to the broker using the IBM library and is fed

the messages sent by the script.

MQTT-SN is a variation of MQTT designed to be used in

sensor networks. In particular, it is supposed to be lightweight

and easily implementable on small devices (e.g. in non-

TCP/IP2 networks).

G. CoAP

CoAP3 is a specialised web transfer protocol for use with

constrained nodes and networks based on UDP (User Data-

gram Protocol). Its main task is to allow for communication

between small devices such as sensors, switches, etc. It was

designed on the basis of HTTP in order to simplify its

architecture and allow for multicast. It also provides a simple

mapping between CoAP and HTTP, which can be used to

create RESTful services. The messages are sent in a binary

format and their size is limited by the maximum size of a

datagram. Messages can be sent with acknowledgements or

without them depending on the designer’s needs. Although it

is a relatively new standard, it already has some additional

features proposed like “Observable”, which makes it possible

to notify all the clients subscribed about changes to the

resource.

H. AMQP

AMQP is an open standard application layer protocol for

message-oriented middleware that uses a binary format to

send its messages. It was designed to solve the problem of

interoperability between heterogeneous systems and message

brokers. It was first used in 2006 by JP Morgan. It offers both

point-to-point and publish-subscribe messaging types.

The most important advantage of AMQP is the fact that it is

independent of programming languages and platforms unlike

most messaging standards, for example JMS (Java Message

Service) [13]. Moreover, it offers several types of quality of

service in terms of delivery guarantees; these types are at-

most-once, at-least-once or exactly-once guarantees. It also

allows to encrypt messages, which is important especially

in the case of valuable scientific data. Currently it is a

widely used standard and has a large number of implementing

libraries like Apache Qpid, RabbitMQ [14] or StormMQ.

IV. TESTS

There are currently three main mobile operating systems

(Android, iOS and Windows Phone) available on the market

and numerous devices that support them. As it would be

neither possible nor sensible to test each and every one of

them, only one testing platform and device was chosen.

Google’s Android system was selected as the mobile plat-

form for testing purposes because of the considerable avail-

ability and open nature of the solution. All major protocols

and methods selected have working implementations for this

system.

2Transmission Control Protocol/Internet Protocol
3CoAP RFC 7252 - http://tools.ietf.org/html/rfc7252

PIOTR NAWROCKI ET AL.: ANALYSIS OF NOTIFICATION METHODS 1185

As a mobile device the Nexus 5 (LG D821) was used with

Android version 4.4.3 using the standard Dalvik engine. At this

point Android Runtime was already available but it seemed

not yet ready for serious testing. All data (from a mobile

device) was transmitted using an HSPA technology (operator:

T-Mobile).

In order to conduct all tests, a server platform was also

needed, which consisted of an Asus laptop with the Intel i5-

3320M processor and 8GB of RAM with Ubuntu 12.04LTS

and Oracle Java 1.7.0_60 installed. All data (from a server

platform) was transmitted over the Wi-Fi network using the

802.11g standard (54 Mbps).

For time-related test cases ClockSync4 was used to synchro-

nise with time servers on the mobile device. All applications

launched their message connectors in separate threads. Ser-

vices were not used so all memory usage diagrams show the

combined values of the connector and activity screen.

All useful notification methods should meet most of the

specifications listed below:

• the financial cost should be low—mostly for open source

and university projects;

• it should be possible to transmit more than just simple

text—to enable interaction between the application and

the main system;

• energy and memory usage should be minimal—the solu-

tion is to be used on mobile devices;

• message contents should be secure—confidential infor-

mation could be transmitted;

• minimal message loss—important data could be transmit-

ted;

• minimal delay—fast interaction is sometimes needed.

As a result of analysing the notification methods available

(see Section III) and taking the above assumptions into ac-

count, it was decided to test the following protocols: XMPP,

SOAP, MQTT, CoAP and AMQP.
In order to conduct testing for each protocol, the following

solutions were used:

• XMPP—in order to prepare the XMPP test, the Smack

library was used to implement the mobile client. It has

been ported to Android in a version called Asmack.

ejabber was used as a message broker. The second client,

which was sending messages to the mobile client, was

implemented in Python using the SleekXMPP library. The

mobile solution was plain and simple with its task limited

to keeping an open connection to the broker.

• SOAP—an attempt was made to test a basic polling

mechanism using a simple Python SOAP server5 and

a basic Android client6. It involved making a number

of requests for stress testing and a single request to

measure single message performance. After obtaining

initial results this method was discarded as it was more

4ClockSync - http://amip.tools-for.net/wiki/android/clocksync
5Python simple and lightweight SOAP Library (a.k.a. soap2py) -

https://code.google.com/p/pysimplesoap/wiki/SoapServer
6A simple SOAP client for Android -

https://code.google.com/p/droidsoapclient

than 10 times slower than any other and used a lot of

resources for polling, which is unacceptable for mobile

devices. It was decided to concentrate efforts on other

solutions specifically intended for such devices. The re-

sults collected are shown together with the other protocols

tested, but are not included in graph comparisons (in

Figure I) as they were much worse than for any other

test conducted.

• MQTT/MQTT-SN—a broker that works with the

MQTT/MQTT-SN protocol is the RSMB (Really Small

Message Broker) from IBM and while it is quite easy

to find, locating an appropriate client library (especially

for MQTT-SN) is much more difficult. The one that is

available for MQTT-SN7 is written in the C programming

language so it was of no use whatsoever for Android

devices. The project also appeared to have been aban-

doned (no recent contributions). A further search led to

a library written in Python8, which was then used to

implement a client that would be run using the QPython

interpreter. After a certain amount of research and testing

a stage was reached where messages were delivered from

the broker to the device but never reliably. Attempts to

change QoS settings failed as it appeared that the client

library implementation was not complete yet. For these

reasons MQTT-SN was excluded from testing and only

MQTT was tested. It appears that the protocol is not

mature enough yet to be used on a larger scale and that

it has no reliable or finished implementations.

• CoAP—there is a limited number of implementations.

The main Java libraries are jCoAP and nCoAP. jCoAP

is not up to date with the RFC (Requests for Comments)

7252 and therefore nCoAP was used which additionally

implements the “Observable” feature. To test the protocol,

a simple server was created with a time service and a

mobile client that was sending GET requests to the server.

At first it was intended to use the “Observable” feature,

but during stress testing it turned out that messages cannot

be sent too often using this implementation because of

errors. As a consequence, although “Observable” can be

quite useful, especially in mobile systems, it was decided

to have each notification sent as an answer to a separate

GET request.

• AMQP—RabbitMQ was selected, which is one of the

best documented and popular libraries. For testing pur-

poses a simple Python script was developed that can send

a set number of simple messages containing timestamps

and an Android client application. The client connects to

the RabbitMQ message broker and then the Python script

is used to send messages.

To assess the efficiency and usefulness of the notification

methods selected, several test cases were created and run for

each protocol. It is not claimed that it is a complete test suite,

7MQTT-SN client in C - https://github.com/njh/mqtt-sn-tools
8MQTT-SN client in Python - http://git.eclipse.org/c/mosquitto/

org.eclipse.mosquitto.rsmb.git/tree/rsmb/src/MQTTSClient/Python

1186 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

but rather preliminary testing. More work remains to be done

in this field.

A. Time per message

Each of the four applications designed to check how much

time it takes to process a single message while stress testing

was used with different numbers of concurrent messages sent.

Set sizes of 10, 50, 100, 200, 300, 400 and 500 messages

were chosen. Each message contained its timestamp in order

to enable the calculation of exact delay. Figures 1 (nCoAP),

2 (MQTT), 3 (RabbitMQ), 4 (XMPP), 5 (SOAP over HTTP)

show how much time it took to process a single message for

different stress test set sizes.

Fig. 1. nCoAP

Fig. 2. MQTT

Fig. 3. RabbitMQ

Fig. 4. XMPP

Fig. 5. SOAP over HTTP

Based on the graphs generated it can be stated that

RabbitMQ is the fastest in terms of performance and its

performance actually improves as more messages are sent

concurrently. The nCoAP was also quite effective, but it should

be kept in mind that each message was sent in response to

a GET request, so it could be faster yet. Both MQTT and

XMPP exhibit quite long message sending times. However

SOAP over HTTP being definitely the slowest solution. In

this test, RabbitMQ was the clear winner.

B. Resource usage

The second most important criterion after performance was

resource usage. It is crucial to use as little device resources

as possible on a mobile platform in order to consume less

power and allow for greater efficiency. In this section, peak

memory usage (shown in Table I - “RAM (Random Access

Memory) usage peak”) and CPU (Central Processing Unit)

power consumption (by using PowerTutor tool [15]) were

measured as presented in Figures 6 (nCoAP), 7 (MQTT), 8

(RabbitMQ), 9 (XMPP), 10 (SOAP over HTTP), while sending

1000 messages concurrently to be processed by each of the

mobile clients developed.

It is clearly visible that almost all protocols used similar

amounts of memory, with the only outlier being MQTT with

10 MB less RAM usage than others. A much larger difference

can be seen in power consumption levels. These seem to be

strongly correlated with each individual protocol’s processing

time. nCoAP and RabbitMQ consumed the least power. About

two times more power was consumed by XMPP and SOAP

PIOTR NAWROCKI ET AL.: ANALYSIS OF NOTIFICATION METHODS 1187

Fig. 6. nCoAP (2 consecutive runs shown)

Fig. 7. MQTT

Fig. 8. RabbitMQ (3 consecutive runs shown)

Fig. 9. XMPP

over HTTP. The worst result was achieved by the MQTT

protocol.

Fig. 10. SOAP over HTTP

C. Reliability

Message sending reliability was also tested as it is one of the

crucial issues to be tackled in mobile notification applications.

Especially important is the issue of what happens to messages

in a queue when the connection to the client is lost. This was

simulated by reconnecting to a Wi-Fi network while sending a

set of 1000 messages. All protocols were tested using default

settings. It turned out that only nCoAP managed to deliver all

messages, while the other protocols lost some or most of the

messages sent. Developers must take care to use the correct

settings for each protocol as QoS is not usually switched on

by default.

D. Ordering

This test case was meant to show whether protocols deliver

messages in the same order in which they were sent. Simi-

larly to the first test, a set of messages was sent containing

timestamps and the comparison of arrival times of successive

messages made it possible to determine whether they were

correctly ordered. Only nCoAP changed the order of messages,

which is most probably caused by using UDP. All other

protocols delivered messages in the correct order even during

high load.

E. Average delay

The final test case was used to calculate the average delay

when sending a single isolated message using each of the five

protocols (Table I - “Average delay”). It turns out that nCoAP

is the fastest when it comes to sending individual messages and

SOAP over HTTP is the slowest one among all the protocols

tested.

V. CONCLUSIONS

The results as shown in Figure 11 clearly demonstrate that

in terms of the maximum number of messages delivered per

second RabbitMQ is the leader; however, when it comes to

minimal delay, nCoAP tends to be able to deliver single

messages much quicker. This means that if large numbers

of notifications are to be sent, RabbitMQ could be used,

while in a sparse notification system CoAP should perhaps be

recommended. In the power consumption test the best results

were also achieved by RabbitMQ and nCoAP.

1188 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 11. Comparison of protocols

It should also be noted that not all protocols are able to

easily pass through firewalls and NATs like XMPP, which is

the most mature of all the protocols tested. When it comes to

RAM usage, MQTT turned out to require the least megabytes,

which can be of great importance on mobile devices. A

summary of test results is shown in Table I.

In conclusion, the most promising solution seems to be

RabbitMQ but none of the protocols proposed outperformed

all the others in all test cases. This test suite only demonstrates

the performance of some implementations currently available

and the results might change for future releases or different

platforms. Before any protocol is selected, it is important to

specify the needs of the project in question and then compare

the protocols to determine which one best suits these needs.

TABLE I
OVERVIEW OF PROTOCOL PROPERTIES

nCoAP RabbitMQ MQTT XMPP SOAP
RAM usage
peak [MB]

47 44 35 46 38

Average delay
[ms]

91 185.5 339.6 192.3 972.2

Ordered no yes yes yes yes
Lost messages no yes yes yes yes
Content binary binary binary text text
Based on UDP TCP TCP TCP TCP
SSL support no yes yes soon yes

ACKNOWLEDGMENT

The research presented in this paper was partially sup-

ported by the National Centre for Research and Development

(NCBiR) under Grant No. PBS1/B9/18/2013 and by the Polish

Ministry of Science and Higher Education under AGH Univer-

sity of Science and Technology Grant 11.11.230.124 (statutory

project).

REFERENCES

[1] J. Hansen, T.-M. Grønli, and G. Ghinea, “Towards cloud to device
push messaging on android: Technologies, possibilities and challenges,”

International Journal of Communications, Network and System Sciences,
vol. 5, no. 12, pp. 839–849, 2012. doi: 10.4236/ijcns.2012.512089

[2] P. Nawrocki and M. Soboń, “Public cloud computing for software as
a service platforms,” Computer Science, vol. 15, no. 1, 2014. doi:
10.7494/csci.2014.15.1.89. [Online]. Available: http://journals.agh.edu.
pl/csci/article/view/519

[3] K. Tang, Y. Wang, H. Liu, Y. Sheng, X. Wang, and Z. Wei, “Design
and implementation of push notification system based on the MQTT
protocol,” in 2013 International Conference on Information Science

and Computer Applications (ISCA 2013). Atlantis Press, 2013. doi:
10.2991/isca-13.2013.20

[4] D. Schuster, I. Koren, T. Springer, D. Hering, B. Söllner, M. Endler,
and A. Schill, Creating Applications for Real-Time Collaboration with

XMPP and Android on Mobile Devices. IGI Global: Handbook of
Research on Mobile Software Engineering: Design, Implementation and
Emergent Applications, 2012.

[5] J. Kosinski, P. Nawrocki, D. Radziszowski, K. Zielinski, S. Zielin-
ski, G. Przybylski, and P. Wnek, “SLA monitoring and management
framework for telecommunication services,” in Networking and Services,

2008. ICNS 2008. Fourth International Conference on, March 2008. doi:
10.1109/ICNS.2008.31 pp. 170–175.

[6] T. Szydlo, P. Nawrocki, R. Brzoza-Woch, and K. Zielinski, “Power
aware MOM for telemetry-oriented applications using GPRS-enabled
embedded devices—levee monitoring use case,” in Proceedings of the

2014 Federated Conference on Computer Science and Information

Systems, ser. Annals of Computer Science and Information Systems,
M. P. M. Ganzha, L. Maciaszek, Ed., vol. 2. IEEE, 2014. doi:
10.15439/2014F252 pp. pages 1059–1064. [Online]. Available: http://
dx.doi.org/10.15439/2014F252

[7] R. Brzoza-Woch, M. Konieczny, B. Kwolek, P. Nawrocki, T. Szydło,
and K. Zieliński, “Holistic approach to urgent computing for flood
decision support,” Procedia Computer Science, vol. 51, no. 0, pp.
2387 – 2396, 2015. doi: 10.1016/j.procs.2015.05.414 International
Conference On Computational Science, ICCS 2015 Computational
Science at the Gates of Nature. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1877050915012223

[8] R. Oldenburg, “Keeping google cloud messaging for android working
reliably [technical post],” http://blog.pushbullet.com/2014/02/12/
keeping-google-cloud-messaging-for-android-working-reliably-
techincal-post, February 2014.

[9] C. Duckett, “Android malware utilising google cloud messag-
ing service,” http://www.zdnet.com/android-malware-utilising-google-
cloud-messaging-service-7000019427/, August 2013.

[10] G. Ghinamo, F. Vadala, C. Corbi, P. Bettassa, F. Risso, and R. Sisto,
“Vehicle navigation service based on real-time traffic information: A
RESTful netAPI solution with long polling notification,” in Ubiquitous

Positioning, Indoor Navigation, and Location Based Service (UPINLBS),
2012, Oct 2012. doi: 10.1109/UPINLBS.2012.6409749 pp. 1–8.

[11] K. Wylie, “REST requires asynchronous notification,” http://kirkwylie.
blogspot.com/2008/12/rest-requires-asynchronous-notification.html,
December 2008.

[12] D. Wood and D. Robson, “Message broker technology for flexible
signalling control,” in Proc. ASPECT 2012 Conference, 2012.

[13] M. Richards, “Understanding the difference between AMQP and JMS,”
NFJS Magazine, May 2011.

[14] M. Rostański, K. Grochla, and A. Seman, “Evaluation of highly
available and fault-tolerant middleware clustered architectures using
RabbitMQ,” in Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems, ser. Annals of Computer
Science and Information Systems, M. P. M. Ganzha, L. Maciaszek,
Ed., vol. 2. IEEE, 2014. doi: 10.15439/2014F48 pp. pages 879–884.
[Online]. Available: http://dx.doi.org/10.15439/2014F48

[15] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang, “Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,” in
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, ser. CODES/ISSS
’10. New York, NY, USA: ACM, 2010. doi: 10.1145/1878961.1878982.
ISBN 978-1-60558-905-3 pp. 105–114. [Online]. Available: http://doi.
acm.org/10.1145/1878961.1878982

PIOTR NAWROCKI ET AL.: ANALYSIS OF NOTIFICATION METHODS 1189

