
 

 

 

 

Abstract— Time Petri Nets (TPN) are a well-known 

formalism for modelling time-dependent systems with timing 

constraints. This paper proposes an approach based on a 

stochastic extension of TPN (sTPN), which enables both 

qualitative assessment of feasible temporal behaviors through 

model checking, and quantitative evaluation of a probability 

measure of a given behavior, by statistical model checking. The 

experimental work rests on the use of the latest version of the 

UPPAAL toolbox which supports both exhaustive non 

deterministic analysis and statistical model checking of system 

properties. The approach is demonstrated through an example. 

I. INTRODUCTION 

he development of safety-critical software systems is 

challenged by the needs of addressing both functional 

and temporal correctness issues. Violation of timing 

constraints can have important consequences in the practical 

domain (e.g., economy, medicine, cyber physical control 

systems, etc.). Therefore, it is highly recommended the use 

of formal tools for modelling and analysis of concurrent and 

timed software. 

From the point of view of analysis, both qualitative 

verification and quantitative evaluation of system properties 

are nowadays advocated by engineers and developers. 

Whereas qualitative verification of a system model tries to 

identify feasible behaviors, quantitative evaluation aims to 

associate them a measure of occurrence probability. 

Qualitative verification is often based on the exhaustive 

enumeration of all the possible execution states of a model, 

organized in the so called model state graph, and on 

checking desired properties through efficient traversal 

algorithms on the state graph. To avoid an infinite growth of 

the state graph, each state node is implemented as a couple: 

a discrete data part, and a dense time part. The time 

component typically stores in a compact way (zone) all the 

clock (timer) inequalities which hold in the state. As a 

consequence, a state is in reality a state class which 

subsumes an infinite number of states which could be 

reached by only changing the clock values (firing times of 

transitions).  

Despite the use of state classes, depending on the system 

model, the state graph can suffer of state explosion 
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problems. In addition, the construction and navigation of the 

state graph can become undecidable when a complex 

combination of modelling factors (non-deterministic time of 

actions, sporadicity of process arrival, message passing, 

stochastic aspects etc.) occurs. In these cases, the study of 

system properties can only be approximated, e.g., through 

simulation. 

Qualitative non deterministic verification based on model 

checking [1] has been demonstrated by Time Petri Nets [2]-

[5] and Timed Automata [6] based tools, e.g. [7]-[12]. 

Quantitative evaluation of system behavior is supported by 

recent extensions to the ORIS tool [8] and by latest versions 

of UPPAAL [9]-[11] which include a statistical model 

checker (SMC) [13]. 

This paper proposes an original approach to qualitative 

and quantitative evaluation of systems with timing 

constraints which is based on the Time Petri Net (TPN) 

formalism which is very often used for modelling real-time 

and embedded systems, communication protocols etc. To 

permit both non-deterministic analysis and stochastic 

analysis of system properties, a stochastic extension of TPN 

(sTPN) [14] is also considered. The contribution of the paper 

consists in a mapping of TPN/sTPN onto UPPAAL so as to 

exploit, on a same model, both the exhaustive model checker 

and the stochastic model checker. 

Whereas the support of sTPN in the ORIS tool is based on 

the concept of stochastic state class and stochastic state 

graph, i.e., a density probability distribution function is 

attached to each state class which characterizes the possible 

stochastic evolutions from it, i.e., estimating the probability 

of the outgoing state transitions, the use of sTPN in UPPAAL 

rests on batches of simulation runs and statistics inference of 

desired results from these runs. As a consequence, ORIS can 

provide a greater resolution on the probability measures. 

However, this paper argues that the proposed approach 

based on UPPAAL has the following strengths: (1) it is based 

on a popular and efficient toolbox, (2) it does not incur in an 

infinite stochastic state graph nor suffer of stochastic state 

explosion problems as discussed in [14] (3) it in any case 

can provide quantitative measures of probability which are 

valuable from the engineering point of view. 

The paper is structured as follows. Section II provides 

basic definitions of TPN and sTPN formalisms. Section III 
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describes a modelling example. Section IV gives an 

overview to non-deterministic analysis and stochastic 

analysis enabled by UPPAAL. Section V discusses the 

developed structural translation from TPN/sTPN to UPPAAL. 

Section VI illustrates the application of the proposed 

approach to a thorough property assessment of the model 

described in Section III, by detailing qualitative and 

quantitative analysis. Section VII concludes the paper by 

indicating directions of on-going and future work. 

II. TIME PETRI NETS DEFINITIONS 

A basic TPN is a tuple                            

where: 

 

   is a finite nonempty set of places; 

   is a finite nonempty set of transitions; 

  ת  = ∅; 

 B is the backward incidence function,  :  ×  → ℕ, 

where ℕ denotes the set of natural numbers; 

   is the forward incidence function,  :  ×  → ℕ; 

     is the set of inhibitor arcs,    ⊂  ×   where  � � ∈    ⇒   � � = 0; 

    is the initial marking function,   :  → ℕ, which 

associates with each place a number of tokens; 

     :  → �  is a function which associates each 

transition with a (finite) earliest static firing time. �  

denotes the set of non-negative real numbers; 

     :  →  � {∞} is a function which associates 

each transition with a (possibly infinite) latest static 

firing time. In any case it must be     ≥     . 
 

Differently from [13], in this work TPNs admit both 

inhibitor arcs and non-unitary arc weights. 

The state of a TPN is a pair  =      where  : →  is the net marking, and  :  → �  associates each 

transition with a (dynamic) time-to-fire (clock or timer). The 

state evolves according to the firability and firing clauses. 

A transition � is enabled, as in classic Petri nets, if each 

of its input places contains sufficient tokens, i.e., iff 

   � ∈    � � ∈    ⇒   � = 0     � �  0 ⇒   � ≥   � �  

 

Transition � is firable if it is enabled and its time-to-fire   �  is not higher than that of any other enabled transition. 

When � fires, the state  =      is replaced by a new 

states   =        where marking    is derived from   

by the withdrawal of tokens from the input places and the 

deposit of tokens in the output places. More precisely, the 

firing process consists of the two (atomic) phases: 

      � =   �    � �  (withdraw phase)    � =      �    � �  (deposit phase) 

 

Transitions which are enabled in the intermediate marking      (and then also in  ) and in the final marking    are 

said persistent to the � firing. Transitions which are enabled 

in    but not in      are said newly enabled.  

A transition which is multiple enabled in a state   is 

supposed to consume its enablings one at a time (single 

server semantics). Therefore, after its own firing, would � be 

still enabled, it is regarded as a newly enabled one. 

For any transition �  which is persistent to the firing of �, 

its time-to-fire is reduced, in the new state   , as follows: 

   (� ) =  (� )    �  

 

For any newly enabled transition �   its time-to-fire is 

constrained to occur not deterministically in its static time 

interval: 

      �       �         �    

 

A. Stochastic extensions 

An sTPN [14] specializes a basic TPN as follows. The set of 

transitions is partitioned into two subsets:  =      , 

where     is the subset of timed transitions,   ⊂   is the 

set of immediate transitions. Besides its static time interval, 

a timed transition is attached a probability density 

distribution function    :   → �   which is constrained in 

the static time interval             of the transition. It is 

also said the static time interval is the support of the pdf. An 

immediate transition is attached a real positive weight  :   → � . 

The semantics interpretation of an sTPN is as follows. 

Immediate transitions (as in Generalized Stochastic Petri 

Nets –GSPN- [15]) always fire before any timed transition, 

and consumes no time. The set of simultaneously enabled 

immediate transitions in the current state constitutes a 

random switch, i.e., each immediate transition �  is firable 

with probability 

      �  =   �  ∑   �    ∈                     

 

The time-to-fire   �  of a timed transition �  is 

stochastically defined, at its enabling instant, by sampling 

the     �  with the constraint:  

      �      �       �  

 

As an example, the     of a timed transition can be 

(default) a uniform distribution function which picks up a 

value in the static time interval of the transition, or a 

negative exponential distribution function. However, in the 

general case, a timed transition can follow a generally 

distributed function constrained in the support time interval. 

Firing of a timed transition follows the same rules as in 

basic TPNs. 
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III. A MODELLING EXAMPLE 

Fig. 1 depicts a TPN model [14] made up of two (almost 

identical) production cells, identified by suffixes 1 and 2, 

which operate sequentially and cyclically. 

Each cell admits two parallel activities named JobA (t1, 

t7) and JobB (t2, t8). JobA requires the use of a resource res 

(places p2 and p9) which may fail during the usage. In the 

case of failure, JobA is not completed, and a recovery action 

recA (t5 and t11) is instead executed which replaces the 

normal behavior provided by JobA. A failed resource is 

repaired by a repair transition (see t3 and t9). The execution 

of a production cell is started by the start transition (t0, t6). 

A cell logically terminates its current production phase when 

a token is generated in the couple of termination places (p5, 

p6) or (p12, p13). 

 

 

Fig. 1 A TPN/sTPN model with two production cells 

 

All the transitions in Fig. 1 are supposed, in the stochastic 

interpretation, to be served by a uniform distribution in the 

associated static time interval, with the exception of the 

failure transitions (t4, t10) which have a support interval of 

[0,∞  and an exponential distribution function whose rate is  = 0  , as witnessed by the notation E(0.3) attached to the 

transitions. 

The use of [0,∞  as the time interval of a failure transition 

is noteworthy. In both non-deterministic and stochastic 

interpretations the failure cannot occur later than 6 time units 

measured from the time instant in which the failure 

transition gets enabled. This happens because of the [3,6] 

time interval of the JobA transition, which forbids the failure 

to occur later than 6. In the stochastic interpretation, 

however, something subtle occurs. Due to the exponential 

distribution E(0.3), the failure is expected to happen with a 

very low probability, as the sample chosen from the E(0.3) 

pdf can be much greater than 6 and thus later with respect to 

the completion time of the JobA activity. All of this reflects 

the different concerns of non-deterministic analysis and 

stochastic analysis (see later in this paper). 

 

IV. UPPAAL CONCEPTS 

The popular and efficient UPPAAL toolbox [9]-[10] allows 

modelling and verification of time-dependent systems. An 

UPPAAL model consists of a network of timed automata 

(TA) [6]. TA are designed as template processes, which can 

have parameters, can be instantiated, and consist of atomic 

actions. 

TA are extended with local or global integer (and 

boolean) variables and arrays of integers, clocks and 

channels. In latest versions of the toolbox, C-like functions 

and structures are also permitted. Time is dense and can be 

controlled by means of clock variables. Clocks can only be 

reset and compared against nonnegative integer constants.  

All the clocks of a model increase automatically with the 

same rate of advancement of the hidden system time. TA 

synchronize to one another by CSP-like channels 

(rendezvous) which carry no data values.  

Asynchronous communication is provided by broadcast 

channels where a single sender can synchronize with a 

(possibly empty) group of receivers. The sender of a 

broadcast signal in no case is blocked. Locations (states) of 

an automaton are linked by edges (transitions).  

Every edge can be annotated by a command with three 

(optional) elements: (i) a guard, (ii) a synchronization (? for 

input and ! for output) on a channel, and (iii) an update 

consisting of a set of clock resets and a list of variable 

assignments. Channel synchronization implies the 

commands of the sender and of the receiver(s) are jointly 

executed. However, the update of an output command is 

executed before that of a matching input command.  

An atomic action consumes no time and refers either to 

the execution of an internal command of one automaton or 

to a joint execution of the multiple commands during a 

synchronization among two or more TA.  

A clock invariant can be attached to a location as a 

progress condition. The timed automaton can remain into 

the location as long as its invariant holds. UPPAAL supports 

also committed and urgent locations which must be exited 

immediately (i.e., without passage of time), and urgent 

channels whose synchronizations must be fired without 

passage of time. Committed locations, among them, can be 
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interleaved. Similarly, urgent locations, among them, can be 

interleaved. However, committed locations have priority 

with respect to urgent locations. 

The symbolic model checker of UPPAAL handles the 

parallel composition of the TA of a model. Parallel 

composition means generating all the possible action 

interleavings of the component concurrent processes. 

UPPAAL consists of a graphical editor, a simulator and a 

verifier (the symbolic model checker verifyta). For 

exhaustive property assessment, the verifier tries to build the 

reachability graph of the model, where each state node holds 

a data part (variable values and location of each automaton) 

and a firing domain (time zone or clock inequalities system). 

The time zone implies each state graph node actually 

represents a class of equivalent states which fulfill the clock 

inequalities. The simulator executes a system model and 

visually documents the reached execution state by following 

a particular path in the model state graph. The simulator is 

useful for model debugging and to examine a diagnostic 

trace (counterexample) created by the verifier, e.g., when a 

property is not satisfied. Safety, absence of deadlocks, and 

bounded liveness (e.g., an end-to-end time constraint) 

properties can be verified by reachability analysis upon the 

state graph, using a subset of TCTL temporal logic formulas 

[10] as shown in the following:  

 

-      (Possibly  , i.e., a state exists where   holds) 

-       (Invariantly  , equivalent to:   �      �  ) 

-       (Potentially Always  , i.e. a state path exists 

over which   always holds) 

-      (Always eventually   , equivalent to:   �       �  ) 

-       (    always leads-to  , equivalent to:          �        ) 

 

where   and   are state properties (formulas), e.g., clock 

constraints or boolean expressions over predicates on 

locations.  

Although min/max determinations, e.g., of a clock, can be 

achieved by using the above described logic queries, a 

shorthand notation is available as in the following: 

 

sup{ state-predicate } : list-of-expressions 

inf{ state-predicate } : list-of-expressions 

 

These queries evaluate the superior/inferior value of the 

list of expressions, only in the states of the state-graph which 

satisfy the state predicate specified within { and }. 

 

A. UPPAAL Statistical Model Checker 

The problem with symbolic model checking is that it 

could not be practically applied to realistic complex systems 

which generate an enormous (possible infinite) state graph, 

or it becomes undecidable for systems which combine in a 

complex way continuous time with stochastic behavior.  

Property checking in these cases can only be 

approximated or estimated. In recent years the UPPAAL 

toolbox was extended to support stochastic model checking 

(SMC) [9]. UPPAAL SMC [11] avoids the construction of the 

state graph and checks properties by performing a certain 

number of simulation runs, e.g., in parallel on a modern 

multi-core machine. After that some statistics techniques are 

used to infer results from the simulation runs.  

SMC refines and extends basic UPPAAL. Only broadcast 

synchronizations are allowed among stochastic TA (STA). 

In addition, either an invariant or the rate of an exponential 

distribution can be attached to a location. Stopwatches, i.e. 

clocks whose automatic advancement can be temporarily 

stopped (their first derivative is put equal to zero as an 

invariant of a location) can be exploited. A stopwatch 

resumes its advancement as soon as the automaton exits the 

location in which it was stopped.  

UPPAAL SMC also provides floating point (double) 

variables which, e.g., can be assigned the value of a clock. 

Virtually, the symbolic model checker can be applied to a 

stochastic model too, in which case all doubles, exponential 

distribution rates etc. are simply ignored. However, on a 

stochastic TA model can be issued the following specific 

query types. Bold symbols are meta-symbols used to 

describe the SMC query language.  

 

1. simulate N [ (clock|#|void)<=bound ] { Expression1, 

…, Expressionk } 

2. Pr[ (clock|#|void)<=bound ] ( (<>|[]) Expression ) 

3. Pr[ (clock|#|void)<=bound ] ( (<>|[]) Expression) 

(<=|>=) PROB 

4. Pr[ (clock|#|void)<=bound ] ( (<>|[]) Expression) 

(<=|>=) Pr[(clock|#|void)<=bound ] ((<>|[]) 

Expression) 

5. E[ (clock|#|void)<=bound; N ] ( (min:|max:) 

Expression ) 

 

Expressions are state predicates without side-effects. They 

can specify an automaton to be in a certain location, or some 

constraints on data variables or clocks etc. All the queries 

are evaluated according to a bound which can be related to 

(implicit) global time or to a clock or to a number of 

simulation steps (#).  

Query 1 makes N simulation experiments and collects 

information about the listed expressions. Query 2 evaluates 

the probability the given expression holds within the 

assigned bound (<>) or always holds within the bound ([]) 

with a confidence interval (the default 95% confidence 

degree can be customized by the user). Query 3 checks if the 

estimated probability is less/greater than a given probability 

value. Query 4 compares two probabilities. Query 5 

estimates the minimum or the maximum value of an 

expression.  

Responding to queries implies a certain number of 

simulation runs are carried out, either explicitly requested 

(see the parameter N in the queries 1 and 5) or implicitly 

defined by the query. Quantitative estimation of a query of 

type 2 rests on Monte Carlo-like simulations. Qualitative 

queries of the type 3 and 4 use sequential hypothesis testing. 

An important feature provided by UPPAAL SMC is 
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visualization of simulation results. Following a satisfied 

query, the modeler can right click on the executed query and 

choose an available diagram (histogram, probability 

distribution etc.) to be plotted. At the time of this writing, 

UPPAAL SMC is supported by the development version 

4.1.19. 

V. MAPPING TPN/STPN ONTO UPPAAL 

A TPN/sTPN model is translated into UPPAAL by 

associating each transition with a suitable template process 

and by introducing some global data and helper functions. A 

similar approach was adopted by authors in [16] which 

provides a formal correctness approach exploitable also in 

current work. For brevity, though, in the following only an 

informal semantics will be given. 

 

A. TPN issues 

The structural translation adapts itself to the needs of both 

non deterministic analysis (TPN model checking) and the 

stochastic analysis (sTPN SMC). During the exhaustive 

verification of a TPN model, all the transitions are 

homogeneously modelled as timed transitions (see the 

tTransition automaton in Fig. 2). Immediate transitions, in 

particular, are expressed as timed transitions with a [0,0] 

static time interval. Random switches are thus replaced by 

non-deterministic selection (race) among transitions firable 

at the same time.  

 

Fig. 2 The tTransition template automaton 

 

The tTransition automaton in Fig. 2, with the sole 

parameter const tid t, models the generic timed transition of 

a TPN model. The t transition id is used to select the clock 

x[t] which captures the time-to-fire of the transition. The 

global functions enabled(t), withdraw(t) and deposit(t) assist 

the automaton evolution.  

A timed transition starts into the N (Not enabled) location. 

As soon as it finds itself enabled, it resets its clock x[t] and 

moves to the F (Firable) location. The invariant attached to 

the F location states that the transition can remain in F until 

the latest static firing time which can be infinite. On the 

other hand, transition t can fire as soon as it happens its 

clock x[t] reaches the earliest static firing time. Bounds of the 

static time interval of the transition t, constrained to be 

positive integers (an upper bound infinite is denoted by the 

constant INF), are held into the global array  :  ×  →   �.   �  0  is the      � ,   �     is the      � . 

The firing process is accomplished with the help of the 

end_fire broadcast channel. Two broadcast synchronizations 

are actually used, separately triggering the withdraw-phase 

and the deposit-phase. Each end_fire synchronization is 

capable of influencing all the other transitions which are 

forced to re-examine their enabling status, and thus 

commanding a return from F to N when a firable transition 

detects it is no longer enabled, or moving from N to F when 

a not enabled transition finds itself enabled. It is worth 

noting that the two location W (Withdraw) and D (Deposit) are 

committed locations, thus ensuring the firing process is 

instantaneous and atomic. In the D location, a just fired 

transition which is still enabled, comes again into the F 

location and resets its clock x[t] (single server semantics). If 

the transition is not enabled, it reaches the default N location. 

To bootstrap a TPN model, a Starter automaton (see Fig. 

3) is exploited which launches an initial (fictitious) end_fire 

synchronization to force transitions which are enabled in the 

initial marking of the model, to reach the F location. 

 

Fig. 3 The Starter automaton 

 

Behind the design of the tTransition automaton, the 

following global declarations are introduced. Model 

topology is captured by the constants P (number of places), 

PRE (maximum number of input places of a transition), 

POST (maximum number of output places of a transition), T 

(number of transitions), B and F (input/output constant 

incidence matrices), M (marking vector), I (time intervals). 

Each element of the matrices B and F, purposely 

implemented as TxPRE and TxPOST respectively, holds the 

index of a place, and the weight of an input and, 

respectively, an output arc. Transitions are numbered from 0 

to T-1. The subtypes tid and pid describe respectively the sub 

range types of possible transition or place ids.  

 

B. sTPN issues 

The support of sTPN shares the same basic global 

declarations described in the previous sub-section plus some 

specific declarations required for statistical model checking. 

 
Fig. 4 The sTransition automaton 

enabled(t)

!enabled(t)

!enabled(t)

WN

F

D

withdraw(t)

x[t]=0

x[t]>=I[t][0]

enabled(t)

deposit(t)

x[t]=0

I[t][1]==INF||

x[t]<=I[t][1]

end_fire? end_fire!

end_fire?

end_fire!

end_fire!

S1S0

end_fire!

x[t]==ft[t] &&

NIT==NONE

enabled(t)

x[t]=0, ft[t]=f(t),

fire=false

enabled(t)

!enabled(t)

!enabled(t)

end_fire?

WD

F

fire=false deposit(t)

x[t]=0, ft[t]=f(t)

withdraw(t),

fire=true

N

x[t]<=ft[t] &&

ft[t]'==0

end_fire?

end_fire!

end_fire!

end_fire!
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An sTPN model rests on two new timed automata shown 

in Fig. 4 and Fig. 5, respectively associated to a stochastic 

timed transition (sTransition) and to an immediate transition 

(iTransition). 

As a matter of convention, first are numbered the 

stochastic transitions, from 0 to the TT-1 (TT is a model 

constant), then are numbered the immediate transitions 

(from TT to T1). Of course, T=TT+IT. Correspondingly are 

defined the subtypes ttid and itid describing respectively the 

subranges of the stochastic and immediate transitions. An 

sTransition has the only the t (id) parameter of type ttid. 

Similarly, iTransition has the sole t parameter of type itid. All 

of this ensures the transition automata of a TPN/sTPN model 

can be implicitly instantiated at system configuration time. 

 

 
Fig. 5 The iTransition automaton 

 

The sTransition uses two clocks: x[t] and ft[t]. The first one 

serves the same purposes discussed for the tTransition 

automaton (see Fig. 2). The second one actually stores the 

sampled fire time achieved (through integration of) the 

density distribution function (denoted by f(t)) associated to 

the transition. As one can see from Fig. 4, an sTransition 

actually fires (exiting the F location) when its time-to-fire 

clock x[t] equals the fire time held in the ft[t] clock. As part of 

the invariant attached to F, the first derivative of the clock 

ft[t] is put to 0 to avoid its advancement. Other details in Fig. 

4 are as for the tTransition automaton.  

The iTransition automaton in Fig. 5 does not use any 

clock. When it finds itself enabled, it moves to the 

committed location F. The rank() function implements the 

random switch and assigns to the global NIT variable (Next 

Immediate Transition) the id of the immediate transition 

probabilistically selected through the transition weights. The 

immediate transition that detects it is the selected NIT, 

instantly fires and resets NIT to NONE in preparation of a 

next execution of the random switch. As soon as a firable 

immediate transition discovers it is no longer enabled (for a 

conflict) it comes back to N. 

 Due to the committed location F in Fig. 5, and the (sub) 

guard NIT==NONE in Fig. 4, it is guaranteed that immediate 

transitions get fired before timed transitions. Moreover, the 

global bool fire variable in Fig. 4 and Fig. 5 ensures the fire 

of an immediate transition cannot actually start if the firing 

in progress of a timed transition is not completed. 

VI. ANALYSIS OF A TPN/STPN MODEL 

The structural translation from TPN/sTPN to UPPAAL 

described in the previous section, was applied in a case to 

the model presented in Section III.  

 

A. Non deterministic analysis 

Here the concern was to evaluate qualitative properties of 

the model. Towards this timed transitions and immediate 

transitions are both modelled with the tTransition automaton 

in Fig. 2, and the exhaustive model checker of UPPAAL was 

used along with the construction of the (hopefully finite) 

state graph. The following clarifies the system configuration 

of the TPN model: 

 

system Starter, tTransition; 

 

where implicit instantiation is exploited. Due to the design 

of the template processes, only one instance of Starter is 

created, whereas T instances of tTransition (as demanded by 

the tid sub range type) are generated. 

As a preliminary assessment of system behavior, the 

model was checked for the absence of deadlocks. The query 

was: 

 

A[] !deadlock               satisfied 

 

where deadlock is a reserved keyword of UPPAAL. As a part 

of this first query, it was also implicitly assessed that the 

model is safe, i.e., 1-bounded. This was simply achieved by 

having declared the marking vector thus: 

 

int[0,1] M[P]={ 1,1,1,0,0,0,0,0,0,1,0,0,0,0 }; 

 

and never observing an assignment out of bounds to M. 

After that the model was checked for the existence of 

regenerative states [14]. A regenerative state is one where 

previous history of the system can be disregarded because it 

does not influence the future behavior.  

First it was checked the property stated in [14], page 715, 

that repair2 cannot be persistent at each firing of start1, thus 

(also activating the generation of a diagnostic trace): 

 

A[] (tTransition(0).W||tTransition(0).D) imply !tTransition(9).F 

 

which asks if invariantly in both the intermediate marking 

(determined by the withdraw phase) and the final marking 

(determined by the deposit phase) of the firing of t0 (start1), 

the transition t9 (repair2) cannot be in its firable location F.  

 The property was found to be false as witnessed by the 

counterexample proposed by UPPAAL that shows effectively 

repair2 can be persistent to start1. 

In reality, the two production cells could admit 

regenerative states when a complete processing of the 

second cell certainly finds the first cell in its home marking, 

and vice versa: when the first cell finishes its processing, the 

second cell is in its home marking. The following queries 

!enabled(t)

rank() rank()

!enabled(t) !fire && t==NIT

enabled(t)enabled(t)

WD

withdraw(t),NIT=

NONE

deposit(t)

F

rank()
N

end_fire!

end_fire!

end_fire!end_fire?
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were issued to the model checker (recall places are uniquely 

identified by their subscripts, i.e., the numbers from 0 to 

P1): 

  

A[] M[5]==1 && M[6]==1 imply (M[9]==1 && 

forall(i:int[7,13]) i!=9 imply M[i]==0)      satisfied 

 

A[] M[12]==1 && M[13]==1 imply (M[2]==1 && 

forall(i:int[0,6]) i!=2 imply M[i]==0)      satisfied 

 

which verify if, invariantly, each time one cell finishes its 

activities, i.e., a token is generated in the terminal places p5 

and p6 or p12 and p13 in Fig. 1, the marking of the partner 

cell is surely its initial marking, meaning that no previous 

behavior is still in progress in the partner cell. As it was 

confirmed previously, e.g., at the processing end of the 

second cell the only possibly still pending sub activity in the 

second cell is the repairing of the failed res2 resource. 

However, satisfaction of latter queries guarantee that at each 

termination of the first cell, the second one always founds 

itself in its home marking, thus no previous behavior exists 

in the second cell which could interfere with new behavior. 

The existence of regenerative states was a key for 

assessing specific behaviors of the model. For example, it 

was first checked about the possibility for the two resources 

to be failed simultaneously: 

 

E<> M[3]==1 && M[10]==1          satisfied 

 

Having found a double failed state exists, the next step 

was to identify all the possible sequences of transition 

firings which bring the system into the double failed state. 

Towards this an array s of transition ids (type tid) was 

introduced, together with a top variable, to memorize in the 

occurrence order a transition firing sequence. 

The problem, obviously, was the proper dimensioning of 

the array s. Here it was fundamental the previous study on 

the regenerative states. In the light of the previous results, it 

was possible to create the array s with T elements, one per 

transition. In fact, when e.g. the second cell finishes its 

processing, there is no need to store again transition firings 

occurring in the first cell. In particular, it were also detected 

the instants when the array s can be safely reset in order to 

help model checking by forcing in s a default value. For 

instance, when one studies the sequence first-cell-to-second-

cell, at the time of firing of the start1 (i.e., t0) the array s can 

be reset. Similarly, when the behavior second-cell-to-first-

cell is observed, at the subsequent firing of start2 (i.e., t6) 

the array s can be reset. 

Together with the array s, a fired(t) boolean function was 

introduced to check specifically for the firing of a certain 

transition. As an example, the existence of the double failed 

state was also assessed by the query: 

 

E<> M[3]==1 && M[10]==1 && !fired(0)   satisfied 

 

launched with the initial marking shown in Fig. 1. Now, a 

state with the two resources failed was checked without an 

intervening firing of start1, i.e., of the t0 transition, which 

would begin a new system execution. 

Moreover, before launching the previous query, it was 

also asked to the model checker to generate a diagnostic 

trace. This way, with the property verified, it was inspected 

in the simulator both the sequence of events which brings 

the model in the double failed state, and the values of top 

and the first top values of s to identify the firing sequence. 

Therefore, as a further benefit of the previous existential 

query, it emerged that the sequence: t2-t4-t5-t6-t10 is capable 

of installing the double failed state.  

The analysis was also enriched by the introduction of a 

global decoration clock y which is reset initially and at each 

firing of start1 (t0), and its value checked as soon as the 

double failed state is reached. Such a clock permits to 

measure the time needed, in the best and worst case, to reach 

the goal state. The conditional reset operation is simply 

added to the deposit(tid) function. An additional global 

decoration clock z was introduced to measure the sojourn 

time in the double failed state. The clock z is reset when the 

goal state is reached, and reset again as soon as the goal state 

is abandoned. Finding the minimal/maximal values of z 

provided the sojourn time. As a side benefit, watching the 

data and constraints (clock values) in the simulator, at the 

conclusion of the previous query, suggested the interval [4,9] 

for the possible duration of the sequence t2-t4-t5-t6-t10. 

The following query was issued to find, if there are any, a 

new sequence: 

 

E<> M[3]==1 && M[10]==1 && !fired(0) && 

!(s[0]==2 && s[1]==4 && s[2]==5 && s[3]==6 &&s[4]==10)  

                    satisfied 

It emerged the new sequence: t4-t2-t5-t6-t10 with a 

duration of [4,6] time units. The query: 

 

E<> M[failed1]==1 && M[failed2]==1 && !fired(t0) && 

!(s[0]==2 && s[1]==4 && s[2]==5 && s[3]==6 &&s[4]==10) && 

!(s[0]==4 && s[1]==2 && s[2]==5 && s[3]==6 && s[4]==10)  

                    satisfied 

allowed to discover the third sequence t4-t5-t2-t6-t10 with 

duration [3,5]. Continuing with updating the query, it 

emerged that no more sequences exist. The sojourn time for 

the three firing sequences was found to be in interval [0,1]. 

By changing the initial marking in Fig. 1 so as to start the 

execution from the second cell towards the first, and 

repeating the work of firing sequence detection, it emerged 

that only other three sequences exist for this new scenario 

(although in [14] the existence of 7 firing paths in this 

second scenario was cited but not detailed). Results of the 

two scenarios are summarized in the Table 1 and Table 2. 

As one can see from Fig. 1, a slight temporal difference 

exists between the first and the second cell, and is concerned 

with the lower bound of the time intervals of start1 and 

start2 which are respectively [2,3] and [1,3]. In the case both 

LIBERO NIGRO ET AL.: QUALITATIVE AND QUANTITATIVE EVALUATION 769



 

 

 

cells have the same [1,3] start interval, as expected, the paths 

in the two scenarios will have an identical temporal 

behavior. In [14] it is shown that the use of identical time 

intervals for start1 and start2 implies an infinite stochastic 

state graph which prevents the analysis. Such problems do 

not arise in the use of UPPAAL. 

 

TABLE 1 FIRING SEQUENCES TO DOUBLE FAILED STATE  

FROM FIRST-TO-SECOND CELL 

 Firing sequence Duration Sojourn time 

0 t2-t4-t5-t6-t10 [4,9] 

[0,1] 1 t4-t2-t5-t6-t10 [3,6] 

2 t4-t5-t2-t6-t10 [3,5] 

 

TABLE 2 FIRING SEQUENCES TO DOUBLE FAILED STATE  

FROM SECOND-TO-FIRST CELL 

 Firing sequence Duration Sojourn time 

3 t8-t10-t11-t0-t4 [5,9] 

[0,0] 4 t10-t8-t11-t0-t4 [4,6] 

5 t10-t11-t8-t0-t4 [4,5] 

 

A further investigation was finally devoted to finding the 

end-to-end delay of a whole operation of the two production 

cells, i.e., measuring the min/max time required to generate 

the tokens in the places p12 and p13. The clock y was 

specialized to this new purpose: it is now reset initially and 

at each firing of start1 (t0) and checked when p12 and p13 

have a token. The two queries: 

 

inf{ M[12]==1 && M[13]==1 } : y 

sup{ M[12]==1 && M[13]==1 } : y 

 

furnished the time window [5,22] for the end-to-end delay. 

The model checking work confirmed results achieved in 

[14] using the ORIS tool, but also suggested some new 

details. 

Qualitative analysis of TPN models is rather efficient. Its 

scalability ultimately depends on the model topology 

(number of places and number of timed transitions and 

associated clocks) and the degree of the necessary model 

boundedness. As discussed in [16], what is really critical is 

the number of active clocks (i.e., the number of 

simultaneously fireable timed transitions) mirroring the 

parallelism degree of the model. An active clock is one 

which is growing and whose value is checked in a 

subsequent invariant or edge guard. 

A. Stochastic analysis 

Whereas the non-deterministic analysis based on model 

checking says something can happen in the system, i.e., it 

predicates about qualitative concerns (properties) of the 

system, the stochastic analysis aims to determine a 

quantitative measure of the probability with which a given 

property can actually occur in the system.  

As a concrete example, UPPAAL SMC was applied to the 

model in Fig. 1. To this end the system model was 

configured by using the sTransition automaton for the timed 

transitions, and the iTransition automaton for the immediate 

transitions (which are not used in Fig. 1). 

As a preliminary step, it was checked the time limit to use 

for simulations. As an example, transitions start1 (t0) and 

start2 (t6) were monitored by cumulating their service time 

samples and by counting their number of firings. Then the 

following query was issued: 

 

simulate 1 [<=100000] { t0mst, t6mst } 

 

where t0mst and t6mst are decoration variables (of type 

double) added to the model for SMC, reflecting the 

monitored service time means of the two selected uniform 

distributions (expected values 2.5 and 2). Fig. 6 confirms 

that after about 3*10
4
 the mean values are reached indicating 

an end of transient behavior. 

The following query was used to check the probability of 

occurrence of a single failure in the resources (time is a 

decoration clock mirroring system time advancement): 

 

Pr[<=100000] (<>time>=30000 && (M[3]==1 || M[10]==1) ) 

 

UPPAAL SMC determined for the event, using 36 

simulation runs, a confidence interval (CI) of [0.902606,1] 

with a confidence degree of 95%. Moreover, it proposed a 

time span like that depicted in Fig. 7 to highlight a 

probability distribution for the event: 

Fig. 6 Monitored values of t0 and t4 mean service time 

 

Fig. 7 A probability distribution for the single failure 
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In a similar way it was checked the probability of 

occurrence of a simultaneous double failure of resources: 

 

Pr[<=100000] (<>time>=30000 && (M[3]==1 && M[10]==1)) 

 

The event has still a CI of [0.902606,1] 95%, with a 

suggested probability distribution depicted in Fig. 8. 

 

 

Fig. 8 A probability distribution for the double failure 

 

All the firing sequences in Table 1 and Table 2 have a 

very low probability of occurrence. Each event was checked 

as exemplified by the following query: 

 

Pr[<=100000] (<>time>=30000 && s[0]==2 && s[1]==4 && 

s[2]==5 && s[3]==6 && s[4]==10) 

 

For all the sequence paths a CI [0,0.0973938] 95% was 

indicated by UPPAAL SMC. 

Some experiments were specifically devoted to quantify 

the probability of achieving a given end-to-end delay (EED), 

i.e., the elapsed time from a firing of start1 (t0) to the 

generation of a token in both places p12 and p13 of Fig. 1. 

The next query was used to assess the probability of having 

an EED<=10: 

 

Pr[<=100000] (<>time>=30000 && (M[12]==1 && M[13]==1) 

&& y<=10) 

 

Clock y is reset at each firing of t0 and measured at the 

end of the execution of the second cell. UPPAAL SMC 

proposes a CI of [0.902606,1] 95% and a cumulative 

probability distribution as portrayed in Fig. 9. 

The probability of having an EED<=10 was checked 

against 80% as follows: 

 

Pr[<=100000] (<>time>=30000 && (M[12]==1 && M[13]==1) 

&& y<=10) >= 0.80 

 

UPPAAL responds that such a probability is >=0.81 with 

95% of confidence. 

Monitored values during simulation of the end-to-end 

delay, collected in Fig. 10, were achieved by the query: 

 

simulate 1 [<=100000] { EED } 

 

 

Fig. 9 A cumulative probability distribution for an EED<=10 

 

EED is a decoration variable which receives the value of 

the clock y at each end of the second cell execution. From 

Fig. 10 it emerged an average value for the EED of about 10 

tu. 

Further property estimation was based on MITL formulas 

[11] which can provide more tight answers. The following 

query checks the probability that starting from the marking 

M[0]==1 && M[2]==1 it can follow within 3 time units a 

failure of res1: 

 

Pr( M[0]==1 && M[2]==1 U[0,3] M[3]==1 ) 

 

Using 738 runs, [0,0.05] was returned as a 95% CI, 

indicating that the event happens with a very low 

probability. 

 

 

Fig. 10 Monitored EED value 

 

The probability that within [0,1000] tu the double failure 

state can occur was re-checked with the query: 

 

Pr( <>[0,1000] M[3]==1 && M[10]==1 ) 

 

which returned a [0.142412,0.242412] 95% CI. The query: 

 

Pr( <>[0,10] M[12]==1 && M[13]==1 ) 
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was used to evaluate the probability that within 10 tu the 

double cell terminates its execution. The 

[0.605827,0.705827] 95% CI was observed. 

To check specifically the termination event within [10,22] 

tu it was issued the query: 

 

Pr( <>[10,22] M[12]==1 && M[13]==1 ) 

 

which returned a [0.849729,0.949729] 95% CI to witness 

a very high probability of occurrence. 

The occurrence probability of the firing sequences leading 

to double failure, was re-checked by the query: 

 

Pr( <>[0,1000] top==5 && s[0]==2 && s[1]==4 && s[2]==5 && 

s[3]==6 && s[4]==10 ) 

 

for which (using 738 runs) a [0,0.054065] 95% CI was 

proposed. Similarly, for the second and third path of Table 1, 

it was estimated respectively a CI of [0,0.05] and [0,0.05271] 

95%. 

Since stochastic analysis depends on batches of 

simulation runs, that is UPPAAL SMC renounces to build the 

model state graph, there are no scalability problems when 

the model admits more clocks, variables etc. All of this was 

exploited in the case study by introducing a tailored 

decoration which is simply ignored when the same model is 

interpreted for non-deterministic analysis. 

VII. CONCLUSIONS 

This paper proposes an approach to modelling and analysis 

of Time Petri Nets (TPN) [2]-[5] also in the presence of 

stochastic features (sTPN) [14].  

The approach is centered on a structural translation of 

TPN/sTPN onto the latest version of UPPAAL which enables 

both qualitative non-deterministic analysis based on 

exhaustive model checking, and quantitative evaluation of 

system properties by exploiting the statistical model checker. 

The UPPAAL translation makes it possible, during 

analysis, to reason directly in the terms of TPN/sTPN 

vocabulary (e.g., marking reachability and transition firings), 

thus simplifying its practical usage. 

Prosecution of the research is directed at: 

 Extending the sTPN modelling through the support of 

generally distributed probability functions attached to 

transitions. 

 Improving the automatic translation of TPN/sTPN 

models in the context of the TPN Designer toolbox [20]. 

 Applying the approach, e.g., to complex maintenance 

procedures, phased-mission systems [17], time-

constrained workflow systems. 

 Experimenting the methodology with the PRISM 

Probabilistic Model Checker [12]. 

 Specializing the approach to Preemptive Time Petri 

Nets [18], i.e., towards the schedulability analysis of 

real-time tasking sets under general conditions, when 

the schedulability problem becomes undecidable. A 

preliminary framework was prototyped in [19] using 

UPPAAL stopwatches and over-approximation. The goal 

is to allow non-deterministic qualitative analysis (when 

possible) and quantitative analysis of task response 

times using the statistical model checker. 
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