
Abstract—The block preconditioned conjugate gradient

method for extraction of eigenfrequencies and eigenmodes is

presented for finite element software in structural analysis. The

proposed approach is focused on multi-core desktops and lap-

tops and allows us to effectively analyze large design models,

when classical methods based on the factoring of stiffness ma-

trix, significantly reduce performance by intensive use of disk

memory. The main attention is paid to proper construction of

preconditioning, application of shift technique and creation of

the block algorithm allowing the improvement of computing

stability and multithreaded parallelization.

I. INTRODUCTION

URRENTLY, the vast majority of methods for deter-
mining the frequency and modes of natural oscillations

in finite element software, usually based on factorization of
stiffness matrix K or matrix K� = K – σM, where M is a
mass matrix and σ is a shift.

C

However, if the dimension of the problem becomes large,
the factored matrix does not fit in memory and is written to
disk. Thus on each iteration in Lanczos method or in sub-
space iteration method it is necessary to read the factored
matrix from a disk twice when performing forward and back
substitutions. The performance of the specified methods
considerably degrades because the task is carried out at an
intensive use of a disk. Especially sharply this problem be-
comes when desktops and laptops with usually small amount
of core memory are used.

It would seem the alternative approach consists in applica-
tion of conjugate gradient method or steepest descent
method for solution of the generalized algebraic eigenvalue
problem to which the natural vibration problem is reduced
when using the finite element method. The [13] presents sur-
vey of some other approaches using preconditioning tech-
nique. However, application of such methods to problems of
structural mechanics usually results in to the slow conver-
gence of the iterative process. Often there is a locking of
convergence of numerical solution owing to a wide scatter-
ing of stiffness in design model, existence of a large number
of close natural vibration frequencies etc. This is confirmed
by the fact that the widely used commercial FEA software
offer a wide selection of iterative solvers for static analysis,

which leads to solving systems of linear algebraic equations.
However for the solution of the generalized algebraic eigen-
value problem as a rule are used the methods based on fac-
torization of a stiffness matrix. The exception is ANSYS in
which the preconditioned conjugate gradient method is ap-
plied for generation of Lanczos vectors. The survey of exist-
ing software packages devoted to solution of algebraic ei-
genvalue problems in technical and scientific applications is
in [10].

In this article, we confine ourselves to consideration of the
methods applying to a class of problems, difficult for numer-
ical realization, – to the large problems of structural mechan-
ics arising when the finite element method is used to model-
ing of tall buildings and constructions. We present the pre-
conditioned conjugate gradient (PCG) method for solution of
partial generalized algebraic eigenvalue problem – extrac-
tion of natural vibration frequencies and modes

(1)

where K is a symmetrical positive definite stiffness matrix,
M is a mass matrix, λi and vi is an eigenpair, i ∈ [1, n],
n << N, N is dimension of problem.

For ensuring sustainable convergence of method, we paid
the main attention to designing of an effective precondition-
ing, use of shift technique and creation of a block algorithm
of PCG method. In addition, we used the multithreaded par-
allelization to accelerate computations.

II. BLOCK PRECONDITIONED CONJUGATE GRADIENT SOLVER

A. Sparse incomplete Cholesky conjugate gradient

preconditioning

The problems of structural mechanics often demonstrate
the slow convergence due to using of different types of finite
elements, thin-walled finite elements of floors, roofs and
walls, considerable scattering of stiffness etc. [15]. There-
fore, it is crucial to construct the effective preconditioning
for accelerating of convergence of the PCG method.

We use an incomplete Cholesky factoring “by value” ap-
proach, based on sparse matrix technique [6], allowing to
keep a small value of drop parameter ψ (ψ ∈ [10-9, 10-20]).
The small entries Hij < ψ∙Hii∙Hjj erasing on each step of

Block Preconditioned Conjugate Gradient Method for Extraction of

Natural Vibration Frequencies in Structural Analysis

Sergiy Fialko
Tadeusz Kościuszko Cracow

University of Technology
ul. Warszawska 24 St., 31-155 Kraków, Poland

Email: sergiy.fialko@gmail.com

Filip Żegleń
Tadeusz Kościuszko

Cracow University of Technology
ul. Warszawska 24 St., 31-155 Kraków, Poland

Email: filipzeglen@hotmail.com

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 655–662

DOI: 10.15439/2015F87

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 655

incomplete factoring are rejected and correction of diagonal
entries  jiijjjiiiiii  ,HHHDD is produced to
ensure a positive definiteness of incomplete Cholesky factor
H. Thus, the amount of calculations and time of incomplete
factorization remains within reasonable range. In addition,
the secondary rejection of small off-diagonal entries is
produced after incomplete factoring is finished:
Hij

2 < ψ1∙Hii∙Hjj, where 0 < ψ < ψ1 < 1. Such approach allows
reducing the amount of data in preconditioning matrix H
without considerable deterioration of properties of
preconditioning. The details as well as the parallel algorithm
of incomplete factoring is in [6].

In the earlier works of one of the authors used a multilevel
aggregation preconditioning [3], [4], [15]. Use of sparse
matrix technique allowed making an incomplete Cholesky
conjugate gradient method competitive with aggregation
multilevel PCG method.

Use of preconditioning leads to

 011  
iii MvBvKB  , (2)

where B = H∙HT.

B. Shift technique
It is well known that introduction of properly chosen shift

drastically accelerate a convergence of inverse iteration
method [16]. The influence of shift on ability of
preconditioning to accelerate of convergence for gradient
methods was considered in [3], [4]. Here we will give only
the main conclusions of the theoretical analysis, which is
carried out in the specified works, containing detailed
substantiation.

Let us consider the preconditioning
   1,MKB , (3)

where λ1 is a first (minimal) eigenvalue and δ is a small
value comparing with λ1 .

First, the preconditioning (3) provides that for σ closer to
λ1, the problem (1) converges faster. Then, when δ → 0, the
procedure

    kkkk xMKBIx   


1
1 2 , (4)

following from preconditioned gradient method, tends to
step of inverse iteration method. Here k and k+1 are two
consequent iteration steps, αk – optimization parameter
obtained from minimization of Rayleigh quotient.

Expressions (3) and (4) allow understanding better, in
what form it is necessary to search an effective
preconditioning.

Therefore, we will construct the preconditioning in form
H∙HT – σM, where shift σ will be taken as close to defining
eigenvalue λi, as it is possible.

The preconditioner in PCG method is used for solution of
additional equation set
   kkkk grrzMB  , , (5)

where rk is residual vector, gk – gradient vector and k is an
iteration step.

We never evaluate (3) directly, the presented below
algorithm is used instead.

Algoritm 1. Implicit solution of equation set respectively
preconditioning

doend

psdo

kk

k

kkk

qzz
qMzqB

zrzB









,1

Substantiation of presented above algorithm follows from
     kk rqzMB  ˆ , (6)

where kẑ is approximation of solution (5) and q is a small
correction. When opening brackets, neglecting on the small
order terms σMq and assuming kk rzB ˆ , we obtain

 0ˆ  kzMBq  . (7)

As showed numerous calculations, it is enough to produce
only one iteration (p = 1).

C. Block PCG eigenvalue solver
Application of PCG method for extracting of few lower

eigenpairs is presented in [2], [8], [9], [14], [17] and other
works. In addition, [1] presents the subspace iteration
method based on steepest descent approach with aggregation
multilevel preconditioning. The realization of PCG
eigenvalue solver, presented in [3] and [4] based on
aggregation multilevel preconditioning, demonstrates a
stable convergence on numerous problems of structural
mechanics. Application of shifts in preconditioning makes
this method efficient even for the problems having a large
number of close natural vibration frequencies. However, this
method extracts eigenpairs in strictly sequential mode. Each
subsequent eigenpair is orthogonalized against to defined
earlier when using of Gram – Schmidt orthogonalization
procedure on each iteration step.

In this article, we use a different type of preconditioning
and offer the block algorithm to reduce the number of
iterations and apply a multi-threaded parallelization.

Algorithm 2. Shifted block PCG method (SBPCG)

1. σ = 0; nconv = 0; ktot = 0;
2. parallel region 1 (prepare the block of start vectors,

ip ∈ [0, np-1] – thread number,   11  npNpp ,
np – dimension of block which is equal to number of
threads).

656 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

 
  

 
 

ipip

ipipip

ipipipip

ip
T

ipip

ip
T

ipipip

jip

jipipipip

otherwise
ipppipppj

e

e

zp

zrBz

KxMxr

Kxx

Mxxxx

eeMx

2

,0
1,1,1

,,

,

,













 









end of parallel region I

3. Extracting all required modes:
while (nconv < nmodes)
 conv = 0; k = 0

4. while (!conv ˄ k < kmax)
parallel region II (minimization of Rayleigh
quotient and line search procedure)

 

  ip
T

ipipip

ipipipip

ip
ip

ipipipR

Mxxxx

pxx

px















0

end of parallel region II

5. Orthogonalization in block

6. parallel region III (shifted PCG procedure)

elseend
againstizeOrthogonal

else
conv

tolif

nconvip

ipipipip

k
ip

T
ip

k
ip

T
ip

ip

ipipip

ipip

ip

ipipip

ip
T
ipip

vvp

zpp

pKp
pKz

zrzB

Mx

r

xKMxr

xKx

,,

2

2

1

1

2

2

,

,




















































end of parallel region III

k++; ktot++;
end of while (p.4)

7. if(conv)

 

ipipipip

ip
T
ipip

ip
T
ipipip

ip

nconvip

ipip

tot

ipnconv
k
ipnconv

blockinvectorsanotheragainstizeOrthogonal

againstizeOrthogonal

blockinvectorAdd
nconvkkautoflagif

nconv

xKMxr

xKx

Mxxxx

x

vvx

eMx

xv























 

,

,

1

max

,
1

,,

:
;_

;;;



 parallel region IV
 

nconvipp

ippippippipp

k
ipp

T
ipp

k
ipp

T
ipp

ipp

ippipp

ippippipp

againstizeOrthogonal
ifend

else

ipippif
npipp

vvp

zpp

pKp
pKz

zp

zrzB

,,

2

2

2
)(

1,0,

1 




















 end of parallel region IV
 end of Add vector in block
end if(conv)

8. else
  ;0;min ,  kip   ;

parallel region V (modification of shift)

nconvip

ipip

ipipip

ipipipip

ip
T
ipip

ip
T
ipipip

nconvip

againstizeOrthogonal

againstizeOrthogonal

vvp

zp

zrzB

xKMxr

xKx
MKK

Mxxxx

vvx

,,

2

,,

1

,

,

1































end of parallel region V
end else (p. 8)

end while (p. 3)

Here N – dimension of problem, np – dimension of block
(number of threads); nconv – number of converged modes,
nmodes – number of required modes; k – iteration number,
ktot – total number of iterations for nconv modes; σ – shift
value; flag_auto = true – algorithm produces an automatic
corrections of kmax – number of iterations on which excess
the correction of shift is made; flag_auto = false – algorithm

SERGIY FIALKO, FILIP ŻEGLEŃ: BLOCK PRECONDITIONED CONJUGATE GRADIENT METHOD 657

produces kmax iterations between correction of shift imposed
by user.

We create a block of mutually orthogonal start vectors (p.
2) in the first parallel region, when each thread ip prepares
start vector ipx , approximation of eigenvalue ip , residual

vector ipip gr  and conjugate direction vector ipp . The

normalization of vector ip
T
ipMxx =1 allows simplify

evaluation of Rayleigh quotient   ip
T
ipipipR Kxxx   .

Loop while (p. 3) runs until all required eigenpairs will be
extracted. The next loop while (p. 4) produces iterations in
block. The achievement of convergence of one or several
vectors in block as well as exceeding of allowed number of
iterations kmax interrupt this loop. The Rayleigh quotient
minimization results in optimal value of parameter αip and
we produce the line search procedure xip← xip + αip∙pip and
normalization of xip .

The orthogonalization of all vectors xip in block (p. 5)
prevents the convergence of all vectors to the same
eigenvector. This procedure is a single sequential fragment
in loop while (p. 4). All remaining operations in this loop are
produced in parallel regions II and III.

The parallel region III evaluates the current
approximation of eigenvalue for each vector xip in block and
residual vector rip. If relative norm of residual vector is less
than tolerance tol, we assume that corresponding vector xip is
converged and set flag conv to 1. Otherwise, we resolve the
additional equation set relatively preconditioning
Bσ = H∙HT – σM, using algorithm 1, and derive the new
conjugate direction pip ← βip pip – 2zip . Orthogonalization of
conjugate direction vector against converged eigenmodes
v1,…,vnconv prevents the duplication of converged eigenpairs.

If loop while (p. 4) was interrupted due to convergence of
xip (p. 7), we increment nconv and put the current
approximations xip and λip as a converged eigenpair { λnconv,
vnconv }. Then, we put the new start vector xip in block
instead of converged vector (Add vector in block). We
orthogonalize xip against all converged modes and against all
remaining vectors in block, normalize it and evaluate the
initial approximation of eigenvalue λip,σ. The current value of
σ is used. We evaluate residual vector rip. Then in parallel
region IV we solve linear equations relatively
preconditioning and for just added vector (ipp == ip), derive
vector zip and conjugate direction vector pip. For remaining
vectors in block (ipp ≠ ip) we obtain the new conjugate
directions. Orthogonalization of pipp, ipp ∈ [0, np-1] against
all converged eigenmodes prevents from duplicating of
already defined eigenpairs. In addition, if flad_auto is turned
on, we correct kmax, taking it as an average number of
iterations required for achieving of convergence.

If loop while (p. 4) was interrupted due to exceeding of
kmax (slow convergence), block else (p. 8) is processed. We
accept new shift value as a minimum from all current
approximations of eigenvalues. Current approximations of
eigenmodes xip remain unchanged, but the conjugate

directions accumulated earlier are lost because the each
changing of shift results in modification of matrix Kσ. Since
with every iteration step the error in vectors xip accumulates,
in parallel region V we produce the orthogonalization
against previously defined eigenvectors to increase the
computing stability of the method. Then, vectors xip are
normalized, new values of current approximations of
eigenvalues λip,σ and residual vectors rip are derived. We
obtain vectors zip and conjugate direction vectors pip, which
should be orthogonolized against converged eigenvectors
v1,…,vnconv.

We cannot produce the modification of shift too often
because each shift modification destroys the accumulated
conjugate directions. In a limit if to make correction of shift
on each step of iteration, the conjugate gradient method
becomes method of the steepest descent, and convergence
degrades. Therefore, there is a question: how often it is
necessary to make shift correction? In this version of
algorithm, the parameter kmax operates by it. We can
prescribe kmax directly (flag_auto == false), and can
determine kmax as average number of iterations, is required to
achieve convergence of nconv modes – kmax = ktot/nconv, where
ktot is a number of iterations required to obtain nconv modes
(flag_auto == true).

Proposed block PCG method is different from [9], [12],
[17] first of all by fact that use of shifts in preconditioning
considerably accelerates convergence. Secondly, the
proposed version of block algorithm does not require
forming projection matrices on subspace XTKX, XTMX,
where X = {x0, x1,…,xnp-1}.

D. Different approaches for parallelization
Different strategies of parallelization for PCG method can

be based on parallelization of its individual parts – matrix
vector multiplication, triangular solution or dot product of
two vectors. The most time-consuming operations in PCG
method are symmetrical sparse matrix vector multiplication
(Kv) and forward and backward substitutions (Bz = r → z –
triangular solution). These two procedures require about
90% of total solution time. That is why in this article we
focus our attention only on them. These operations are
implemented in Intel Math Kernel Library (Intel MKL). We
create a special option denoted as PCG MKL using
mkl_dcsrsymv() procedure to compute the matrix vector
product and mkl_dcsrtrsv() for computing of triangular
solution [18]. All mentioned procedures are taken from Intel
MKL.

In all other realizations of proposed approach, we use in-
house procedures for computing of matrix-vector product as
well as for triangular solutions. The upper triangular parts of
matrices K and H are stored in compressed row format
(CRF) which is close to standard CRF from Intel MKL.

We found that parallelization approach which uses PCG
MKL option, very poorly accelerate the PCG method for
solution of eigenvalue problem. That is why we have created
SBPCG method, where parallelization covers relatively large
computing regions. This significantly reduces the number of

658 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

entries in the parallel regions and thus improve thread
management.

III. NUMERICAL RESULTS
Let us consider examples taken from collection of SCAD

Soft (http://www.scadsoft.com) — IT Company, developer
of the SCAD FEA software, one of the most popular
software used in the CIS countries for structural analysis and
design, certified according to the regional norms.

We used the following computers:
A. Server, 16-core processor AMD Opteron 6276, 2.3/3.2
GHz, 64 GB DDR3 RAM, OS Windows Server 2008 R2
Enterprise SP1, 64 bit.
B. Laptop DELL XPSL502X, 4-core processor Intel Core™
i7-27600QM, 2.4/3.4 GHz, RAM DDR3 8GB, OS Windows
7 (64 bit) Professional, SP1.

First computer has large amount of RAM that allows
applying shifted block Lanczos method [5] in core mode.
Sparse direct solver PARFES [7] is used for factoring matrix
K – σM. Second computer due to restricted amount of core
memory compels a shifted block Lanczos method to work in
out-of-core mode for large problems. In such case, the block
PCG method can be very efficient.

We denote the shifted block PCG method and shifted
block Lanczos method respectively SBPCG and SBLANC.

A. Problem 1
The design model of multistory building (Fig. 1) contains

2 002 848 equations and consists of three-node triangular
and four-node quadrilateral flat shell finite elements as well
as bar finite elements, elastic supports and rigid links.

Table I shows the number of iterations and time of
eigenvalue solution for SBPCG method with ψ = 10-16,
ψ1 = 10-13, tol = 10-3.

Fig. 1 Design model of multistory building (2 002 848 equations)

Adopted tolerance ensures about four true digits in
eigenvalue; it is a very high precision for practice. In
addition, we present the solution time of this problem by
shifted block PCG method with conventional ICCG0
preconditioning “by position”. The sparsity pattern of
incomplete Cholesky factoring H is the same as initial
stiffness matrix K. Its positive definiteness is ensured due to
decreasing of off-diagonal entries when negative elements
arise on main diagonal during incomplete factoring [6].

TABLE I
PROBLEM 1. TIME OF EIGENVALUE SOLUTION. COMPUTER A (AMD

OPTERON 6276, 64 GB RAM)

np Nos of iterations Time of eigenvalue
solution, s

SBPCG without shift (σ = 0, kmax >> N)
1 5 537 25 825
2 2 982 16 529
3 1 969 11 700
4 2 343 18 078

SBPCG with shift correction over each 100 iterations (kmax = 100)
1 1451 6 560
2 871 4 390
3 920 5 289
4 796 6 061

SBPCG with shift correction over automatically accepted number of
iterations (flag_auto = true)

1 769 5 421
2 501 3 831
3 405 3 366
4 424 3 877
SBPCG (ICCG0 preconditioning) with shift correction over
automatically accepted number of iterations (flag_auto = true)
3 133 135 302 025

SBLANC (core mode)
16 – 1 662 s

It appeared that for this problem when using a
conventional ICCG0 preconditioning the convergence is
unacceptably slow. This result emphasizes, it is how
important to create an effective preconditioning for the
successful solution of the considered class of problems.

Also, we present a solution time demonstrated by
SBLANC solver.

All results have been obtained on computer A, 30
eigenpairs were extracted.

Application of shift in preconditioning accelerates a
convergence in multiple times. The best results for the block
PCG method is obtained when automatic correction of kmax
is applied and dimension of block np = 3.

SBLANC runs in core mode. Thus, it solved this problem
about two times faster than SBPCG method.

Table II shows results obtained on computer B. For
SBPCG method we take ψ = 10-14, ψ1 = 10-11, tol = 10-3.

SERGIY FIALKO, FILIP ŻEGLEŃ: BLOCK PRECONDITIONED CONJUGATE GRADIENT METHOD 659

TABLE II
PROBLEM 1. TIME OF EIGENVALUE SOLUTION. COMPUTER B (INTEL

CORE™ I7-27600QM, 8 GB RAM)

np Nos of iterations Time of
eigenvalue
solution, s

 SBPCG with shift correction over automatically
accepted number of iterations (flag_auto = true)

3 502 1 831
 SBLANC (out-of-core mode)

4 – 14 253

Size of factorized stiffness matrix is 8.31847 GB (METIS
reordering [11] is used) and exceeds the capacity of core
memory. Therefore, solution time for SBLANC method is
much longer than solution time for SBPCG.

B. Problem 2
The design model of supermarket (Fig. 2) comprises

80 244 equations and consists of finite elements of spatial
frame modelling spatial truss and quadrilateral flat shell
finite elements.

Fig. 2 Design model of supermarket (80 244 equations)

Such types of structures have lot of very close eigenvalues
caused by local vibrations of rods of spatial truss (Table III).

TABLE III
NATURAL VIBRATION FREQUENCIES (HZ) OF STADIUM MODEL

mode 1 2 3 4 5
frequency 0.7133 0.7277 0.7996 0.8555 0.8644

mode 6 7 8 9 10
frequency 0.8835 0.8919 0.9280 1.0209 1.0485

mode 11 12 132 14 15
frequency 1.0519 1.0908 1.1421 1.1445 1.1546

mode 16 17 18 19 20
frequency 1.2219 1.3015 1.3024 1.3034 1.3051

This task is very difficult for the iterative method, and we
use it as a test that verifies reliability of SBPCG. It is not a
large problem, and results have been obtained on computer
B.

We accept ψ = 10-20, ψ1 = 10-17, tol = 10-3. Table IV
demonstrates following.

TABLE IV
PROBLEM 2. TIME OF EIGENVALUE SOLUTION. COMPUTER B (INTEL

CORE™ I7-27600QM, 8 GB RAM)

np Nos of iterations Time of eigenvalue solution,
s

SBPCG 10 eigenmodes, without shift (σ = 0, kmax >> N)
1 Lock of convergence on 3-th mode, solution is failed
2 Lock of convergence on 6-th mode, solution is failed
3 Lock of convergence on 7-th mode, 7 mode is missing
4 Lock of convergence on 7-th mode, 7 mode is missing
8 258 19.2

SBPCG 10 eigenmodes, with shift correction (flag_auto = true)
1 Lock of convergence on 3-th mode, solution is failed
2 Lock of convergence on 6-th mode, solution is failed
3 149 5.5
4 160 6.8

SBPCG 50 eigenmodes, with shift correction (flag_auto = true)
4 771 67.2

When the method is non-block (np = 1) or dimension of
block is two (np = 2), lock of convergence occurs on 3-th
mode. Shift correction is not used (σ = 0). Thus, computation
process goes to infinite looping, and the solution cannot be
obtained.

When we increase the dimension of the block up to 3-4,
cycling it is possible to avoid, however the 7-th mode is
skipped. Only at dimension of the block 8 the problem is
solved correctly.

When using shift in a preconditioning the correct solution
manages to be received at dimension of the block starting
with three. As a test on the computational stability of the
algorithm for this problem was defined 50 eigenpairs,
dimension of block was taken four.

Thus, we see that in case of the difficult tasks having a
large number of close natural vibration frequencies, the
increase in dimension of the block improves computing
stability of a method. However, the most effective is use of
shift technique at iteration in the block.

C. Problem 3

The design model of stadium (Fig. 3) comprises
4 033 620 equations and consists of finite elements of spatial
frame modelling spatial trusses, triangular and quadrilateral
flat shell finite elements, elastic supports and rigid links.

Fig. 3 Design model of stadium (4 033 620 equations)

660 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Such types of structures as well as previously considered
problem 2 have lot of very close eigenvalues caused by local
vibrations of rods of spatial truss (Table V).

TABLE V
NATURAL VIBRATION FREQUENCIES (HZ) OF STADIUM MODEL

mode 1 2 3 4 5 6
frequency 0.0878 0.0878 0.6621 0.6621 0.7036 0.7036

mode 7 8 9 10 11 12
frequency 0.7289 0.7289 0.7969 0.7969 0.8564 0.8564

mode 13 14 15 16 17 18
frequency 0.8891 0.8892 0.9660 0.9660 1.007 1.007

mode 19 20
frequency 1.025 1.025

Solution of this problem on computer A with 64 GB RAM
(Table VI) allows keeping parameters of SBPCG method as
ψ = 10-16, ψ1 = 10-13, tol = 10-3, 100 eigenpairs are extracted.

TABLE VI
PROBLEM 3. TIME OF EIGENVALUE SOLUTION. COMPUTER A (AMD

OPTERON 6276, 64 GB RAM)

np Nos of iterations Time of eigenvalue
solution, s

SBPCG without shift (σ = 0, kmax >> N)
1 Lock of convergence on 27-th mode, solution is failed
2 Lock of convergence on 27-th mode, solution is failed
3 Lock of convergence on 45-th mode, solution is failed
4 Lock of convergence on 48-th mode, solution is failed

SBPCG with shift correction over each 100 iterations (kmax = 100)
1 5 295 43 151
2 3 471 29 775
3 3 126 34 869
4 2 873 32 859

SBPCG with shift correction over automatically accepted number of
iterations (flag_auto = true)

1 2 828 35 271
2 1 373 19 989
3 1 452 22 089
4 1 082 20 708

SBLANC (core mode)
16 – 6 228

The introduction of properly chosen shift in
preconditioning is a factor of crucial importance in
achieving of stable convergence. Considered problem with
large number of very close eigenvalues underline this.

When we use SBPCG method without shift (σ = 0, kmax >>
N), the convergence of method is not stable. The increasing
of block dimension np slightly improve a situation, but does
not solve fully this problem.

Only a shift in the preconditioning provides a stable
convergence of the method and significant reduces the
number of iterations (kmax = 100 and flag_auto = true
options affect only to the technique of shift correction).

It is interesting to note that in all of the examples, as well
as in other similar tests performed by authors, when using
shift correction an optimal result is achieved with a block
size of np = 3 – 4. Further increase the dimension of the
block slightly reduces the number of iterations required to
reach convergence for all required eigenmodes. We believe

it is because the shift is as close as possible to the current
approximation of eigenvalue corresponding to the lowest
frequency for iterated vectors in block. Therefore, the higher
the frequency for the iterated vector in block, the weaker the
influence of shear.

Shifted block Lanczos method runs in core mode and
solved this problem about 3 times faster than SBPCG
method.

Solution of this problem on computer B with 8 GB RAM
allows keeping parameters of SBPCG method as ψ = 10-13,
ψ1 = 10-8, tol = 10-3, np = 3, 20 eigenpairs are extracted. We
compare these results with shifted block Lanczos method,
which run in out-of-core mode. The comparison of
eigenvalue solution time presented in Table VII
demonstrates that SBPCG method is about 3 times faster.

TABLE VII
PROBLEM 3. TIME OF EIGENVALUE SOLUTION. COMPUTER B (INTEL

CORE™ I7-27600QM, 8 GB RAM)

np Nos of iterations Time of eigenvalue
solution, s

SBPCG with shift correction over automatically accepted number of
iterations (flag_auto = true)

3 798 3 913
SBLANC (out-of-core mode)

4 – 12 765

D. Comparison of different methods of parallelization
In this section, we consider the PCG eigenvalue solver

with the same type of preconditioning and shift technique,
presented in given article, but with another type of
parallelization on SMP multicore computers. The
parallelization is produced internally in procedures
mkl_dcsrsymv() and mkl_dcsrtrsv() taken from Intel MKL.
First procedure performs matrix vector product Kv and
second – triangular solution Bz = r → z. We denoted earlier
such option of analysis as PCG MKL.

The Problem 1 (Fig. 1) with the same parameters of
preconditioning is considered. Analysis is done on computer
A. Table VIII shows the duration of matrix vector product
procedure during all iterations, duration of triangular
solution, total duration of iterations and number of iterations
depending on thread numbers np. We accept ψ = 10-16,
ψ1 = 10-13, tol = 10-3.

 TABLE VIII
PROBLEM 1. PCG MKL APPROACH –PARALLELIZATION INTERNALLY
MATRIX VECTOR PRODUCT AND TRIANGULAR SOLUTION PROCEDURES.

COMPUTER A (AMD OPTERON 6276, 64 GB RAM)

np Time of
K*v

Time of B*z =
r → z

Time of
iterations, s

Nos of
iterations

PCG MKL with shift correction over each 100 iterations (kmax = 100)
1 242.2 8 137.5 9 342 1144
2 163.5 8 150.2 9 277 1144
3 127.8 8 121.3 9 212 1144
4 113.1 8 121.1 9 196 1144

We found that increasing of thread numbers accelerates
only matrix vector product procedure Kv. The duration of

SERGIY FIALKO, FILIP ŻEGLEŃ: BLOCK PRECONDITIONED CONJUGATE GRADIENT METHOD 661

triangular solution procedure practically does not depend on
number of threads. The duration of triangular solution for
considered class of problem of structural mechanics,
requiring a preconditioner of high ability to improve of
convergence, is essentially larger than duration of Kv and
other remaining procedures. Therefore, namely this
procedure should be accelerated firstly. However, it is a large
problem on SMP multicore computers [6].

Table IX depicts results obtained by non-block sequential
PCG eigenvalue solver presented in [3], [4].

TABLE IX

PROBLEM 1. NAÏVE SEQUENTIAL APPROACH. COMPUTER A (AMD

OPTERON 6276, 64 GB RAM)

np Time of

K*v

Time of B*z

= r → z

Time of it-

erations, s

Nos of it-

erations

PCG with shift correction over each 100 iterations (kmax = 100)
1 326 6107 7601 1144

This method uses naïve algorithms of matrix vector prod-
uct and triangular solution, taking into account only symme-
try of sparse matrices. Besides, the loop unrolling is used in
triangular solution procedure.

Comparison between Tables VIII and IX show that the ap-
plication of the matrix vector product procedure in the Intel
MKL runs up to 3 times faster. However, the procedure of a
triangular solution of Intel MKL is slower than naïve. This
leads to the fact that the naïve sequential PCG method solves
the problems of this class faster.

The problem with acceleration of triangular solution pro-
cedure does inefficient the approach based on internal paral-
lelization of leading procedures of PCG method.

III. CONCLUSION

The block conjugate gradient method with shifts in sparse
incomplete Cholesky factorization preconditioning is pro-
posed for extraction of lower eigenpairs applying to natural
vibration problems arising due to application of finite ele-
ment method to problems of structural mechanics.

On examples of typical problems of structural mechanics,
it is shown that on achievement of high computing stability
of a method the specific construction of a preconditioning,
introduction of shifts to a preconditioning, and iterations in
the block have a crucial importance.

The comparison with shifted block Lanczos method based
on parallel sparse direct solver PARFES shows that proposed
SBPCG method may be very efficient on computers with re-
stricted amount of core memory, when factorized stiffness
matrix block-by-block is stored on disk. In such a situation,
the proposed SBPCG method in contrast to Lanczos method
runs in core memory.

REFERENCES

[1] V. E. Bulgakov, M. E. Belyi and K. M. Mathisen, “Multilevel aggrega-
tion method for solving large-scale generalized eigenvalue problems
in structural dynamics,” Int. J. Numer. Methods Eng., vol. 40. pp. 453–
471, 1997, http://DOI: 10.1002/(SICI)1097-0207(19970215)40:33.0.
CO;2-2.

[2] Y. T. Feng and D. R. J. Owen, “Conjugate gradient methods for solv-
ing the smallest eigenpair of large symmetric eigenvalue problems,”
Int. J. Numer. Methods Eng., vol. 39. pp. 2209 – 2229, 1996,
http://DOI: 10.1002/(SICI)1097-0207(19960715)39:13<2209::AID-
NME951>3.0.CO;2-R.

[3] S. Yu. Fialko, “Natural vibrations of complex bodies,” Int. Applied

Mechanics, vol. 40, no. 1, pp. 83 – 90, 2004, http://DOI:10.1023/B:
INAM.0000023814.13805.34.

[4] S. Fialko, “Aggregation Multilevel Iterative Solver for Analysis of
Large-Scale Finite Element Problems of Structural Mechanics: Linear
Statics and Natural Vibrations”, in PPAM 2001, R. Wyrzykowski et al.
(Eds.), LNCS 2328, Springer-Verlag Berlin Heidelberg, 2002, pp.
663–670, http://DOI: 10.1007/1-4020-5370-3_41.

[5] S. Yu. Fialko, E. Z. Kriksunov and V. S. Karpilovskyy, “A block Lanc-
zos method with spectral transformations for natural vibrations and
seismic analysis of large structures in SCAD software,” in Proc.

CMM-2003 – Computer Methods in Mechanics, Gliwice, Poland,
2003, pp. 129 —130.

[6] S. Yu. Fialko, “Iterative methods for solving large-scale problems of
structural mechanics using multi-core computers,” Archieves of Civil
and Mechanical Engineering, vol. 14, pp. 190 – 203, 2014, http://
doi:10.1016/j.acme.2013.05.009.

[7] S. Yu. Fialko, “PARFES: A method for solving finite element linear
equations on multi-core computers,” Advances in Engineering soft-
ware, vol. 40, no. 12, pp. 1256-1265, 2010, http:// doi:10.1016/j.ad-
vengsoft.2010.09.002.

[8] G. Gambolati, G. Pini and F. Sartoretto, “An improved iterative opti-
mization technique for the leftmost eigenpairs of large symmetric ma-
trices,“ J. Comp. Phys., no 74, pp. 41 – 60, 1988, http://doi:
10.1016/0021-9991(88)90067-8.

[9] C. K. Gan, P. D. Haynes and M. C. Payne, “Preconditioned conjugate
gradient method for sparse generalized eigenvalue problem in elec-
tronic structure calculations,” Computer Physics Communications, vol
134, nr. 1, pp. 33 – 40, 2001, http://DOI: 10.1016/S0010-
4655(00)00188-0.

[10] V. Hernbadez, J. E. Roman, A. Tomas and V. Vidal, “A survey a soft-
ware for sparse eigenvalue problems,” Universitat Politecnica De Va-
lencia, SLEPs technical report STR-6, 2009.

[11] G. Karypis and V. Kumar, “METIS: Unstructured Graph Partitioning
and Sparse Matrix Ordering System,”. Technical report, Department
of Computer Science, University of Minnesota, Minneapolis, 1995.

[12] A. V. Knyazev and K. Neymayr, “Efficient solution of symmetric ei-
genvalue problem using multigrid preconditioners in the locally opti-
mal block conjugate gradient method,” Electronic Transactions on

Numerical Analysis, vol. 15, pp. 38 – 55, 2003.
[13] R. B. Morgan, “Preconditioning eigenvalues and some comparison of

solvers,” Journal of computational and applied mathematics, vol. 123,
pp. 101 – 115, 2000, http://doi: 10.1016/S0377-0427(00)00395-2.

[14] M. Papadrakakis, “Solution of partial eigenproblem by iterative meth-
ods,” Int. J. Num. Meth Eng., vol. 20. pp. 2283—2301, 1984,
http://DOI: 10.1002/nme.1620201209.

[15] A. V. Perelmuter, S. Yu. Fialko, “Problems of computational mechan-
ics relate to finite-element analysis of structural constructions,” Inter-

national Journal for Computational Civil and Structural Engineering,
vol. 1, no 2, 2005, pp. 72 – 86.

[16] Y. Saad, Numerical methods for large eigenvalue problems, Revised

edition, Classics in applied mathematics. SIAM, 2011, http://dx.-
doi.org/10.1137/1.9781611970739.

[17] S. Tomov, J. Langou, A. Canning, Lin-Wang Wang, J. Dongarra,
“Conjugate-gradient eigenvalue solver in computing electronic prop-
erties of nanostructure architecture,” Int. J. Computational Science
and Engineering, vol. 2, nr. 3-4, pp. 205 – 212, 2006.

[18] Intel Math Kernel Library Reference Manual.
URL: ttps://software.intel.com/sites/products/documentation/
doclib/iss/2013/mkl/mklman/index.htm (Last access: 16.04.2015).

662 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

