

Abstract— Time Petri Nets (TPN) are a well-known

formalism for modelling time-dependent systems with timing

constraints. This paper proposes an approach based on a

stochastic extension of TPN (sTPN), which enables both

qualitative assessment of feasible temporal behaviors through

model checking, and quantitative evaluation of a probability

measure of a given behavior, by statistical model checking. The

experimental work rests on the use of the latest version of the

UPPAAL toolbox which supports both exhaustive non

deterministic analysis and statistical model checking of system

properties. The approach is demonstrated through an example.

I. INTRODUCTION

he development of safety-critical software systems is

challenged by the needs of addressing both functional

and temporal correctness issues. Violation of timing

constraints can have important consequences in the practical

domain (e.g., economy, medicine, cyber physical control

systems, etc.). Therefore, it is highly recommended the use

of formal tools for modelling and analysis of concurrent and

timed software.

From the point of view of analysis, both qualitative

verification and quantitative evaluation of system properties

are nowadays advocated by engineers and developers.

Whereas qualitative verification of a system model tries to

identify feasible behaviors, quantitative evaluation aims to

associate them a measure of occurrence probability.

Qualitative verification is often based on the exhaustive

enumeration of all the possible execution states of a model,

organized in the so called model state graph, and on

checking desired properties through efficient traversal

algorithms on the state graph. To avoid an infinite growth of

the state graph, each state node is implemented as a couple:

a discrete data part, and a dense time part. The time

component typically stores in a compact way (zone) all the

clock (timer) inequalities which hold in the state. As a

consequence, a state is in reality a state class which

subsumes an infinite number of states which could be

reached by only changing the clock values (firing times of

transitions).

Despite the use of state classes, depending on the system

model, the state graph can suffer of state explosion

 This work was not supported by any organization

problems. In addition, the construction and navigation of the

state graph can become undecidable when a complex

combination of modelling factors (non-deterministic time of

actions, sporadicity of process arrival, message passing,

stochastic aspects etc.) occurs. In these cases, the study of

system properties can only be approximated, e.g., through

simulation.

Qualitative non deterministic verification based on model

checking [1] has been demonstrated by Time Petri Nets [2]-

[5] and Timed Automata [6] based tools, e.g. [7]-[12].

Quantitative evaluation of system behavior is supported by

recent extensions to the ORIS tool [8] and by latest versions

of UPPAAL [9]-[11] which include a statistical model

checker (SMC) [13].

This paper proposes an original approach to qualitative

and quantitative evaluation of systems with timing

constraints which is based on the Time Petri Net (TPN)

formalism which is very often used for modelling real-time

and embedded systems, communication protocols etc. To

permit both non-deterministic analysis and stochastic

analysis of system properties, a stochastic extension of TPN

(sTPN) [14] is also considered. The contribution of the paper

consists in a mapping of TPN/sTPN onto UPPAAL so as to

exploit, on a same model, both the exhaustive model checker

and the stochastic model checker.

Whereas the support of sTPN in the ORIS tool is based on

the concept of stochastic state class and stochastic state

graph, i.e., a density probability distribution function is

attached to each state class which characterizes the possible

stochastic evolutions from it, i.e., estimating the probability

of the outgoing state transitions, the use of sTPN in UPPAAL

rests on batches of simulation runs and statistics inference of

desired results from these runs. As a consequence, ORIS can

provide a greater resolution on the probability measures.

However, this paper argues that the proposed approach

based on UPPAAL has the following strengths: (1) it is based

on a popular and efficient toolbox, (2) it does not incur in an

infinite stochastic state graph nor suffer of stochastic state

explosion problems as discussed in [14] (3) it in any case

can provide quantitative measures of probability which are

valuable from the engineering point of view.

The paper is structured as follows. Section II provides

basic definitions of TPN and sTPN formalisms. Section III

T

Qualitative and Quantitative Evaluation of

Stochastic Time Petri Nets

Franco Cicirelli, Christian Nigro, Libero Nigro
Laboratorio di Ingegneria del Software

Dipartimento di Ingegneria Informatica Modellistica Elettronica e Sistemistica

Università della Calabria, Italy

{f.cicirelli@dimes.unical.it, christian.nigro@tiscali.it, l.nigro@unical.it}.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 763–772

DOI: 10.15439/2015F69

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 763

describes a modelling example. Section IV gives an

overview to non-deterministic analysis and stochastic

analysis enabled by UPPAAL. Section V discusses the

developed structural translation from TPN/sTPN to UPPAAL.

Section VI illustrates the application of the proposed

approach to a thorough property assessment of the model

described in Section III, by detailing qualitative and

quantitative analysis. Section VII concludes the paper by

indicating directions of on-going and future work.

II. TIME PETRI NETS DEFINITIONS

A basic TPN is a tuple

where:

 is a finite nonempty set of places;

 is a finite nonempty set of transitions;

 ת = ∅;

 B is the backward incidence function, : × → ℕ,

where ℕ denotes the set of natural numbers;

 is the forward incidence function, : × → ℕ;

 is the set of inhibitor arcs, ⊂ × where � � ∈ ⇒ � � = 0;

 is the initial marking function, : → ℕ, which

associates with each place a number of tokens;

 : → � is a function which associates each

transition with a (finite) earliest static firing time. �

denotes the set of non-negative real numbers;

 : → � {∞} is a function which associates

each transition with a (possibly infinite) latest static

firing time. In any case it must be ≥ .

Differently from [13], in this work TPNs admit both

inhibitor arcs and non-unitary arc weights.

The state of a TPN is a pair = where : → is the net marking, and : → � associates each

transition with a (dynamic) time-to-fire (clock or timer). The

state evolves according to the firability and firing clauses.

A transition � is enabled, as in classic Petri nets, if each

of its input places contains sufficient tokens, i.e., iff

 � ∈ � � ∈ ⇒ � = 0 � � 0 ⇒ � ≥ � �

Transition � is firable if it is enabled and its time-to-fire � is not higher than that of any other enabled transition.

When � fires, the state = is replaced by a new

states = where marking is derived from

by the withdrawal of tokens from the input places and the

deposit of tokens in the output places. More precisely, the

firing process consists of the two (atomic) phases:

 � = � � � (withdraw phase) � = � � � (deposit phase)

Transitions which are enabled in the intermediate marking (and then also in) and in the final marking are

said persistent to the � firing. Transitions which are enabled

in but not in are said newly enabled.

A transition which is multiple enabled in a state is

supposed to consume its enablings one at a time (single

server semantics). Therefore, after its own firing, would � be

still enabled, it is regarded as a newly enabled one.

For any transition � which is persistent to the firing of �,

its time-to-fire is reduced, in the new state , as follows:

 (�) = (�) �

For any newly enabled transition � its time-to-fire is

constrained to occur not deterministically in its static time

interval:

 � � �

A. Stochastic extensions

An sTPN [14] specializes a basic TPN as follows. The set of

transitions is partitioned into two subsets: = ,

where is the subset of timed transitions, ⊂ is the

set of immediate transitions. Besides its static time interval,

a timed transition is attached a probability density

distribution function : → � which is constrained in

the static time interval of the transition. It is

also said the static time interval is the support of the pdf. An

immediate transition is attached a real positive weight : → � .

The semantics interpretation of an sTPN is as follows.

Immediate transitions (as in Generalized Stochastic Petri

Nets –GSPN- [15]) always fire before any timed transition,

and consumes no time. The set of simultaneously enabled

immediate transitions in the current state constitutes a

random switch, i.e., each immediate transition � is firable

with probability

 � = � ∑ � ∈

The time-to-fire � of a timed transition � is

stochastically defined, at its enabling instant, by sampling

the � with the constraint:

 � � �

As an example, the of a timed transition can be

(default) a uniform distribution function which picks up a

value in the static time interval of the transition, or a

negative exponential distribution function. However, in the

general case, a timed transition can follow a generally

distributed function constrained in the support time interval.

Firing of a timed transition follows the same rules as in

basic TPNs.

764 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

III. A MODELLING EXAMPLE

Fig. 1 depicts a TPN model [14] made up of two (almost

identical) production cells, identified by suffixes 1 and 2,

which operate sequentially and cyclically.

Each cell admits two parallel activities named JobA (t1,

t7) and JobB (t2, t8). JobA requires the use of a resource res

(places p2 and p9) which may fail during the usage. In the

case of failure, JobA is not completed, and a recovery action

recA (t5 and t11) is instead executed which replaces the

normal behavior provided by JobA. A failed resource is

repaired by a repair transition (see t3 and t9). The execution

of a production cell is started by the start transition (t0, t6).

A cell logically terminates its current production phase when

a token is generated in the couple of termination places (p5,

p6) or (p12, p13).

Fig. 1 A TPN/sTPN model with two production cells

All the transitions in Fig. 1 are supposed, in the stochastic

interpretation, to be served by a uniform distribution in the

associated static time interval, with the exception of the

failure transitions (t4, t10) which have a support interval of

[0,∞ and an exponential distribution function whose rate is = 0 , as witnessed by the notation E(0.3) attached to the

transitions.

The use of [0,∞ as the time interval of a failure transition

is noteworthy. In both non-deterministic and stochastic

interpretations the failure cannot occur later than 6 time units

measured from the time instant in which the failure

transition gets enabled. This happens because of the [3,6]

time interval of the JobA transition, which forbids the failure

to occur later than 6. In the stochastic interpretation,

however, something subtle occurs. Due to the exponential

distribution E(0.3), the failure is expected to happen with a

very low probability, as the sample chosen from the E(0.3)

pdf can be much greater than 6 and thus later with respect to

the completion time of the JobA activity. All of this reflects

the different concerns of non-deterministic analysis and

stochastic analysis (see later in this paper).

IV. UPPAAL CONCEPTS

The popular and efficient UPPAAL toolbox [9]-[10] allows

modelling and verification of time-dependent systems. An

UPPAAL model consists of a network of timed automata

(TA) [6]. TA are designed as template processes, which can

have parameters, can be instantiated, and consist of atomic

actions.

TA are extended with local or global integer (and

boolean) variables and arrays of integers, clocks and

channels. In latest versions of the toolbox, C-like functions

and structures are also permitted. Time is dense and can be

controlled by means of clock variables. Clocks can only be

reset and compared against nonnegative integer constants.

All the clocks of a model increase automatically with the

same rate of advancement of the hidden system time. TA

synchronize to one another by CSP-like channels

(rendezvous) which carry no data values.

Asynchronous communication is provided by broadcast

channels where a single sender can synchronize with a

(possibly empty) group of receivers. The sender of a

broadcast signal in no case is blocked. Locations (states) of

an automaton are linked by edges (transitions).

Every edge can be annotated by a command with three

(optional) elements: (i) a guard, (ii) a synchronization (? for

input and ! for output) on a channel, and (iii) an update

consisting of a set of clock resets and a list of variable

assignments. Channel synchronization implies the

commands of the sender and of the receiver(s) are jointly

executed. However, the update of an output command is

executed before that of a matching input command.

An atomic action consumes no time and refers either to

the execution of an internal command of one automaton or

to a joint execution of the multiple commands during a

synchronization among two or more TA.

A clock invariant can be attached to a location as a

progress condition. The timed automaton can remain into

the location as long as its invariant holds. UPPAAL supports

also committed and urgent locations which must be exited

immediately (i.e., without passage of time), and urgent

channels whose synchronizations must be fired without

passage of time. Committed locations, among them, can be

LIBERO NIGRO ET AL.: QUALITATIVE AND QUANTITATIVE EVALUATION 765

interleaved. Similarly, urgent locations, among them, can be

interleaved. However, committed locations have priority

with respect to urgent locations.

The symbolic model checker of UPPAAL handles the

parallel composition of the TA of a model. Parallel

composition means generating all the possible action

interleavings of the component concurrent processes.

UPPAAL consists of a graphical editor, a simulator and a

verifier (the symbolic model checker verifyta). For

exhaustive property assessment, the verifier tries to build the

reachability graph of the model, where each state node holds

a data part (variable values and location of each automaton)

and a firing domain (time zone or clock inequalities system).

The time zone implies each state graph node actually

represents a class of equivalent states which fulfill the clock

inequalities. The simulator executes a system model and

visually documents the reached execution state by following

a particular path in the model state graph. The simulator is

useful for model debugging and to examine a diagnostic

trace (counterexample) created by the verifier, e.g., when a

property is not satisfied. Safety, absence of deadlocks, and

bounded liveness (e.g., an end-to-end time constraint)

properties can be verified by reachability analysis upon the

state graph, using a subset of TCTL temporal logic formulas

[10] as shown in the following:

- (Possibly , i.e., a state exists where holds)

- (Invariantly , equivalent to: � �)

- (Potentially Always , i.e. a state path exists

over which always holds)

- (Always eventually , equivalent to: � �)

- (always leads-to , equivalent to: �)

where and are state properties (formulas), e.g., clock

constraints or boolean expressions over predicates on

locations.

Although min/max determinations, e.g., of a clock, can be

achieved by using the above described logic queries, a

shorthand notation is available as in the following:

sup{ state-predicate } : list-of-expressions

inf{ state-predicate } : list-of-expressions

These queries evaluate the superior/inferior value of the

list of expressions, only in the states of the state-graph which

satisfy the state predicate specified within { and }.

A. UPPAAL Statistical Model Checker

The problem with symbolic model checking is that it

could not be practically applied to realistic complex systems

which generate an enormous (possible infinite) state graph,

or it becomes undecidable for systems which combine in a

complex way continuous time with stochastic behavior.

Property checking in these cases can only be

approximated or estimated. In recent years the UPPAAL

toolbox was extended to support stochastic model checking

(SMC) [9]. UPPAAL SMC [11] avoids the construction of the

state graph and checks properties by performing a certain

number of simulation runs, e.g., in parallel on a modern

multi-core machine. After that some statistics techniques are

used to infer results from the simulation runs.

SMC refines and extends basic UPPAAL. Only broadcast

synchronizations are allowed among stochastic TA (STA).

In addition, either an invariant or the rate of an exponential

distribution can be attached to a location. Stopwatches, i.e.

clocks whose automatic advancement can be temporarily

stopped (their first derivative is put equal to zero as an

invariant of a location) can be exploited. A stopwatch

resumes its advancement as soon as the automaton exits the

location in which it was stopped.

UPPAAL SMC also provides floating point (double)

variables which, e.g., can be assigned the value of a clock.

Virtually, the symbolic model checker can be applied to a

stochastic model too, in which case all doubles, exponential

distribution rates etc. are simply ignored. However, on a

stochastic TA model can be issued the following specific

query types. Bold symbols are meta-symbols used to

describe the SMC query language.

1. simulate N [(clock|#|void)<=bound] { Expression1,

…, Expressionk }

2. Pr[(clock|#|void)<=bound] ((<>|[]) Expression)

3. Pr[(clock|#|void)<=bound] ((<>|[]) Expression)

(<=|>=) PROB

4. Pr[(clock|#|void)<=bound] ((<>|[]) Expression)

(<=|>=) Pr[(clock|#|void)<=bound] ((<>|[])

Expression)

5. E[(clock|#|void)<=bound; N] ((min:|max:)

Expression)

Expressions are state predicates without side-effects. They

can specify an automaton to be in a certain location, or some

constraints on data variables or clocks etc. All the queries

are evaluated according to a bound which can be related to

(implicit) global time or to a clock or to a number of

simulation steps (#).

Query 1 makes N simulation experiments and collects

information about the listed expressions. Query 2 evaluates

the probability the given expression holds within the

assigned bound (<>) or always holds within the bound ([])

with a confidence interval (the default 95% confidence

degree can be customized by the user). Query 3 checks if the

estimated probability is less/greater than a given probability

value. Query 4 compares two probabilities. Query 5

estimates the minimum or the maximum value of an

expression.

Responding to queries implies a certain number of

simulation runs are carried out, either explicitly requested

(see the parameter N in the queries 1 and 5) or implicitly

defined by the query. Quantitative estimation of a query of

type 2 rests on Monte Carlo-like simulations. Qualitative

queries of the type 3 and 4 use sequential hypothesis testing.

An important feature provided by UPPAAL SMC is

766 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

visualization of simulation results. Following a satisfied

query, the modeler can right click on the executed query and

choose an available diagram (histogram, probability

distribution etc.) to be plotted. At the time of this writing,

UPPAAL SMC is supported by the development version

4.1.19.

V. MAPPING TPN/STPN ONTO UPPAAL

A TPN/sTPN model is translated into UPPAAL by

associating each transition with a suitable template process

and by introducing some global data and helper functions. A

similar approach was adopted by authors in [16] which

provides a formal correctness approach exploitable also in

current work. For brevity, though, in the following only an

informal semantics will be given.

A. TPN issues

The structural translation adapts itself to the needs of both

non deterministic analysis (TPN model checking) and the

stochastic analysis (sTPN SMC). During the exhaustive

verification of a TPN model, all the transitions are

homogeneously modelled as timed transitions (see the

tTransition automaton in Fig. 2). Immediate transitions, in

particular, are expressed as timed transitions with a [0,0]

static time interval. Random switches are thus replaced by

non-deterministic selection (race) among transitions firable

at the same time.

Fig. 2 The tTransition template automaton

The tTransition automaton in Fig. 2, with the sole

parameter const tid t, models the generic timed transition of

a TPN model. The t transition id is used to select the clock

x[t] which captures the time-to-fire of the transition. The

global functions enabled(t), withdraw(t) and deposit(t) assist

the automaton evolution.

A timed transition starts into the N (Not enabled) location.

As soon as it finds itself enabled, it resets its clock x[t] and

moves to the F (Firable) location. The invariant attached to

the F location states that the transition can remain in F until

the latest static firing time which can be infinite. On the

other hand, transition t can fire as soon as it happens its

clock x[t] reaches the earliest static firing time. Bounds of the

static time interval of the transition t, constrained to be

positive integers (an upper bound infinite is denoted by the

constant INF), are held into the global array : × → �. � 0 is the � , � is the � .

The firing process is accomplished with the help of the

end_fire broadcast channel. Two broadcast synchronizations

are actually used, separately triggering the withdraw-phase

and the deposit-phase. Each end_fire synchronization is

capable of influencing all the other transitions which are

forced to re-examine their enabling status, and thus

commanding a return from F to N when a firable transition

detects it is no longer enabled, or moving from N to F when

a not enabled transition finds itself enabled. It is worth

noting that the two location W (Withdraw) and D (Deposit) are

committed locations, thus ensuring the firing process is

instantaneous and atomic. In the D location, a just fired

transition which is still enabled, comes again into the F

location and resets its clock x[t] (single server semantics). If

the transition is not enabled, it reaches the default N location.

To bootstrap a TPN model, a Starter automaton (see Fig.

3) is exploited which launches an initial (fictitious) end_fire

synchronization to force transitions which are enabled in the

initial marking of the model, to reach the F location.

Fig. 3 The Starter automaton

Behind the design of the tTransition automaton, the

following global declarations are introduced. Model

topology is captured by the constants P (number of places),

PRE (maximum number of input places of a transition),

POST (maximum number of output places of a transition), T

(number of transitions), B and F (input/output constant

incidence matrices), M (marking vector), I (time intervals).

Each element of the matrices B and F, purposely

implemented as TxPRE and TxPOST respectively, holds the

index of a place, and the weight of an input and,

respectively, an output arc. Transitions are numbered from 0

to T-1. The subtypes tid and pid describe respectively the sub

range types of possible transition or place ids.

B. sTPN issues

The support of sTPN shares the same basic global

declarations described in the previous sub-section plus some

specific declarations required for statistical model checking.

Fig. 4 The sTransition automaton

enabled(t)

!enabled(t)

!enabled(t)

WN

F

D

withdraw(t)

x[t]=0

x[t]>=I[t][0]

enabled(t)

deposit(t)

x[t]=0

I[t][1]==INF||

x[t]<=I[t][1]

end_fire? end_fire!

end_fire?

end_fire!

end_fire!

S1S0

end_fire!

x[t]==ft[t] &&

NIT==NONE

enabled(t)

x[t]=0, ft[t]=f(t),

fire=false

enabled(t)

!enabled(t)

!enabled(t)

end_fire?

WD

F

fire=false deposit(t)

x[t]=0, ft[t]=f(t)

withdraw(t),

fire=true

N

x[t]<=ft[t] &&

ft[t]'==0

end_fire?

end_fire!

end_fire!

end_fire!

LIBERO NIGRO ET AL.: QUALITATIVE AND QUANTITATIVE EVALUATION 767

An sTPN model rests on two new timed automata shown

in Fig. 4 and Fig. 5, respectively associated to a stochastic

timed transition (sTransition) and to an immediate transition

(iTransition).

As a matter of convention, first are numbered the

stochastic transitions, from 0 to the TT-1 (TT is a model

constant), then are numbered the immediate transitions

(from TT to T1). Of course, T=TT+IT. Correspondingly are

defined the subtypes ttid and itid describing respectively the

subranges of the stochastic and immediate transitions. An

sTransition has the only the t (id) parameter of type ttid.

Similarly, iTransition has the sole t parameter of type itid. All

of this ensures the transition automata of a TPN/sTPN model

can be implicitly instantiated at system configuration time.

Fig. 5 The iTransition automaton

The sTransition uses two clocks: x[t] and ft[t]. The first one

serves the same purposes discussed for the tTransition

automaton (see Fig. 2). The second one actually stores the

sampled fire time achieved (through integration of) the

density distribution function (denoted by f(t)) associated to

the transition. As one can see from Fig. 4, an sTransition

actually fires (exiting the F location) when its time-to-fire

clock x[t] equals the fire time held in the ft[t] clock. As part of

the invariant attached to F, the first derivative of the clock

ft[t] is put to 0 to avoid its advancement. Other details in Fig.

4 are as for the tTransition automaton.

The iTransition automaton in Fig. 5 does not use any

clock. When it finds itself enabled, it moves to the

committed location F. The rank() function implements the

random switch and assigns to the global NIT variable (Next

Immediate Transition) the id of the immediate transition

probabilistically selected through the transition weights. The

immediate transition that detects it is the selected NIT,

instantly fires and resets NIT to NONE in preparation of a

next execution of the random switch. As soon as a firable

immediate transition discovers it is no longer enabled (for a

conflict) it comes back to N.

 Due to the committed location F in Fig. 5, and the (sub)

guard NIT==NONE in Fig. 4, it is guaranteed that immediate

transitions get fired before timed transitions. Moreover, the

global bool fire variable in Fig. 4 and Fig. 5 ensures the fire

of an immediate transition cannot actually start if the firing

in progress of a timed transition is not completed.

VI. ANALYSIS OF A TPN/STPN MODEL

The structural translation from TPN/sTPN to UPPAAL

described in the previous section, was applied in a case to

the model presented in Section III.

A. Non deterministic analysis

Here the concern was to evaluate qualitative properties of

the model. Towards this timed transitions and immediate

transitions are both modelled with the tTransition automaton

in Fig. 2, and the exhaustive model checker of UPPAAL was

used along with the construction of the (hopefully finite)

state graph. The following clarifies the system configuration

of the TPN model:

system Starter, tTransition;

where implicit instantiation is exploited. Due to the design

of the template processes, only one instance of Starter is

created, whereas T instances of tTransition (as demanded by

the tid sub range type) are generated.

As a preliminary assessment of system behavior, the

model was checked for the absence of deadlocks. The query

was:

A[] !deadlock satisfied

where deadlock is a reserved keyword of UPPAAL. As a part

of this first query, it was also implicitly assessed that the

model is safe, i.e., 1-bounded. This was simply achieved by

having declared the marking vector thus:

int[0,1] M[P]={ 1,1,1,0,0,0,0,0,0,1,0,0,0,0 };

and never observing an assignment out of bounds to M.

After that the model was checked for the existence of

regenerative states [14]. A regenerative state is one where

previous history of the system can be disregarded because it

does not influence the future behavior.

First it was checked the property stated in [14], page 715,

that repair2 cannot be persistent at each firing of start1, thus

(also activating the generation of a diagnostic trace):

A[] (tTransition(0).W||tTransition(0).D) imply !tTransition(9).F

which asks if invariantly in both the intermediate marking

(determined by the withdraw phase) and the final marking

(determined by the deposit phase) of the firing of t0 (start1),

the transition t9 (repair2) cannot be in its firable location F.

 The property was found to be false as witnessed by the

counterexample proposed by UPPAAL that shows effectively

repair2 can be persistent to start1.

In reality, the two production cells could admit

regenerative states when a complete processing of the

second cell certainly finds the first cell in its home marking,

and vice versa: when the first cell finishes its processing, the

second cell is in its home marking. The following queries

!enabled(t)

rank() rank()

!enabled(t) !fire && t==NIT

enabled(t)enabled(t)

WD

withdraw(t),NIT=

NONE

deposit(t)

F

rank()
N

end_fire!

end_fire!

end_fire!end_fire?

768 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

were issued to the model checker (recall places are uniquely

identified by their subscripts, i.e., the numbers from 0 to

P1):

A[] M[5]==1 && M[6]==1 imply (M[9]==1 &&

forall(i:int[7,13]) i!=9 imply M[i]==0) satisfied

A[] M[12]==1 && M[13]==1 imply (M[2]==1 &&

forall(i:int[0,6]) i!=2 imply M[i]==0) satisfied

which verify if, invariantly, each time one cell finishes its

activities, i.e., a token is generated in the terminal places p5

and p6 or p12 and p13 in Fig. 1, the marking of the partner

cell is surely its initial marking, meaning that no previous

behavior is still in progress in the partner cell. As it was

confirmed previously, e.g., at the processing end of the

second cell the only possibly still pending sub activity in the

second cell is the repairing of the failed res2 resource.

However, satisfaction of latter queries guarantee that at each

termination of the first cell, the second one always founds

itself in its home marking, thus no previous behavior exists

in the second cell which could interfere with new behavior.

The existence of regenerative states was a key for

assessing specific behaviors of the model. For example, it

was first checked about the possibility for the two resources

to be failed simultaneously:

E<> M[3]==1 && M[10]==1 satisfied

Having found a double failed state exists, the next step

was to identify all the possible sequences of transition

firings which bring the system into the double failed state.

Towards this an array s of transition ids (type tid) was

introduced, together with a top variable, to memorize in the

occurrence order a transition firing sequence.

The problem, obviously, was the proper dimensioning of

the array s. Here it was fundamental the previous study on

the regenerative states. In the light of the previous results, it

was possible to create the array s with T elements, one per

transition. In fact, when e.g. the second cell finishes its

processing, there is no need to store again transition firings

occurring in the first cell. In particular, it were also detected

the instants when the array s can be safely reset in order to

help model checking by forcing in s a default value. For

instance, when one studies the sequence first-cell-to-second-

cell, at the time of firing of the start1 (i.e., t0) the array s can

be reset. Similarly, when the behavior second-cell-to-first-

cell is observed, at the subsequent firing of start2 (i.e., t6)

the array s can be reset.

Together with the array s, a fired(t) boolean function was

introduced to check specifically for the firing of a certain

transition. As an example, the existence of the double failed

state was also assessed by the query:

E<> M[3]==1 && M[10]==1 && !fired(0) satisfied

launched with the initial marking shown in Fig. 1. Now, a

state with the two resources failed was checked without an

intervening firing of start1, i.e., of the t0 transition, which

would begin a new system execution.

Moreover, before launching the previous query, it was

also asked to the model checker to generate a diagnostic

trace. This way, with the property verified, it was inspected

in the simulator both the sequence of events which brings

the model in the double failed state, and the values of top

and the first top values of s to identify the firing sequence.

Therefore, as a further benefit of the previous existential

query, it emerged that the sequence: t2-t4-t5-t6-t10 is capable

of installing the double failed state.

The analysis was also enriched by the introduction of a

global decoration clock y which is reset initially and at each

firing of start1 (t0), and its value checked as soon as the

double failed state is reached. Such a clock permits to

measure the time needed, in the best and worst case, to reach

the goal state. The conditional reset operation is simply

added to the deposit(tid) function. An additional global

decoration clock z was introduced to measure the sojourn

time in the double failed state. The clock z is reset when the

goal state is reached, and reset again as soon as the goal state

is abandoned. Finding the minimal/maximal values of z

provided the sojourn time. As a side benefit, watching the

data and constraints (clock values) in the simulator, at the

conclusion of the previous query, suggested the interval [4,9]

for the possible duration of the sequence t2-t4-t5-t6-t10.

The following query was issued to find, if there are any, a

new sequence:

E<> M[3]==1 && M[10]==1 && !fired(0) &&

!(s[0]==2 && s[1]==4 && s[2]==5 && s[3]==6 &&s[4]==10)

 satisfied

It emerged the new sequence: t4-t2-t5-t6-t10 with a

duration of [4,6] time units. The query:

E<> M[failed1]==1 && M[failed2]==1 && !fired(t0) &&

!(s[0]==2 && s[1]==4 && s[2]==5 && s[3]==6 &&s[4]==10) &&

!(s[0]==4 && s[1]==2 && s[2]==5 && s[3]==6 && s[4]==10)

 satisfied

allowed to discover the third sequence t4-t5-t2-t6-t10 with

duration [3,5]. Continuing with updating the query, it

emerged that no more sequences exist. The sojourn time for

the three firing sequences was found to be in interval [0,1].

By changing the initial marking in Fig. 1 so as to start the

execution from the second cell towards the first, and

repeating the work of firing sequence detection, it emerged

that only other three sequences exist for this new scenario

(although in [14] the existence of 7 firing paths in this

second scenario was cited but not detailed). Results of the

two scenarios are summarized in the Table 1 and Table 2.

As one can see from Fig. 1, a slight temporal difference

exists between the first and the second cell, and is concerned

with the lower bound of the time intervals of start1 and

start2 which are respectively [2,3] and [1,3]. In the case both

LIBERO NIGRO ET AL.: QUALITATIVE AND QUANTITATIVE EVALUATION 769

cells have the same [1,3] start interval, as expected, the paths

in the two scenarios will have an identical temporal

behavior. In [14] it is shown that the use of identical time

intervals for start1 and start2 implies an infinite stochastic

state graph which prevents the analysis. Such problems do

not arise in the use of UPPAAL.

TABLE 1 FIRING SEQUENCES TO DOUBLE FAILED STATE

FROM FIRST-TO-SECOND CELL

 Firing sequence Duration Sojourn time

0 t2-t4-t5-t6-t10 [4,9]

[0,1] 1 t4-t2-t5-t6-t10 [3,6]

2 t4-t5-t2-t6-t10 [3,5]

TABLE 2 FIRING SEQUENCES TO DOUBLE FAILED STATE

FROM SECOND-TO-FIRST CELL

 Firing sequence Duration Sojourn time

3 t8-t10-t11-t0-t4 [5,9]

[0,0] 4 t10-t8-t11-t0-t4 [4,6]

5 t10-t11-t8-t0-t4 [4,5]

A further investigation was finally devoted to finding the

end-to-end delay of a whole operation of the two production

cells, i.e., measuring the min/max time required to generate

the tokens in the places p12 and p13. The clock y was

specialized to this new purpose: it is now reset initially and

at each firing of start1 (t0) and checked when p12 and p13

have a token. The two queries:

inf{ M[12]==1 && M[13]==1 } : y

sup{ M[12]==1 && M[13]==1 } : y

furnished the time window [5,22] for the end-to-end delay.

The model checking work confirmed results achieved in

[14] using the ORIS tool, but also suggested some new

details.

Qualitative analysis of TPN models is rather efficient. Its

scalability ultimately depends on the model topology

(number of places and number of timed transitions and

associated clocks) and the degree of the necessary model

boundedness. As discussed in [16], what is really critical is

the number of active clocks (i.e., the number of

simultaneously fireable timed transitions) mirroring the

parallelism degree of the model. An active clock is one

which is growing and whose value is checked in a

subsequent invariant or edge guard.

A. Stochastic analysis

Whereas the non-deterministic analysis based on model

checking says something can happen in the system, i.e., it

predicates about qualitative concerns (properties) of the

system, the stochastic analysis aims to determine a

quantitative measure of the probability with which a given

property can actually occur in the system.

As a concrete example, UPPAAL SMC was applied to the

model in Fig. 1. To this end the system model was

configured by using the sTransition automaton for the timed

transitions, and the iTransition automaton for the immediate

transitions (which are not used in Fig. 1).

As a preliminary step, it was checked the time limit to use

for simulations. As an example, transitions start1 (t0) and

start2 (t6) were monitored by cumulating their service time

samples and by counting their number of firings. Then the

following query was issued:

simulate 1 [<=100000] { t0mst, t6mst }

where t0mst and t6mst are decoration variables (of type

double) added to the model for SMC, reflecting the

monitored service time means of the two selected uniform

distributions (expected values 2.5 and 2). Fig. 6 confirms

that after about 3*10
4
 the mean values are reached indicating

an end of transient behavior.

The following query was used to check the probability of

occurrence of a single failure in the resources (time is a

decoration clock mirroring system time advancement):

Pr[<=100000] (<>time>=30000 && (M[3]==1 || M[10]==1))

UPPAAL SMC determined for the event, using 36

simulation runs, a confidence interval (CI) of [0.902606,1]

with a confidence degree of 95%. Moreover, it proposed a

time span like that depicted in Fig. 7 to highlight a

probability distribution for the event:

Fig. 6 Monitored values of t0 and t4 mean service time

Fig. 7 A probability distribution for the single failure

770 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

In a similar way it was checked the probability of

occurrence of a simultaneous double failure of resources:

Pr[<=100000] (<>time>=30000 && (M[3]==1 && M[10]==1))

The event has still a CI of [0.902606,1] 95%, with a

suggested probability distribution depicted in Fig. 8.

Fig. 8 A probability distribution for the double failure

All the firing sequences in Table 1 and Table 2 have a

very low probability of occurrence. Each event was checked

as exemplified by the following query:

Pr[<=100000] (<>time>=30000 && s[0]==2 && s[1]==4 &&

s[2]==5 && s[3]==6 && s[4]==10)

For all the sequence paths a CI [0,0.0973938] 95% was

indicated by UPPAAL SMC.

Some experiments were specifically devoted to quantify

the probability of achieving a given end-to-end delay (EED),

i.e., the elapsed time from a firing of start1 (t0) to the

generation of a token in both places p12 and p13 of Fig. 1.

The next query was used to assess the probability of having

an EED<=10:

Pr[<=100000] (<>time>=30000 && (M[12]==1 && M[13]==1)

&& y<=10)

Clock y is reset at each firing of t0 and measured at the

end of the execution of the second cell. UPPAAL SMC

proposes a CI of [0.902606,1] 95% and a cumulative

probability distribution as portrayed in Fig. 9.

The probability of having an EED<=10 was checked

against 80% as follows:

Pr[<=100000] (<>time>=30000 && (M[12]==1 && M[13]==1)

&& y<=10) >= 0.80

UPPAAL responds that such a probability is >=0.81 with

95% of confidence.

Monitored values during simulation of the end-to-end

delay, collected in Fig. 10, were achieved by the query:

simulate 1 [<=100000] { EED }

Fig. 9 A cumulative probability distribution for an EED<=10

EED is a decoration variable which receives the value of

the clock y at each end of the second cell execution. From

Fig. 10 it emerged an average value for the EED of about 10

tu.

Further property estimation was based on MITL formulas

[11] which can provide more tight answers. The following

query checks the probability that starting from the marking

M[0]==1 && M[2]==1 it can follow within 3 time units a

failure of res1:

Pr(M[0]==1 && M[2]==1 U[0,3] M[3]==1)

Using 738 runs, [0,0.05] was returned as a 95% CI,

indicating that the event happens with a very low

probability.

Fig. 10 Monitored EED value

The probability that within [0,1000] tu the double failure

state can occur was re-checked with the query:

Pr(<>[0,1000] M[3]==1 && M[10]==1)

which returned a [0.142412,0.242412] 95% CI. The query:

Pr(<>[0,10] M[12]==1 && M[13]==1)

LIBERO NIGRO ET AL.: QUALITATIVE AND QUANTITATIVE EVALUATION 771

was used to evaluate the probability that within 10 tu the

double cell terminates its execution. The

[0.605827,0.705827] 95% CI was observed.

To check specifically the termination event within [10,22]

tu it was issued the query:

Pr(<>[10,22] M[12]==1 && M[13]==1)

which returned a [0.849729,0.949729] 95% CI to witness

a very high probability of occurrence.

The occurrence probability of the firing sequences leading

to double failure, was re-checked by the query:

Pr(<>[0,1000] top==5 && s[0]==2 && s[1]==4 && s[2]==5 &&

s[3]==6 && s[4]==10)

for which (using 738 runs) a [0,0.054065] 95% CI was

proposed. Similarly, for the second and third path of Table 1,

it was estimated respectively a CI of [0,0.05] and [0,0.05271]

95%.

Since stochastic analysis depends on batches of

simulation runs, that is UPPAAL SMC renounces to build the

model state graph, there are no scalability problems when

the model admits more clocks, variables etc. All of this was

exploited in the case study by introducing a tailored

decoration which is simply ignored when the same model is

interpreted for non-deterministic analysis.

VII. CONCLUSIONS

This paper proposes an approach to modelling and analysis

of Time Petri Nets (TPN) [2]-[5] also in the presence of

stochastic features (sTPN) [14].

The approach is centered on a structural translation of

TPN/sTPN onto the latest version of UPPAAL which enables

both qualitative non-deterministic analysis based on

exhaustive model checking, and quantitative evaluation of

system properties by exploiting the statistical model checker.

The UPPAAL translation makes it possible, during

analysis, to reason directly in the terms of TPN/sTPN

vocabulary (e.g., marking reachability and transition firings),

thus simplifying its practical usage.

Prosecution of the research is directed at:

 Extending the sTPN modelling through the support of

generally distributed probability functions attached to

transitions.

 Improving the automatic translation of TPN/sTPN

models in the context of the TPN Designer toolbox [20].

 Applying the approach, e.g., to complex maintenance

procedures, phased-mission systems [17], time-

constrained workflow systems.

 Experimenting the methodology with the PRISM

Probabilistic Model Checker [12].

 Specializing the approach to Preemptive Time Petri

Nets [18], i.e., towards the schedulability analysis of

real-time tasking sets under general conditions, when

the schedulability problem becomes undecidable. A

preliminary framework was prototyped in [19] using

UPPAAL stopwatches and over-approximation. The goal

is to allow non-deterministic qualitative analysis (when

possible) and quantitative analysis of task response

times using the statistical model checker.

REFERENCES

[1] E.M. Clarke, O. Grumberg, D.A. Peled, Model checking, MIT Press,

2000.

 [2] P.M. Merlin, D.J. Farber, “Recoverability of communication protocols:
implications of a theoretical study”, IEEE Trans. Commun., 24(9):1036-1043,

1976.

 [3] B. Berthomieu, M. Diaz, “Modeling and verification of time
dependent systems using Time Petri Nets,” IEEE Trans. Soft. Eng.,

Vol. 17, No. 3, pp. 259-273, Mar. 1991.

[4] B. Berthomieu, M. Menasche, “An enumerative approach for
analyzing Time Petri Nets,” Information Processing: Proc. IFIP
Congress 1983, R.E.A. Mason, ed., vol. 9, pp. 41-46, 1983.

[5] E. Vicario, “Static analysis and dynamic steering of time dependent
systems using Time Petri Nets,” IEEE Trans. Soft. Eng., vol. 27, no. 8,

pp. 728-748, Aug. 2001.
[6] R. Alur, D.L. Dill, “A theory of timed automata”, Theoretical

Computer Science, Vol. 126, pp. 183-235, 1994.

[7] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The Tool TINA—
Construction of abstract state spaces for Petri Nets and Time Petri

Nets,” Int. J. Production Research, Vol. 42, No. 14, 2004.

[8] G. Bucci, L. Carnevali, L. Ridi, E. Vicario, “ORIS: a tool for
modeling, verification and evaluation of real-time systems”, Int. J. on

Software Tools for Technology Transfer, Springer (2010) 12:391–403,

DOI 10.1007/s10009-010-0156-8.
[9] UPPAAL on-line, www.UPPAAL.org.

[10] G. Behrmann, A. David, K.G. Larsen, “A tutorial on UPPAAL”, In:

Formal Methods for the Design of Real-Time Systems, M. Bernardo
and F. Corradini Eds., Lecture Notes in Computer Science, Vol. 3185,

Springer-Verlag, pp. 200-236, 2004.

[11] A. David, K.G. Larsen, A. Legay, M. Mikucionis, D.B. Poulsen,
UPPAAL SMS Tutorial, Int. J. on Software Tools for Technology

Transfer, Springer, 17:1-19, 06.01.2015, DOI 10.1007/s10009-014-

0361-y, 2015.
[12] M.Z. Kwiatkowska, G. Norman, D. Parker, “PRISM 4.0: Verification

of Probabilistic Real-Time Systems”. In Proc. of CAV 2011, pp. 585-

591, 2011.
[13] H.L.S. Younes, “Verification and planning for stochastic processes

with asynchronous events”, PhD Thesis, Carneige Mellon, 2005.

[14] E. Vicario, L. Sassoli, L. Carnevali, “Using stochastic state classes in
quantitative evaluation of dense-time reactive systems”, IEEE Trans.

on Soft. Eng., Vol 35, No. 5, pp. 703-719, 2009.

[15] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis,
Modelling with Generalized Stochastic Petri Nets, John Wiley and

Sons, 2004.

[16] F. Cicirelli, A. Furfaro, L. Nigro, “Model checking time-dependent
system specifications using time stream Petri nets and UPPAAL”, Appl.

Math. Comp., Vol. 218, pp. 8160-8186, 2012.

[17] L. Carnevali, M. Paolieri, K. Tadano, E. Vicario, “Towards the
quantitative evaluation of phased maintenance procedures using non-

Markovian regenerative analysis, Lecture Notes in Computer Science,

Springer, Vol. 8168, pp 176-190, 2013.
[18] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario, “Timed state space

analysis of real time preemptive systems,” IEEE Trans. Soft. Eng.,

vol. 30, no. 2, pp. 97-111, Feb. 2004.
[19] F. Cicirelli, A. Furfaro, L. Nigro, F. Pupo, "Development of a

schedulability analysis framework based on pTPN and UPPAAL with

stopwatches". In Proc. of the 16th IEEE/ACM Int. Symp. on

Distributed Simulation and Real Time Applications (DS-RT), pp. 57-

64, 2012.

[20] L. Carullo, A. Furfaro, L. Nigro, F. Pupo. “Modelling and Simulation

of Complex Systems using TPN Designer”. Simulation Modelling
Practice and Theory. 11/7-8, pp. 503-532, 2003.

772 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

