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Abstract—In this paper we use a metaheuristic approach
to solve the Portfolio Selection problem, in a constrained
formulation which is NP-hard and difficult to be solved
by standard optimization methods. We are comparing the
algorithm’s performances with an exact solver and we are

showing that different mathematical formulations lead to
different algorithm’s behaviour. Results show that our ap-
proach can be efficiently used to solve the problem at hand,
and that a sound basin of attraction analysis may help
developers and practitioners to design the experimental
analysis.

I. INTRODUCTION

P
ORTFOLIO Selection main formulation dates back

from the fifties and is concerned with selecting, out

of a given set of assets, which assets to invest in and

by how much, in order to minimise a risk measure for

a given minimum required target return. Many measures

can be used for assessing the risk, but the variance

of portfolio’s return was used in the seminal work by

Markowitz [24] and is still the most used.

Portfolio Selection Problem (PSP) can be viewed as

an optimisation problem to be described by three objects:

variables, objective, and constraints. Every object have

to be instantiated by a choice, and the combination of

these choices leads to a specific formulation (model) of

the problem, hence to different optimisation results. For

instance, as stated by di Tollo and Roli[8], two main

choices are possible for variables: continuous[15], [29],

[31], [28] and integer[30], [21]. Choosing continuous

variables is quite ‘natural’ and its representation is

independent of the actual budget, while integer values

(ranging between zero and the maximum available bud-

get, or equal to the number of ‘rounds’) allow us to add

constraints taking into account actual budget, minimum

lots and to tackle other objective functions to better

explain the problem at hand. As for the different results,

the integer formulation is more suitable to explain the be-

haviour of rational operators such small investors, whose

activity is strongly influenced by integer constraint[22].

Furthermore, the same representation can be mod-

elled by means of different formulations, e.g., by

adding auxiliary variables[20], symmetry breaking[27]

or redundant[32] constraints. Although these extensions

have no effect on the certified optimal solution found,

they may affect the optimisation procedure. For example,

it has been shown that symmetry breaking constraints

have negative effect on local search performances[27].

In this work we will investigate how the use of

different formulations for the very same problem can

lead to different behaviours of the algorithm used. We

will study this aspect by solving the Portfolio Selection

Problem by metaheuristics[4], [8], which are general

problem-solving strategies conceived as high level strate-

gies that coordinate the behaviour of lower level heuris-

tics, and provide the user with a solution which cannot

be certified to be optimum, still it represents a good

compromise when the optimal solution is impossible

to be found. Through the use of meta-heuristic, and

using the paradigm of separation between model and

algorithm[17], we will show that different formulations

affect the algorithm’s performances and study the moti-

vation of this phenomenon.

The paper will start recalling Portfolio Theory in Sec-

tion II, before introducing the concept of meta-heuristics

in Section III. Then we will introduce a meta-heuristic

approach for the Portfolio Selection Problem in Section

IV, while Section V will introduce the principles Search

Space Analysis is based upon. Search Space Analysis

will be applied to our instances on Section VI, before

concluding with Section VII.

II. PORTFOLIO SELECTION BASIS

We associate to each asset belonging to a set A of

n assets (A = {a1, . . . , an}) a real-valued expected
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return ri, and the corresponding return variance σi. We

furthermore associate, to each pair of assets 〈ai, aj〉, a

real-valued return covariance σij . We are furthermore

given a value re representing the minimum required

return.

In this context, a portfolio is defined as the n-sized

real vector X = {x1, . . . , xn} in which xi represents the

relative amount invested in asset ai. For each portfolio

we can define its variance as
∑n

i=1

∑n

j=1
σijxixj and

its return as
∑n

i=1
rixi. In the original formulation

[25], PSP is formulated as the minimization of portfolio

variance, imposing that the portfolio’s return must be not

smaller than re, leading to the following optimisation

problem:

min

n
∑

i=1

n
∑

j=1

σijxixj , (1)

s.t.

n
∑

i=1

rixi ≥ re, (2)

n
∑

i=1

xi = 1, (3)

xi ≥ 0 (i = 1, . . . , n). (4)

The aforecited return constrained is introduced in con-

straint (2); constraint (3) is referred to as budget con-

straint, meaning that all the capital must be invested;

constraint (4) imposes that variables have to be non-

negative (i.e., short sales are not allowed).

If we define a finite set of values for re and solve

the problem for all defined re values, we obtain the

Unconstrained Efficient Frontier (UEF), in which the

minimum risk value is associated to each re.

This formulation may be improved to grasp financial

market features, by introducing a binary variable Z for

each asset (zi = 1 if asset i is on the portfolio, 0
otherwise). Additional constraints which can be added

to the basic formulation are:

• Cardinality constraint, used either to impose an

upper bound k to the cardinality of assets in the

portfolio

n
∑

i=1

zi ≤ k, (5)

or to force the resulting portfolio to contain exactly

k assets:
n
∑

i=1

zi = kmax. (6)

This constraint is important for practitioners in

order to reduce the portfolio management costs.

• Floor and ceiling constraints, used to set, for each

asset, the minimum (εi) and maximum (δi) quantity

allowed to be held in the portfolio

εizi ≤ xi ≤ δizi. (7)

Those constraints are used to ensure diversification

and to avoid tiny portions of assets in the portfolios,

which would make their management difficult and

lead to unnecessary transaction costs.

• Preassignments. This constraint is used to express

subjective preferences: we want certain specific

assets to be held in the portfolio, by determining a

n-sized binary vector P (i.e., pi = 1 if ai has to be

held in the portfolio) and imposing the following:

zi ≥ pi (i = 1, . . . , n). (8)

III. META-HEURISTICS

As stated in the Introduction, in this work we are

solving the PSP by using meta-heuristics[4], which can

be defined as high-level strategies that coordinate the

action of low-level algorithms (heuristics) in order to find

near-optimal solutions for combinatorial optimization

problem. They are used when it is impossible to find

the certified optimum solution in a reasonable amount

of time, and their features can be outlined as follows:

• They are used to explore the search space and to

determine principles to guide the action of subordi-

nated heuristics.

• Their level of complexity ranges from a simple

escape-mechanism to complex populations proce-

dures.

• They are stochastic, hence escape and restart proce-

dures have to be devised in the experimental phase.

• The concepts they are built upon allow an abstract

descriptions, that is useful to design hybrid proce-

dures.

• They are not problem-specific, but additional com-

ponents may be used to exploit the structure of the

problem or knowledge acquired during the search

process.

• They may make use of problem-specific knowledge

in the form of heuristics that are controlled by the

upper level strategy.

The main paradigm meta-heuristics are build upon

is the intensification-diversification paradigm, meaning

that they should incorporate a mechanism to balance the

exploration of promising regions of the search landscape

2
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(intensification) and the identification of new areas in

the search landscape (diversification). The way of im-

plementing this balance is different depending on the

specific meta-heuristic used. A completed description

is out of the scope of this paper, and we forward the

interested reader to Hoos and Stuetzle[18].

IV. OUR APPROACH FOR PORTFOLIO CHOICE

We are using the solver introduced by di Tollo et

al.[7], [9] to tackle a constrained PSP, in which the

Markowitz’ variance minimisation in a continuous for-

mulation is enhanced by adding constraints (4), (6) and

(7), leading to the following formulation:

min

n
∑

i=1

n
∑

j=1

σijxixj , (9)

subject to

n
∑

i=1

rixi ≥ re, (10)

n
∑

i=1

xi = 1, (11)

xi ≥ 0 i = 1 . . . n, (12)

kmin ≤

n
∑

i=1

zi ≤ kmax, (13)

εizi ≤ xi ≤ δizi, (14)

xi ≤ zi i = 1 . . . n. (15)

Where kmin and kmax are respectively lower and up-

per bounds on cardinality. This problem formulation

contains two classes of decision variables: integer (i.e.,

Z) and continuous (i.e., X). Hence, it is possible to

devise an hybrid procedure in which each variable class

is tackled by a different component. Starting from this

principle, we have devised a master-slave decomposition,

in which a meta-heuristic procedure is used in order

to determine, for each search step, assets contained

in the portfolio (Z). Once the assets contained in the

portfolio are decided, the corresponding continuous X
values can be determined with proof of optimality. Hence

at each step, after having selected which assets to be

taken into account, we are resorting to a the Goldfarb-

Idnani algorithm for quadratic programming (QP) [16]

to determine their optimum value. The stopping criterion

and escape mechanism depend on the metaheuristic used,

which will be detailed in what follows.

As explained in section VI, this master-slave decom-

position has a dramatic impact on the meta-heuristic

performance due to the different structure determined

by this formulation, in which the basin of attraction

are greater than the ones determined by a monolithic

approach based on the same meta-heuristic approaches.

In what follows we are outlining the components of our

meta-heuristic approach.

• Search space Since the master meta-heuristic com-

ponent takes into account the Z variables only,

the search space S is composed of the 2n port-

folios that are feasible w.r.t cardinality and pre-

assignment constraints, while other constraints are

directly ensured by the slave QP procedure. If

the QP procedure does not succeed in finding a

feasible portfolio, a greedy procedure is used to find

the portfolio with maximum return and minimum

constraint violations.

• Cost function In our approach the cost function

corresponds to the objective function of the problem

σ2, and is computed, at each step of the search

process, by the slave QP procedure.

• Neighborhood relations As in di Tollo et al.[9], we

are using three neighborhood relations in which the

neighbor portfolio are generated by adding, deleting

or replacing one asset: the neighbor is created by

defining the asset pair 〈i, j〉(i 6= j), inserting asset

i, and deleting asset j. Addition is implemented by

setting j = 0; deletion is implemented by i = 0.

• Initial solution The initial solution must be gener-

ated to create a configuration of Z . Since the we aim

to generate an approximation of the unconstrained

efficient frontier, we are devising three different

procedures for generating the starting portfolio,

which are used w.r.t. different re values: MaxRe-

turn (in which the starting portfolio corresponds to

the maximum return portfolio, without constraints

on the risk); RandomCard (in which cardinality

and assets are randomly generated); and Warm-
Restart (in which the starting portfolio corresponds

to the optimal solution found for the previous re
value). MaxReturn is used when setting the highest

re value (i.e., first computed value); for all other re
values both RandomCard and WarmRestart have

been used.

A. Solution techniques

As specific meta-heuristics for the master procedure,

we have used Steepest Descent (SD), First Descent (FD)

and Tabu Search (TS). SD and FD are considered as

the most simple meta-heuristic strategies, since they

3
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accept the candidate solution only when its cost function

is better than the current one, otherwise the search

stops. They differ to each other in the neighborhood

exploration, since in SD all neighbors are generated

and the best one is compared to the current solution,

while in FD the first better solution found is selected

as current one. TS enhances this schema by selecting,

as the new current solution, the best one amongst the

neighborhood, and using an additional memory (Tabu

list) in which forbidden states (i.e., former solutions) are

stored, so that they cannot be generated as neighbors. In

our implementation, we have used a dynamic-sized tabu

list, in which solutions are put in the Tabu list for a

randomly generated period of time. The length range of

the Tabu list has been determined by using F-Race [3],

and has been set to [3, 10].

The three meta-heuristics components have been

coded in C++ by Luca Di Gaspero and Andrea Schaerf

and are available upon request.

As for the slave Quadratic programming proce-

dure, we have used the Goldfarb and Idnani dual set

method [16] to determine the optimal X values corre-

sponding to Z values computed by the master meta-

heuristic component. This method has been coded in

C++ by Luca Di Gaspero: it is available upon request,

and has achieved good performances when matrices at

hand are dense.

To sum up, the master meta-heuristic component deter-

mines the actual configuration of Z variables (i.e., point

of the search space), the slave QP procedure computes

the cost of the determined configuration, which is ac-

cepted (or not) depending on the mechanism embedded

in FD, SD or TS.

B. Benchmark instances

We have used instances from the repository ORlib

(http://people.brunel.ac.uk/~mastjjb/jeb/info.html) and

instances used in Crama and Schyns[6], which have

been kindly provided to us by the authors. The UEF for

the ORlib instances is provided in the aforementioned

website; the UEF for instances from Crama and

Schyns[6] has been generated by us by using our

slave QP procedure. In both cases, the resulting UEF

consists of 100 portfolios corresponding to 100 equally

distributed re values. Benchmarks’ main features are

highlighted in Table I.

By measuring the distance of the obtained frontier

(CEF) from the UEF we obtain the average percentage

loss, which is an indicator of the solution quality and

which is defined as:

apl =
100

p

p
∑

l=1

(V (re)− VU (re))/VU (re) (16)

in which re is the minimum required return, p is the

frontier cardinality, V (re) and VU (re) are the values of

the function F returned by the solver and the risk on the

UEF.

C. Experimental analysis

Our experiments have been run on a computer

equipped with a Pentium 4 (3.2 GHz), and in what

follows we are showing results obtained on both instance

classes. In order to assess the quality of our approach, in

the following tables we also report results obtained by

other works tackling the same instances. Table II reports

results over ORlibinstances, showing that our approach

outperforms the meta-heuristic approach by Schaerf[29],

and compares favourably with Moral-Escudero et al.[26]

Table III compares our results with the one by Crama

and Schyns[6]: solutions found by our hybrid approach

have better quality than the ones found by SA [6], but

running times are higher, due to our QP procedure and

to our complete neighbourhood exploration, which are

not implemented by Crama and Schyns.

We have also compared our approach with Mixed

Integer Non-linear Programming (MINLP) solvers, by

encoding the problem in AMPL [14] and solving it

using CPLEX 11.0.1 and MOSEK 5. We have run the

MINLP solvers over ORLib instances, and compared

their results with SD+QP (10 runs), obtaining the same

solutions in the three approaches, hence showing that our

approach is able to find the optimal solution in a low

computational time. Computational times for SD+QP

and for the MINLP solvers are reported in Table IV and

in Figure 1. We can notice that for big-sized instances

exact solvers require higher computation time to generate

points in which cardinality constraints are binding (i.e.,

left part of the frontier). Our approach instead scales

very well w.r.t. size and provides results which are

comparable.

We can conclude this section by observing that

SD+QP provides as satisfactory results as the more

complex TS+QP. Since Tabu Search is conceived to

better explore the search space, this can be considered

rather surprising. The next sections will enlighten us

about this phenomenon.

4
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TABLE I
OUR INSTANCES.

ORlib dataset Crama and Schyns dataset
ID Country Assets AVG(UEF)risk ID Country Assets AVG(UEF)risk

1 Hong Kong (Hang Seng) 31 1.55936·10−3 S1 USA (DataStream) 20 4.812528

2 Germany (DAX 100) 85 0.412213·10−3 S2 USA (DataStream) 30 8.892189

3 UK (FTSE 100) 89 0.454259·10−3 S3 USA (DataStream) 151 8.64933

4 USA (S&P 100) 98 0.502038·10−3

5 Japan (NIKKEI) 225 0.458285·10−3

TABLE II
RESULTS OVER ORLIB INSTANCES.

FD+QP SD+QP TS+QP TS[29] GA+QP[26]
Inst. min apl time min apl time min apl time min apl time min apl time

1 0.00366 1.5 0.00321 3.1 0.00321 29.1 0.00409 251 0.00321 415.1
2 2.66104 9.6 2.53139 14.1 2.53139 100.9 2.53617 531 2.53180 552.7
3 2.00146 10.1 1.92146 16.1 1.92133 114.4 1.92597 583 1.92150 886.3
4 4.77157 11.2 4.69371 18.8 4.69371 130.5 4.69816 713 4.69507 1163.7
5 0.24176 25.3 0.20219 45.9 0.20210 361.8 0.20258 1603 0.20198 1465.8

TABLE III
RESULTS OVER CRAMA AND SCHYNS INSTANCES.

FD+QP SD+QP TS+QP SA[6]
Inst. apl time apl time apl time apl time

S1 0.72 0.094 0.3 0.35 0.0 1.4 0.35 0.0 4.6 1.13 0.13 3.2
S2 1.79 0.22 0.5 1.48 0.0 3.1 1.48 0.0 8.5 3.46 0.17 5.4
S3 10.50 0.51 10.2 8.87 0.003 53.3 8.87 0.0003 124.3 16.12 0.43 30.1

TABLE IV
COMPUTATIONAL TIMES OVER ORLIB INSTANCES 1–4, SD+QP

AND MINLP.

Instance avg(SD + QP) CPLEX 11 MOSEK 5

1 3.1s 2.1s 15.8s
2 14.7s 397.1s 5.0s
3 18.0s 890.7s 1,903.3s
4 20.9s 169,461.0s 239,178.4s

V. SEARCH SPACE ANALYSIS

Search Space Analysis relies on the concept of basin

of attraction (BOA), and is aimed to understand the

features of the search space, when they are not deductible

using exhaustive approaches.

In our meta-heuristic model, we are defining BOAs

of search graph nodes. For this definition to be valid

for any state of the search graph[2], we are relaxing

the requirement that the goal state is an attractor.

Therefore, the basin of attraction will also depend on

the particular termination condition of the algorithm.

In the following examples, we will suppose to end the

execution as soon as a stagnation condition is detected,

i.e., when no improvements are found after a maximum

number of steps. In what follows we are following the

definitions expressed by Roli[2], and we are applying

our analysis to deterministic systems, before extending

it to stochastic systems.

Definition Given a deterministic algorithm A, the

basin of attraction B(A|s) of a point s, is defined as

the set of states that, taken as initial states, give origin

to trajectories that include point s.

Let S∗ be the set of global optima: for each

s ∈ S∗ there exist a basin of attraction, and their

union I∗ =
⋃

i∈S∗ B(A|i) contains the states that,

taken as a starting solution, would have the search

provide a certified global optimum. Hence, if we

use a randomly chosen state as a starting solution,

5
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Fig. 1. Computational time: comparison between SD+QP and MINLP
approaches over ORLib Instances.

the ratio |I∗|/|S| would measure the probability

to find an optimal solution. As a generalization, we

are defining a probabilistic basin of attraction as follows:

Definition Given a stochastic algorithm A, the basin

of attraction B(A|s; p∗) of a point s, is defined as the

set of states that, taken as initial states, give origin

to trajectories that include point s with probability

p ≥ p∗. Accordingly, the union of the BOA of global

optima is defined as I∗(p) =
⋃

i∈S∗ B(A|i; p). It is

clear that that B(A|s) is a special case for B(A|s; p∗),
hence in what follows we are using B(s; p∗) instead of

B(A|s; p∗), without loss of generalization. When p∗ = 1
we want to find solutions belonging to trajectories that

ends in s. Notice that B(s; p1) ⊆ B(s; p2) when p1 > p2.

The effectiveness of a meta-heuristic A is dramatically

influenced by the topology and structure of the search

landscape, and since the aim is to reach an optimal

solution, the need of an analysis of BOA features arises.

Please notice that our definition of basins of attrac-

tion enables both a complete/analytical study —when

probabilities can be deducted from the search strategy

features— and a statistical/empirical analysis (e.g., by

sampling).

VI. SEARCH SPACE ANALYSIS FOR PORTFOLIO

SELECTION PROBLEM

When solving an optimisation problem, a sound mod-

elling and development phase should be based on the

separation between the model and the algorithm: this

stems from constraint programming, and several tools

foster this approach (i.e., Comet[17]). In this way, it

is possible to draw information about the structure of

the optimisation problem, and this knowledge can be

used, for instance, for the choice of the algorithm to

be used. Up to the author’s knowledge, literature about

portfolio selection by meta-heuristics has hardly dealt

with this aspect, though some attempts have been made

to study the problem structure. For instance, Maringer

and Winker [23] draw some conclusion about the ob-

jective function landscape by using a memetic algorithm

which embeds, in turn, Simulated Annealing (SA)[19]

and Threshold Acceptance (TA)[11]. They compare the

use of SA and TA inside the memetic algorithm dealing

with different objective functions: Value-at-Risk(Var)

and Expected Shortfall (ES)[8]. Their results indicates

that TA is suitable when using VaR, while SA performs

best when using ES. An analysis of the search space is

made to understand this phenomenon.

6
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Other works compare different algorithms on the same

instance to understand which algorithm perform best,

and in what portion of the frontier. Amongst them,

Crama and Schyns[6] introduce three different Simulated

Annealing strategies, showing that there is no clear

dominance among them. Armañanzas and Lozano [1]

introduces Ant Colony Optimisation (ACO)[10], refining

solutions with a greedy search, comparing results with

Simulated Annealing and Iterative Improvement, and

showing that ACO and SA performances greatly depends

on the expected return (see Sec. II). A common way of

tackling this analysis is to run the different algorithms,

and then to pool the obtained solutions. After this phase,

the dominated solutions are deleted and it is possible to

understand which algorithm performs best w.r.t. a given

part of the frontier [5], [13].

The main shortcoming of these approaches is that

they identify which algorithm performs well in a given

portion of the frontier, without explaining the motivation

beneath this behaviour. Hence, an additional effort has

to be made to understand the model and how it can

affect the algorithm performance. In this section, we

are aimed in comparing different formulations for the

PSP and in understanding how the structure of the

problem affects the algorithm’s performances through

Search Space Analysis.

When using a meta-heuristic, search space analysis

represents an effective tool to assess the algorithm per-

formances and the instance hardness. In what follows

we are discussing results obtained over real instances

and over hard-handmade instances in order to outline the

connections between search space analysis and algorithm

performances.

Analysis for Real Instances: We define five equally

distributed re values, referred to as Ri (i = 1 . . . 5) and

we analyse the search space corresponding to each ri
over the five ORlib instances in order to assess the local

minima distribution, that is an indicator of the search

space ruggedness. This concept is important since it has

been shown that there exists a negative correlation be-

tween ruggedness and meta-heuristic performances[18].

We have implemented and run a deterministic version

of SD (referred to as SDdet) to estimate the number

of minima of an instance of the problem discussed in

Sec. IV, which combines continuous variables x with

integer variables z. As for the constraints, we have set

both a minimum (kmin) or a maximum (kmax) bound on

cardinality in order to understand the differences arising

when using a maximum or strict cardinality constraint.

As for determining the initial states, we have resorted

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
1
7
9
0

0
.0

0
0
1
7
9
4

rBOA

ri
s
k

Fig. 2. Instance 4: BOA analysis. kmin = 1, kmax = 10, R =

0.00375.

either to complete enumeration (if the instance at hand

is small) or to uniform sampling.

Results are shown in table V, where we report the

number of the different local minima found by 30 runs

of SDdet. Dashed entries mean that no feasible solution

exists.

Results indicate that instances at hand show a small

number of local minima and only one global minimum.

This clearly indicates a situation in which the search

landscape is rather smooth, and explains why different

strategies such TS and FD/SD lead to similar opti-

mization results: since local optimum are few and far

between, there is no need of using complex strategies or

escape mechanisms, since the probability of meeting a

trajectory leading to one of the optima are quite high.

We recall that those values have been found by using a

deterministic version of SD, and their inverse represents

an upper bound on the probability to reach the certified

optimum when using the stochastic SD and TS defined

in section IV-A.

We conclude that when using our formulation, global

minima have a quite large BOA. This can be seen in

Fig. 2, in which segments length corresponds to rBOA

(i.e., ratio between size of BOA(s) and search space size)

and their y-value corresponds to the minimum found:

global minima rBOA ranges from 30% to 60%.

In the next paragraph we will show that the same

problem, modeled in a different way, leads to different

basin of attractions.

Monolithic Search Basin of Attraction: In the pre-

vious paragraph we have shown that, when using our

problem formulation, the BOAs of local optima are

quite big, making the search landscape smooth and the

problem easy to be tackled by our hybrid solver. BOAs

depend on the search strategy used and on the problem

7
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TABLE V
INSTANCE 4, NUMBER OF MINIMA FOUND.

kmin, kmax R1 = 0.00912 R2 = 0.00738 R3 = 0.00556 R4 = 0.00375 R5 = 0.00193

1,3 1 1 1 1 1
1,6 1 1 1 5 1
1,10 1 1 1 1 3
3,3 1 1 3 5 3
6,6 – 1 1 2 1

10,10 – 1 1 3 2

formulation, and this can be shown by running a different

strategy, i.e., a monolithic one, on the same problem

instances. We have used a SD based on a variant of

Threshold Accepting [12], in which only a variable class

is considered, i.e., w variables corresponding to actual

asset weights. The desired outcome of this problem is

the same as the previously introduced one, but they

are represented in a different way. In the following we

explain the main features of this meta-heuristic approach:

• Search Space The master-slave decomposition is

not used anymore, and a state is represented by

a sequence W = w1 . . . wn such that wb corre-

sponds to the relative amount invested in asset b.
Furthermore, the portfolio has to be feasible w.r.t.

cardinality, budget, floor and ceiling constraints.

• Neighborhood relations A given amount (step) is

transferred from asset a to another b, no matter if b
is already in the portfolio or not. If this leads one

asset value to be smaller than ǫi, its value is set to

ǫi. If the move consists in decreasing the value of

an asset being set to ǫi, its value is set to 0.

• Initial solution The initial solution has to be fea-

sible w.r.t. cardinality, budget, floor and ceiling

constraints and is always created from scratch.

• Cost Function As for the cost function we are using

a penalty approach, hence it is given by adding the

degree of constraints violations to the portfolio risk.

• Local Search Strategies SD that explores the space

of w variables.

Results about BOAs analysis for this approach are shown

in figure 3. Even from visual inspection only, it turns out

that the number of local minima is dramatically higher

than the one corresponding to the master-slave approach;

furthermore basin of attraction are tiny, and the certified

optimum has not been found.

Analysis for artificial instances: In the previous

paragraph we have shown that, for the PSP we are solv-

ing, instances at hand are easy to solve, since our master-

slave decomposition leads to search spaces with a small

0 0.2 0.4 0.6 0.8 1

2.1824

2.8339

3.4122
3.6941

5.9984

x 10
−4

rBOA

ri
s
k

Empirical CDF

(a) Instance 4: kmin = 1, kmax = 10, R = 0.00375

0 0.2 0.4 0.6 0.8 1

2.2621

3.2085

4.1114
4.4567

7.0651

x 10
−4

rBOA

ri
s
k

Empirical CDF

(b) Instance 4: kmin = 1, kmax = 6, R = 0.00193

Fig. 3. Two ORlib instances: Monolithic BOA analysis with different
constraints.

number of local optima with huge BOAs. Hence, there

is no need for complex approaches and escape mech-

anisms, and this explains why simple meta-heuristics

performances are comparable with more sophisticated

one such TS. Furthermore, preliminary analysis have
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suggested us that this is a common feature in financial

market related instances: this could be considered as

a good point for practitioners, but makes impossible

to test the robustness of our approach, in which we

have developed TS+QP in order to tackle more difficult

instances. Hence, we have designed an artificial hand-

made instance featuring a huge number of minima with

tiny BOAs, containing an even number n of assets i, in

which ri = 1∀i and whose covariance matrix is depicted

here above.

It is easy to see that for every re the best portfolio

contains the first two assets only, but also that portfolios

consisting of assets i (odd) and i + 1 only are local

optima, since all their neighbors feature higher risk.

It can be shown show that it is necessary to visit

a portfolio s having z1 = 1 or z2 = 1 to reach the

global optimum s∗. Furthermore, portfolios containing

an odd asset i (i > 1) whose zi = 1 and zi+1 = 1 will

never entry in a trajectory in which this couple would be

removed. Hence, B(s∗) contains all portfolios featuring

z1 = 1 or z2 = 1, and in which there is no i odd and > 1
such that zi = 1 and zi+1 = 1. In this case, rBOA(s∗)

is inversely proportional to n.

By running our master-slave approach over this in-

stance (ǫi = 0.01 and δi = 1 for i = 1 . . . n) we have

remarked that TS+QP easily find a solution comparable

to that provided by CPLEX, while SD and FD perfor-

mances are greatly affected by the starting solution (and

anyhow much poorer than TS+QP).

It has to be noticed that such an instance could be

hardly found over real markets, even its presence is not

forbidden by structural properties, but when tackling it

the need of larger neighborhoods arises. Anyhow, no

matter the neighborhood size, it is always possible to

devise artificial instances whose minima are composed

by subsets that have to be moved jointly.

From the Search Space Analysis conducted in this

section, we may conclude that different formulations

(hybrid vs continuous only) lead to different Basin of

Attraction analysis on the instances at hand. This turns

into different algorithm behaviours. The formulation that

leads to a smooth search landscape (hybrid) can be tack-

led by algorithms with weak diversification capabilities

(i.e., SD in the proposed hybrid formulation), whilst

these algorithms are to be replaced by more sophisticated

ones when the search landscape becomes rugged (see

the behaviour of SD in the monolithic version). The

artificial instance places itself in the middle of these

phenomena, as it provides room for the use of more

complex strategies (i.e., TS) in the hybrid case, due to the

neighbor moves used which make the search to get stuck

in the first local optimum found, but when embedded in

the continuous only formulation doesn’t provide different

performances from the real instances.

VII. CONCLUSION

In this work we have used a meta-heuristic approach

to study the impact of different formulations on the

Portfolio Selection algorithm’s behaviour, and we have

devised a methodology to understand the root of the

different behaviours (search space analysis through BOA

analysis). To this aim we have compared an approach

based on a master-slave decomposition with a monolithic

approach. Results have shown that the search space
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defined by the monolithic approach is quite rugged and

need an algorithm featuring an escape mechanism to be

solved efficiently, whilst the hybrid approach leads to a

smoother search landscape to be explored efficiently also

by simpler algorithms such SD.
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