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Abstract—Visual search for objects of interest in complex
environment is an important (and still challenging) problem in
mobile robotics. In particular, the usage of content-based visual
information retrieval (CBVIR) methods, which are a natural
choice for such tasks, is often constrained by the real-time
requirements, and the mobility of searching agents is sometimes
not sufficiently exploited in the search model. In this paper,
a CBVIR-based scheme is proposed, which takes into account
motion of the searching agents to achieve a low-cost and high-
speed detection of objects of interest in cluttered scenes, with good
overall performances. We combine standard CBVIR tools, i.e.
MSER detector and SIFT descriptor (quantized into sufficiently
large vocabularies) assuming additionally that objects become
objects of interest only when approached closely enough by the
mobile agent, i.e. when seen at an adequately large scale. Thus,
an object of interest is considered detected only if a sufficient
number of keypoints from the current video-frame are matched
(including the corresponding matches of scales) to the keypoints
from the database images of the object. Preliminary experiments
on a limited-size dataset confirm performances of the scheme,
although in the classical task of video-frame retrieval the scheme
cannot compete with more sophisticated CBVIR algorithms.
The scheme can prospectively become more flexible if combined
with a range-finding device so that the approximate distances
to the scene components within the currently inspected part
of the image can be used to proportionally modify the scale
correspondences.

I. INTRODUCTION AND BACKGROUND WORKS

Visual search for unpredictably located objects of interest

(where such object are represented by their exemplary images)

remains one of important tasks for mobile robotics. Under-

standably, CBVIR is a natural source of algorithms for such

a task. Actually, one of the fundamental CBVIR concepts

of visual words was originally proposed for videos [1]. Al-

gorithms for sub-image retrieval (where the objective is to

identify images containing fragments near-duplicate to the

query image) are particularly important. Those algorithms

are usually based on detecting keypoints and, subsequently,

comparing their visual words. Generally, however, three major

differences exist between real-time visual search by mobile

agents and classical CBVIR tasks:

1) In CBVIR, infrequently arriving query images (submitted

by the users) are matched against large/huge datasets,

e.g. [2], [3], while in a camera-based visual search very

small datasets (template images of objects of interest) are

matched against large numbers of continuously arriving

queries (video-frames acquired by a single camera or by

simultaneously working multiple cameras attached to a

mobile agent).

2) Because of (1), the computational costs of image pre-

processing (i.e. keypoint detection and description, quan-

tization into visual words, etc.) are in visual search as

critical as the complexity of the actual image matching

and retrieval. In classical CBVIR, the costs of image pre-

processing are considered negligible.

3) In visual search, the objective is to detect all instances of

interesting objects, where each instance is represented by

a sequence of frames in the input video stream. However,

not all such frames have to be perfectly identified. Thus,

in the video search (unlike in standard CBVIR tasks)

recall of individual frame retrieval can be compromised,

but precision should be as high as possible.

As an illustrative example, Fig. 1 shows an object of

interest and an exemplary video-frame returned by the search

algorithm.

(a) (b)

Fig. 1. The object of interest (a) and an exemplary frame containing it (b).

In this paper, we propose and preliminarily evaluate a

scheme which exploits the above characteristics of visual

search (and mobility of the searching agent) to achieve at low

costs a high performance object detection in cluttered scenes.

As the basic components of this scheme, we use standard

CBVIR tools, i.e. MSER detector [4] and SIFT descriptor [5]

(in its RootSIFT variant [6]). Descriptors are quantized into a

large vocabulary of one million words (to assure satisfactory

precision). To avoid high costs of descriptor quantization into

words, a simple quantization method based on the statistical

properties of descriptors is used. Details of the image pre-

processing phase are described in Section II.
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Image matching is performed using the most straightfor-

ward criterion, i.e. the number of keypoint correspondences

(e.g. [7], [5]) where a match is defined by identical visual

words. However, we reject matches for which the ellipses

of MSER keypoints are not in the correspondingly similar

scales. Because the search is conducted by mobile agents,

this requirement indicates that the agent finds an object at

a specific distance (defined by the scale of the object images

in the database). More details and explanations are given in

Section III.

In Section IV, preliminary experimental results of the pro-

posed approach are overviewed. In particular, performances of

the method are compared to alternative solutions.

II. PRINCIPLES OF IMAGE PRE-PROCESSING

For a feature-based real-time visual search, efficient de-

tection and description of keypoints is a critical factor. In

particular, the number of keypoints should not be excessively

large (and controllable in some sense). Thus, we use MSER

detector which is affine invariant, has good performances (as

reported in [8]), low complexity (which can be further reduced

by using special techniques proposed for MSER detection in

video sequences, e.g. [9]) and a few tuning parameters to

control the numbers of detectable keypoints. Actually, recent

implementations of MSER detectors in hardware, e.g. [10],

[11], achieve a throughput approaching hundreds of frames

per second, which indicates that MSER keypoint extraction is

not a critical factor in a real-time image pre-processing, even

if several cameras are simultaneously used.

Hardware implementations of SIFT descriptors (and detec-

tors too) have been reported as well (most recently in [12]).

Notably, development of a system-on-chip SIFT descriptor

for affine-invariant keypoints is currently under way in our

organization as well. Therefore, the feasibility of real-time

SIFT description of detected keypoints can be considered

documented. Even the Matlab implementation of MSER de-

tector combined with a SIFT description module in C++

provide a throughput of 2-3 frames/sec (including all disk

read/write overheads) which can be accepted as near real-time

performances for slowly moving agents.

The final step of image pre-processing for CBVIR is

quantization of descriptors into visual words. The size of

vocabularies can be very diversified, typically ranging from

a few thousand to a few million. Although small vocabularies

provide better recall of keypoint matching, precision is gen-

erally unacceptably low. Precision obviously improves (at the

expense of recall) with the growing size of vocabulary, but if

the vocabulary becomes too large, the quantization intervals

could be smaller that natural fluctuations of descriptors, and

it might be difficult to find matches even in pairs of almost

identical images.

Published results (e.g. [13], [3]) indicate that the recom-

mended sizes of visual vocabularies are in the range of millions

of words, especially if precision is more important than recall

(which is the case in visual search by mobile agents, see Point

(3) in Section I). Thus, RootSIFT descriptors are quantized

into a vocabulary of 1M words (although tests have been

conducted using smaller sizes as well - see Section IV).

For such a large vocabulary, the standard quantization of

descriptors into words by the (approximate) nearest neighbour

approach could be a bottleneck in real-time processing of

video frames. Instead, the descriptor space has been partitioned

off-line into hypercubes of similar probabilities (the probabil-

ity density was estimated using over 500 million keypoints

from diversified images). Then, the descriptor quantization

requires only a small number of additions and comparisons,

and the processing time is negligibly small.

III. IMAGE MATCHING AND OBJECT DETECTION

In visual search, the objective is to identify video fragments

(sequences of frames) containing the object(s) of interest,

regardless the background visual contents. From CBVIR per-

spective, this is a problem of partial near-duplicate detection,

for which a fully satisfactory solution has not been found yet.

Nevertheless, most of the state-of-the-art methods seem to fol-

low the same two-step approach. First, similarities between in-

dividual keypoints are established (using descriptors or visual

words). Then, the geometric consistencies between groups of

preliminarily matched keypoints are verified to detect clusters

of similarly transformed keypoints (which are considered the

near-duplicate fragments). Either more advanced algorithms,

like the Hough transform, RANSAC, etc. are used (e.g. [14],

[15], [16], [17]) to provide more credible results at higher

computational costs, or simplified approaches (e.g. [18], [2],

[3]) more suitable for large-scale applications are alternatively

employed to verify the consistencies.

In the proposed scheme, we detect partial near-duplicates

(presumably representing the objects of interest) in a way

that merges the first step with a very simple variant of

the geometric verification (where only the scale consistency

of matching keypoints is verified). Altogether, the level of

similarity between a query image (i.e. a video frame) and

a database image of an object is defined by the number of

keypoint correspondences, where two MSER keypoints K1 (a

query keypoint) and K2 (a database keypoint) match if:

Definition 1.

1) The keypoints are described by the same visual word, i.e.

word(K1) = word(K2).
2) The keypoints have similar scales. Assuming that M and

m indicate, correspondingly, the length of major and

minor axes of the keypoint ellipses, the conditions for

the scale consistency are:

0.8M(K2) ≤ M(K1) ≤ 1.2M(K2), (1)

0.8m(K2) ≤ m(K1) ≤ 1.2m(K2). (2)

The second requirement of the above definition can be justified

as follows:

The visual scale of an object in a captured video

obviously corresponds to the distance between this

object and the camera. When a mobile agent ex-

plores its environment, it is expected to recognize
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Exemplary matches obtained by using the scale verification (a, b, c), and without such a verification (d, e, f). A vocabulary of 1M words is applied. In
(b) the object is not detected because its scale is too large (but it is detected in (e) where the scale is not verified). In (c), scale verification prevents detection
of a non-existing object (falsely detected in (f)).

objects of interest when they are approached at a

sufficiently close distance, i.e. at least at a prede-

fined threshold distance. Thus, the database should

contain images of objects of interest in the refer-

ence scales approximately corresponding to such

threshold distances. The images in larger scales are

not needed because the objects should be detected

earlier (at the threshold distance) while smaller

scales represent objects too distant to be interesting

for the agent. Therefore images in larger or smaller

scales are not included in the database.

The axes length tolerance in Eqs 1 and 2 is rather wide (and

taken independently for major and minor axes) so that not

only small scale deviations but also minor viewpoint changes

(up to approx. 30o) are generally accepted by the matching

algorithm.

A similar philosophy (although with much less efficient

tools for keypoint detection and matching) was behind the

results presented in [19].

Eventually, two images are considered partial near-

duplicates (i.e. a part of the query frame matches the object

of interest) if at least 4 pairs of keypoint correspondences

are found according to Definition 1. This is the minimum

number of matches needed for the verification of affine

transformation consistency between images (three pairs to

build the transformation, and the fourth one to verify it).

Although currently only the scale consistency is applied, such

a geometric verification might be used in the future for more

advanced tasks (e.g. in determining the number of the same

objects of interest in a single video frame).

This matching method is sufficiently fast for visual search

tasks considered in this paper. If the images are pre-processed

(i.e. MSER keypoints are extracted and assigned visual words,

which are very fast operations as outlined in Section II) even

the Matlab implementation provides a throughput of approx.

50-60 video frames of VGA resolution per second (i.e. the

search can be conducted using 2-3 simultaneously working

cameras).

Examples in Fig. 2 highlight the principles and specific

characteristics of object detection using the proposed image

matching technique.

IV. EXPERIMENTAL VERIFICATION

The proposed scheme has been preliminarily verified on a

number of short (i.e. 30 − 60 seconds) videos captured in

heavily cluttered indoor environments. A small collection of

objects of interest has be arbitrarily proposed (see Fig. 3).

Fig. 3. Examples of objects of interest.

The objective is to identify all instances (but not necessarily

all frames of the video) of the objects which are seen for

some time at the reference or larger scale (i.e. more distant

appearances of the objects are not counted). Fig. 4 shows a

few frames from an exemplary beginning (when the object

becomes sufficiently large) and from an exemplary end (when

the object becomes too small and/or disappears from the field

of view) of such instances. In all cases, the ground truth

data, i.e. the initial and terminal frames of the instances, are

established manually.
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Fig. 4. Examples of frames from a typical initial part (two top rows) and
a typical terminal part (two bottom rows) of a ground-truth instance of an
object of interest.

The scheme’s performances are evaluated by comparing

ground-truth instances and so-called active sequences ex-

tracted by the scheme.

Definition 2.

An active sequence is initiated whenever the algo-

rithm identifies a frame matching (according to the

specification in Section III) a database image of an

object (e.g., Fig. 2A). Then, the active sequence

continues until there are at least five consecutive

frames which do no match the same object database

images.

The value 5 has been established empirically; it corresponds

to approx. 0.2sec during which the object may be temporarily

invisible (due to sudden flashes of light, temporary camera

defocusing, etc.). However, when an active sequence is ter-

minated, it does not mean the object is not visible anymore.

Actually, the following cases are possible:

• The object is too close to the camera so that its scale is

too large for a match with database images.

• The object becomes too distant (its scale is too small for

a match) which means it is no more an object of interest.

• The object actually disappears from the field of view.

Regardless the reason for which an active sequence is termi-

nated, the following requirements define a fully reliable object

detection scheme:

(a) Each active sequence is fully enclosed within a ground-

truth instance, i.e. non-existing objects are never detected.

(b) Each ground-truth instance overlaps at least one active se-

quence, i.e. each genuine instance of an object is detected

at least by a single active sequence.

Using the above specifications, we straightforwardly define

precision (PA) of active sequence extraction and recall (RI) of

ground-truth instance detection in a visual search process by

a mobile agent as follows:

PA =
AS(a)

AS
, (3)

where AS(a) is the number of active sequences satisfying

the above Requirement (a), and AS is the total number of

extracted active sequences.

RI =
GTI(b)

GTI
, (4)

where GTI(b) is the number of ground-truth instances satisfy-

ing the above Requirement (b), and GTI is the total number

of ground-truth instances.

It was mentioned in Section I that in object detection by

visual search recall of the individual frame retrieval can be

compromised, but precision should be as high as possible.

However, both RI recall and PA precision values should be at

the highest possible levels to reliably detect object instances.

Performances (based on Eqs 3 and 4) of the scheme for the

test dataset of videos and objects are summarized in the top

row of Table I. To illustrate advantages of the proposed scheme

over the other choices, we include in Table I the results for

three alternative scenarios. First, the same vocabulary of 1M

words is used but without the scale verification (the second row

of Table I). Secondly, a much smaller vocabulary of 64k words

is used (with the scale verification) instead of the proposed

1M vocabulary (the third row of Table I). The last scenario

included in Table I will be discussed later.

Although each of the three schemes detects all instances

of objects visible within the test dataset of videos, there

are significant differences in the numbers of extracted active

sequences, and (consequently) in the reliability of detection.

When scale verification is ignored, or the size of vocabulary is

significantly reduced, the number of active sequences grows

disproportionally (5 − 6 times in our experiments) and PA

precision falls dramatically. The explanations are similar for

both cases. On one hand, credibility of individual keypoint

correspondences is limited (even for larger vocabularies) if

no means of geometric verification are used. On the other

hand, if the vocabulary is small, the number of keypoint

correspondences can be so large that even the scale verification

is unable to delete all false positives. As a result, large numbers

of false active sequences are extracted from the incoming

stream of frames. Even though most of those incorrect active

sequences are short (1− 2 frames) they should not be ignored

because there are some cases when the ground-truth instances

are represented only by such short active sequences.

Fig. 5 shows examples of incorrect matches (some parts of

Fig. 2 are also illustrative) including a rather unusual (since

PA precision is equal to 98.8%) case of a false positive for

matching with 1M words and scale verification.

It should be emphasized that high performances of the

proposed low-complexity scheme are achievable for object
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TABLE I
PERFORMANCES OF OBJECT DETECTION USING THE PROPOSED SCHEME AND THREE ALTERNATIVE SCHEMES.

Scheme Ground-truth Active RI recall PA precision

instances sequences (Eq. 4) (Eq. 3)

1M words with 58 329 100.0% 98.8%
scale verification

1M words without 58 1886 100.0% 20.6%
scale verification

64k words with 58 1618 100.0% 15.6%
scale verification

the method 58 117 60.3% 100.0%
from [16]

TABLE II
PERFORMANCES OF INDIVIDUAL FRAME RETRIEVAL. IF THE SCALE VERIFICATION IS USED, ONLY THE FRAMES CONTAINING THE OBJECT IN APPROX.

THE REFERENCE SCALE ARE CONSIDERED THE GROUND TRUTH.

Method Ground-truth Retrieved Recall Precision

frames frames

1M words with 5429 1342 22.1% 89.4%
scale verification

1M words without 15479 19741 60.1% 47.1%
scale verification

64k words with 5429 18078 73.3% 22.0%
scale verification

the method 15479 7514 47.9% 98.6%
from [16]

(a) (b)

(c) (d)

(e)

Fig. 5. Examples of false positive matches. In (a,b) 1M words without scale
verification are used, while in (c,d) a vocabulary of 64k words is applied with
scale verification. A very unusual case of a false positive for 1M words with
scale verification is shown in (e).

detection task only. For a classical CBVIR problem of relevant

frame retrieval, i.e. detection of ALL frames partially near-

duplicate to the database images of objects of interest, the

results are much poorer as shown in Table II presenting

performances of various schemes in such a classical relevant

frame retrieval task (using standard CBVIR definitions of

precision and recall as the scores). Thus, as the last scenario,

we included a high-performance (and high-complexity) image

matching method proposed in [16] (the original executables of

this method have been used). The last row of Table II clearly

illustrates superiority of this advanced CBVIR method. The

approach proposed in this paper satisfy only the requirement

of high precision. Therefore, it is not surprising that methods

similar to the proposed approach are rather seldom considered

for typical CBVIR tasks.

Nevertheless, the algorithm of [16] performs poorer in the

problem of object detection. As shown in the last row of

Table I, its RI recall of instances detection is at unsatisfactory

level of only 60%, which is much less than all other schemes

presented in this table (which score 100%). Admittedly, it

achieves 100% of PA precision but (as mentioned earlier) both

parameters should be as high as possible in a reliable object

detection scheme.

V. CONCLUDING REMARKS AND FUTURE

RECOMMENDATIONS

The paper proposes a CBVIR-based scheme for visual

detection of predefined objects of interest in cluttered envi-

ronments. The scheme seems to be an attractive option for

low-cost mobile agents equipped with vision devices. The

proposed scheme provides (as preliminarily confirmed by our

limited-scale experiments) sufficiently high performances us-

ing only low-complexity CBVIR mechanisms (borrowed from

a classical CBVIR problem of partial near-duplicate retrieval).

Additionally, we assume that the encountered objects become

objects of interest when seen from a sufficiently short distance.

This threshold distance defines the scale at which the database

template images of objects should be recorded. Then, a frame
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containing an object would be recognized as an interesting
one if two conditions are met. First, it is similar to a database
image of some object of interest (i.e. numerous keypoint cor-
respondences defined by identical visual words from a suffi-
ciently large  vocabulary exist)  and,  secondly, a  significant
number  of  those  matching  keypoint  pairs  are  in  approxi-
mately the same scale (i.e. the object  is approached at ap-
proximately the threshold distance).

The  second  requirement  can  be  considered  a  limitating
factor, especially if the threshold distance (or rather the scale
corresponding to this distance) cannot be specified or it fluc-
tuates, e.g. because of the camera zoom. However, in typical
modern  applications  (in  robotics  in  particular)  the  mobile
agents are usually equipped with some kind of range-sensing
devices which can provide the agent with the depth data, e.g.
[20], [21]. Then, an estimate of the distance to the observed
part of the environment can be used to correspondingly mod-
ify the reference scale to be applied in the scheme (so that an
adaptive  reference  scale  is  used).  The  only  modification
needed is a minor change in Eqs 1 and 2, which should be
rewritten as

0.8M (K2) ≤ SF·M(K1) ≤ 1.2M(K2), (5)

0.8m (K2) ≤ SF·m(K1) ≤ 1.2m(K2), (6)

where  SF is  the scale adaptation factor  which can be esti-
mated using the depth data from a range sensor and/or the
current camera focus data.
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