
Abstract—The  block  preconditioned  conjugate  gradient

method  for extraction of  eigenfrequencies  and eigenmodes  is

presented for finite element software in structural analysis. The

proposed approach is focused on multi-core desktops and lap-

tops and allows us to effectively analyze large design models,

when classical methods based on the factoring of stiffness ma-

trix, significantly reduce performance by intensive use of disk

memory. The main attention is paid to proper construction of

preconditioning, application of shift technique and creation of

the  block algorithm allowing the improvement  of  computing

stability and multithreaded parallelization.

I. INTRODUCTION

URRENTLY, the vast  majority of methods for deter-
mining the frequency and modes of natural oscillations

in finite element software, usually based on factorization of
stiffness matrix  K or matrix  K� = K  –  σM, where  M is a
mass matrix and σ is a shift.

C

However, if the dimension of the problem becomes large,
the factored matrix does not fit in memory and is written to
disk. Thus on each iteration in Lanczos method or in sub-
space iteration method it  is necessary to read the factored
matrix from a disk twice when performing forward and back
substitutions.  The  performance  of  the  specified  methods
considerably degrades because the task is carried out at an
intensive use of a disk. Especially sharply this problem be-
comes when desktops and laptops with usually small amount
of core memory are used.

It would seem the alternative approach consists in applica-
tion  of  conjugate  gradient  method  or  steepest  descent
method for solution of the generalized algebraic eigenvalue
problem to which the natural vibration problem is reduced
when using the finite element method. The [13] presents sur-
vey of some other  approaches  using preconditioning tech-
nique. However, application of such methods to problems of
structural mechanics usually results in to the slow conver-
gence  of  the iterative  process.  Often there  is  a locking of
convergence of numerical solution owing to a wide scatter-
ing of stiffness in design model, existence of a large number
of close natural vibration frequencies etc. This is confirmed
by the fact that the widely used commercial FEA software
offer a wide selection of iterative solvers for static analysis,

which leads to solving systems of linear algebraic equations.
However for the solution of the generalized algebraic eigen-
value problem as a rule are used the methods based on fac-
torization of a stiffness matrix. The exception is ANSYS in
which the preconditioned conjugate gradient method is ap-
plied for generation of Lanczos vectors. The survey of exist-
ing software packages devoted to solution of algebraic ei-
genvalue problems in technical and scientific applications is
in [10].

In this article, we confine ourselves to consideration of the
methods applying to a class of problems, difficult for numer-
ical realization, – to the large problems of structural mechan-
ics arising when the finite element method is used to model-
ing of tall buildings and constructions. We present the pre-
conditioned conjugate gradient (PCG) method for solution of
partial  generalized  algebraic  eigenvalue  problem –  extrac-
tion of natural vibration frequencies and modes

(1)

where  K is a symmetrical positive definite stiffness matrix,
M is  a  mass  matrix,  λi and  vi is  an  eigenpair,  i ∈ [1, n],
n << N, N is dimension of problem.

For ensuring sustainable convergence of method, we paid
the main attention to designing of an effective precondition-
ing, use of shift technique and creation of a block algorithm
of PCG method. In addition, we used the multithreaded par-
allelization to accelerate computations.

II.  BLOCK PRECONDITIONED CONJUGATE GRADIENT SOLVER

A. Sparse incomplete Cholesky conjugate gradient 

preconditioning

The problems of structural mechanics often demonstrate
the slow convergence due to using of different types of finite
elements,  thin-walled  finite  elements  of  floors,  roofs  and
walls,  considerable scattering of stiffness  etc.  [15].  There-
fore,  it is crucial to construct the effective preconditioning
for accelerating of convergence of the PCG method.

We use an incomplete Cholesky factoring “by value” ap-
proach,  based  on sparse  matrix  technique  [6],  allowing to
keep a small value of drop parameter ψ (ψ ∈ [10-9, 10-20]).
The small  entries  Hij < ψ∙Hii∙Hjj erasing on each  step of
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incomplete factoring are rejected and correction of diagonal 
entries  jiijjjiiiiii  ,HHHDD  is produced to 
ensure a positive definiteness of incomplete Cholesky factor 
H. Thus, the amount of calculations and time of incomplete 
factorization remains within reasonable range. In addition, 
the secondary rejection of small off-diagonal entries is 
produced after incomplete factoring is finished: 
Hij

2 < ψ1∙Hii∙Hjj, where 0 < ψ < ψ1 < 1. Such approach allows 
reducing the amount of data in preconditioning matrix H 
without considerable deterioration of properties of 
preconditioning. The details as well as the parallel algorithm 
of incomplete factoring is in [6]. 

In the earlier works of one of the authors used a multilevel 
aggregation preconditioning [3], [4], [15]. Use of sparse 
matrix technique allowed making an incomplete Cholesky 
conjugate gradient method competitive with aggregation 
multilevel PCG method. 

Use of preconditioning leads to 

 011  
iii MvBvKB  , (2) 

where B = H∙HT. 

B. Shift technique 
It is well known that introduction of properly chosen shift 

drastically accelerate a convergence of inverse iteration 
method [16]. The influence of shift on ability of 
preconditioning to accelerate of convergence for gradient 
methods was considered in [3], [4]. Here we will give only 
the main conclusions of the theoretical analysis, which is 
carried out in the specified works, containing detailed 
substantiation. 

Let us consider the preconditioning 
   1,MKB , (3) 

where λ1 is a first (minimal) eigenvalue and δ is a small 
value comparing with λ1 . 

First, the preconditioning (3) provides that for σ closer to 
λ1, the problem (1) converges faster. Then, when δ → 0, the 
procedure 

    kkkk xMKBIx   


1
1 2 , (4) 

following from preconditioned gradient method, tends to 
step of inverse iteration method. Here k and k+1 are two 
consequent iteration steps, αk – optimization parameter 
obtained from minimization of Rayleigh quotient. 

Expressions (3) and (4) allow understanding better, in 
what form it is necessary to search an effective 
preconditioning.  

Therefore, we will construct the preconditioning in form 
H∙HT – σM, where shift σ will be taken as close to defining 
eigenvalue λi, as it is possible. 

The preconditioner in PCG method is used for solution of 
additional equation set 
   kkkk grrzMB  , , (5) 

where rk is residual vector, gk – gradient vector and k is an 
iteration step. 

We never evaluate (3) directly, the presented below 
algorithm is used instead. 

Algoritm 1. Implicit solution of equation set respectively 
preconditioning 

doend

psdo
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Substantiation of presented above algorithm follows from 
     kk rqzMB  ˆ , (6) 

where kẑ  is approximation of solution (5) and q is a small 
correction. When opening brackets, neglecting on the small 
order terms σMq and assuming kk rzB ˆ , we obtain 

 0ˆ  kzMBq  . (7) 

As showed numerous calculations, it is enough to produce 
only one iteration (p = 1). 

C. Block PCG eigenvalue solver 
Application of PCG method for extracting of few lower 

eigenpairs is presented in [2], [8], [9], [14], [17] and other 
works. In addition, [1] presents the subspace iteration 
method based on steepest descent approach with aggregation 
multilevel preconditioning. The realization of PCG 
eigenvalue solver, presented in [3] and [4] based on 
aggregation multilevel preconditioning, demonstrates a 
stable convergence on numerous problems of structural 
mechanics. Application of shifts in preconditioning makes 
this method efficient even for the problems having a large 
number of close natural vibration frequencies. However, this 
method extracts eigenpairs in strictly sequential mode. Each 
subsequent eigenpair is orthogonalized against to defined 
earlier when using of Gram – Schmidt orthogonalization 
procedure on each iteration step. 

In this article, we use a different type of preconditioning 
and offer the block algorithm to reduce the number of 
iterations and apply a multi-threaded parallelization. 

Algorithm 2. Shifted block PCG method (SBPCG) 

1. σ = 0; nconv = 0; ktot = 0; 
2. parallel region 1 (prepare the block of start vectors, 

ip ∈ [0, np-1] – thread number,   11  npNpp , 
np – dimension of block which is equal to number of 
threads). 
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end of parallel region I 

3. Extracting all required modes:  
while ( nconv < nmodes ) 
 conv = 0; k = 0 

4.      while ( !conv ˄ k < kmax)  
parallel region II (minimization of Rayleigh 
quotient and line search procedure) 
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end of parallel region II 

5.        Orthogonalization in block 

6.        parallel region III (shifted PCG procedure) 
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end of parallel region III 

k++; ktot++; 
end of while (p.4) 

7.    if(conv) 
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 end of parallel region IV 
  end of Add vector in block 
end if(conv) 

8.    else 
  ;0;min ,  kip   ; 

parallel region V (modification of shift) 
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end of parallel region V 
end else (p. 8) 

end while (p. 3) 

Here N – dimension of problem, np – dimension of block 
(number of threads); nconv – number of converged modes, 
nmodes – number of required modes; k – iteration number, 
ktot – total number of iterations for nconv modes; σ – shift 
value; flag_auto = true – algorithm produces an automatic 
corrections of kmax – number of iterations on which excess 
the correction of shift is made; flag_auto = false – algorithm 
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produces kmax iterations between correction of shift imposed 
by user. 

We create a block of mutually orthogonal start vectors (p. 
2) in the first parallel region, when each thread ip prepares 
start vector ipx , approximation of eigenvalue ip , residual 

vector ipip gr   and conjugate direction vector ipp . The 

normalization of vector ip
T
ipMxx =1 allows simplify 

evaluation of Rayleigh quotient   ip
T
ipipipR Kxxx   . 

Loop while (p. 3) runs until all required eigenpairs will be 
extracted. The next loop while (p. 4) produces iterations in 
block. The achievement of convergence of one or several 
vectors in block as well as exceeding of allowed number of 
iterations kmax interrupt this loop. The Rayleigh quotient 
minimization results in optimal value of parameter αip and 
we produce the line search procedure xip← xip + αip∙pip and 
normalization of xip . 

The orthogonalization of all vectors xip in block (p. 5) 
prevents the convergence of all vectors to the same 
eigenvector. This procedure is a single sequential fragment 
in loop while (p. 4). All remaining operations in this loop are 
produced in parallel regions II and III. 

The parallel region III evaluates the current 
approximation of eigenvalue for each vector xip in block and 
residual vector rip. If relative norm of residual vector is less 
than tolerance tol, we assume that corresponding vector xip is 
converged and set flag conv to 1. Otherwise, we resolve the 
additional equation set relatively preconditioning 
Bσ = H∙HT – σM, using algorithm 1, and derive the new 
conjugate direction pip ← βip pip – 2zip . Orthogonalization of 
conjugate direction vector against converged eigenmodes 
v1,…,vnconv prevents the duplication of converged eigenpairs.  

If loop while (p. 4) was interrupted due to convergence of 
xip (p. 7), we increment nconv and put the current 
approximations xip and λip as a converged eigenpair { λnconv, 
vnconv }. Then, we put the new start vector xip in block 
instead of converged vector (Add vector in block). We 
orthogonalize xip against all converged modes and against all 
remaining vectors in block, normalize it and evaluate the 
initial approximation of eigenvalue λip,σ. The current value of 
σ is used. We evaluate residual vector rip. Then in parallel 
region IV we solve linear equations relatively 
preconditioning and for just added vector (ipp == ip), derive 
vector zip and conjugate direction vector pip. For remaining 
vectors in block (ipp ≠ ip) we obtain the new conjugate 
directions. Orthogonalization of pipp, ipp ∈ [0, np-1] against 
all converged eigenmodes prevents from duplicating of 
already defined eigenpairs. In addition, if flad_auto is turned 
on, we correct kmax, taking it as an average number of 
iterations required for achieving of convergence.  

If loop while (p. 4) was interrupted due to exceeding of 
kmax (slow convergence), block else (p. 8) is processed. We 
accept new shift value as a minimum from all current 
approximations of eigenvalues. Current approximations of 
eigenmodes xip remain unchanged, but the conjugate 

directions accumulated earlier are lost because the each 
changing of shift results in modification of matrix Kσ. Since 
with every iteration step the error in vectors xip accumulates, 
in parallel region V we produce the orthogonalization 
against previously defined eigenvectors to increase the 
computing stability of the method. Then, vectors xip are 
normalized, new values of current approximations of 
eigenvalues λip,σ and residual vectors rip are derived. We 
obtain vectors zip and conjugate direction vectors pip, which 
should be orthogonolized against converged eigenvectors 
v1,…,vnconv. 

We cannot produce the modification of shift too often 
because each shift modification destroys the accumulated 
conjugate directions. In a limit if to make correction of shift 
on each step of iteration, the conjugate gradient method 
becomes method of the steepest descent, and convergence 
degrades. Therefore, there is a question: how often it is 
necessary to make shift correction? In this version of 
algorithm, the parameter kmax operates by it. We can 
prescribe kmax directly (flag_auto == false), and can 
determine kmax as average number of iterations, is required to 
achieve convergence of nconv modes – kmax = ktot/nconv, where 
ktot is a number of iterations required to obtain nconv modes 
(flag_auto == true). 

Proposed block PCG method is different from [9], [12], 
[17] first of all by fact that use of shifts in preconditioning 
considerably accelerates convergence. Secondly, the 
proposed version of block algorithm does not require 
forming projection matrices on subspace XTKX, XTMX, 
where X = {x0, x1,…,xnp-1}. 

D. Different approaches for parallelization 
Different strategies of parallelization for PCG method can 

be based on parallelization of its individual parts – matrix 
vector multiplication, triangular solution or dot product of 
two vectors. The most time-consuming operations in PCG 
method are symmetrical sparse matrix vector multiplication 
(Kv) and forward and backward substitutions (Bz = r → z – 
triangular solution). These two procedures require about 
90% of total solution time. That is why in this article we 
focus our attention only on them. These operations are 
implemented in Intel Math Kernel Library (Intel MKL). We 
create a special option denoted as PCG MKL using 
mkl_dcsrsymv() procedure to compute the matrix vector 
product and mkl_dcsrtrsv() for computing of triangular 
solution [18]. All mentioned procedures are taken from Intel 
MKL. 

In all other realizations of proposed approach, we use in-
house procedures for computing of matrix-vector product as 
well as for triangular solutions. The upper triangular parts of 
matrices K and H are stored in compressed row format 
(CRF) which is close to standard CRF from Intel MKL. 

We found that parallelization approach which uses PCG 
MKL option, very poorly accelerate the PCG method for 
solution of eigenvalue problem. That is why we have created 
SBPCG method, where parallelization covers relatively large 
computing regions. This significantly reduces the number of 
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entries in the parallel regions and thus improve thread 
management. 
 

III. NUMERICAL RESULTS 
Let us consider examples taken from collection of SCAD 

Soft (http://www.scadsoft.com) — IT Company, developer 
of the SCAD FEA software, one of the most popular 
software used in the CIS countries for structural analysis and 
design, certified according to the regional norms. 

We used the following computers: 
A.   Server, 16-core processor AMD Opteron 6276, 2.3/3.2 
GHz, 64 GB DDR3 RAM, OS Windows Server 2008 R2 
Enterprise SP1, 64 bit. 
B.  Laptop DELL XPSL502X, 4-core processor Intel Core™ 
i7-27600QM, 2.4/3.4 GHz, RAM DDR3 8GB, OS Windows 
7 (64 bit) Professional, SP1. 

First computer has large amount of RAM that allows 
applying shifted block Lanczos method [5] in core mode. 
Sparse direct solver PARFES [7] is used for factoring matrix 
K – σM. Second computer due to restricted amount of core 
memory compels a shifted block Lanczos method to work in 
out-of-core mode for large problems. In such case, the block 
PCG method can be very efficient. 

We denote the shifted block PCG method and shifted 
block Lanczos method respectively SBPCG and SBLANC. 

A.  Problem 1 
The design model of multistory building (Fig. 1) contains 

2 002 848 equations and consists of three-node triangular 
and four-node quadrilateral flat shell finite elements as well 
as bar finite elements, elastic supports and rigid links.  

Table I shows the number of iterations and time of 
eigenvalue solution for SBPCG method with ψ = 10-16, 
ψ1 = 10-13, tol = 10-3.  

 
Fig.  1 Design model of multistory building (2 002 848 equations) 

Adopted tolerance ensures about four true digits in 
eigenvalue; it is a very high precision for practice. In 
addition, we present the solution time of this problem by 
shifted block PCG method with conventional ICCG0 
preconditioning “by position”. The sparsity pattern of 
incomplete Cholesky factoring H is the same as initial 
stiffness matrix K. Its positive definiteness is ensured due to 
decreasing of off-diagonal entries when negative elements 
arise on main diagonal during incomplete factoring [6].  

TABLE I 
PROBLEM 1. TIME OF EIGENVALUE SOLUTION. COMPUTER A (AMD 

OPTERON 6276, 64 GB RAM) 

np Nos of iterations Time of eigenvalue 
solution, s 

SBPCG without shift (σ = 0, kmax >> N) 
1 5 537 25 825 
2 2 982 16 529 
3 1 969 11 700 
4 2 343 18 078 

SBPCG with shift correction over each 100 iterations (kmax = 100) 
1 1451 6 560 
2 871 4 390 
3 920 5 289 
4 796 6 061 

SBPCG with shift correction over automatically accepted number of 
iterations (flag_auto = true) 

1 769 5 421 
2 501 3 831 
3 405 3 366 
4 424 3 877 
SBPCG (ICCG0 preconditioning) with shift correction over 
automatically accepted number of iterations (flag_auto = true) 
3 133 135 302 025 

SBLANC (core mode) 
16 – 1 662 s 

It appeared that for this problem when using a 
conventional ICCG0 preconditioning the convergence is 
unacceptably slow. This result emphasizes, it is how 
important to create an effective preconditioning for the 
successful solution of the considered class of problems. 

Also, we present a solution time demonstrated by 
SBLANC solver.  

All results have been obtained on computer A, 30 
eigenpairs were extracted.  

Application of shift in preconditioning accelerates a 
convergence in multiple times. The best results for the block 
PCG method is obtained when automatic correction of kmax 
is applied and dimension of block np = 3. 

SBLANC runs in core mode. Thus, it solved this problem 
about two times faster than SBPCG method. 

Table II shows results obtained on computer B. For 
SBPCG method we take ψ = 10-14, ψ1 = 10-11, tol = 10-3. 
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TABLE II 
PROBLEM 1. TIME OF EIGENVALUE SOLUTION. COMPUTER B (INTEL 

CORE™ I7-27600QM, 8 GB RAM) 

np Nos of iterations  Time of 
eigenvalue 
solution, s 

 SBPCG with shift correction over automatically 
accepted number of iterations (flag_auto = true) 

3 502  1 831 
 SBLANC (out-of-core mode) 

4 –  14 253 

Size of factorized stiffness matrix is 8.31847 GB (METIS 
reordering [11] is used) and exceeds the capacity of core 
memory. Therefore, solution time for SBLANC method is 
much longer than solution time for SBPCG. 

 

B. Problem 2 
The design model of supermarket (Fig. 2) comprises 

80 244 equations and consists of finite elements of spatial 
frame modelling spatial truss and quadrilateral flat shell 
finite elements.  

 
Fig.  2 Design model of supermarket (80 244 equations) 

Such types of structures have lot of very close eigenvalues 
caused by local vibrations of rods of spatial truss (Table III). 

TABLE III 
NATURAL VIBRATION FREQUENCIES (HZ) OF STADIUM MODEL 

mode 1 2 3 4 5 
frequency 0.7133 0.7277 0.7996 0.8555 0.8644 

mode 6 7 8 9 10 
frequency 0.8835 0.8919 0.9280 1.0209 1.0485 

mode 11 12 132 14 15 
frequency 1.0519 1.0908 1.1421 1.1445 1.1546 

mode 16 17 18 19 20 
frequency 1.2219 1.3015 1.3024 1.3034 1.3051 

This task is very difficult for the iterative method, and we 
use it as a test that verifies reliability of SBPCG. It is not a 
large problem, and results have been obtained on computer 
B.  

We accept ψ = 10-20, ψ1 = 10-17, tol = 10-3. Table IV 
demonstrates following. 

 
 

TABLE IV 
PROBLEM 2. TIME OF EIGENVALUE SOLUTION. COMPUTER B (INTEL 

CORE™ I7-27600QM, 8 GB RAM) 

np Nos of iterations Time of eigenvalue solution, 
s 

SBPCG 10 eigenmodes, without shift (σ = 0, kmax >> N) 
1 Lock of convergence on 3-th mode, solution is failed 
2 Lock of convergence on 6-th mode, solution is failed 
3 Lock of convergence on 7-th mode, 7 mode is missing 
4 Lock of convergence on 7-th mode, 7 mode is missing 
8 258 19.2 

SBPCG 10 eigenmodes, with shift correction (flag_auto = true) 
1 Lock of convergence on 3-th mode, solution is failed 
2 Lock of convergence on 6-th mode, solution is failed 
3 149 5.5 
4 160 6.8 

SBPCG 50 eigenmodes, with shift correction (flag_auto = true) 
4 771 67.2 

When the method is non-block (np = 1) or dimension of 
block is two (np = 2), lock of convergence occurs on 3-th 
mode. Shift correction is not used (σ = 0). Thus, computation 
process goes to infinite looping, and the solution cannot be 
obtained. 

When we increase the dimension of the block up to 3-4, 
cycling it is possible to avoid, however the 7-th mode is 
skipped. Only at dimension of the block 8 the problem is 
solved correctly. 

When using shift in a preconditioning the correct solution 
manages to be received at dimension of the block starting 
with three. As a test on the computational stability of the 
algorithm for this problem was defined 50 eigenpairs, 
dimension of block was taken four. 

Thus, we see that in case of the difficult tasks having a 
large number of close natural vibration frequencies, the 
increase in dimension of the block improves computing 
stability of a method. However, the most effective is use of 
shift technique at iteration in the block. 

C. Problem 3 

The design model of stadium (Fig. 3) comprises 
4 033 620 equations and consists of finite elements of spatial 
frame modelling spatial trusses, triangular and quadrilateral 
flat shell finite elements, elastic supports and rigid links. 

 
Fig.  3 Design model of stadium (4 033 620 equations) 
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Such types of structures as well as previously considered 
problem 2 have lot of very close eigenvalues caused by local 
vibrations of rods of spatial truss (Table V). 

TABLE V 
NATURAL VIBRATION FREQUENCIES (HZ) OF STADIUM MODEL 

mode 1 2 3 4 5 6 
frequency 0.0878 0.0878 0.6621 0.6621 0.7036 0.7036 

mode 7 8 9 10 11 12 
frequency 0.7289 0.7289 0.7969 0.7969 0.8564 0.8564 

mode 13 14 15 16 17 18 
frequency 0.8891 0.8892 0.9660 0.9660 1.007 1.007 

mode 19 20     
frequency 1.025 1.025     

Solution of this problem on computer A with 64 GB RAM 
(Table VI) allows keeping parameters of SBPCG method as 
ψ = 10-16, ψ1 = 10-13, tol = 10-3, 100 eigenpairs are extracted. 

TABLE VI 
PROBLEM 3. TIME OF EIGENVALUE SOLUTION. COMPUTER A (AMD 

OPTERON 6276, 64 GB RAM) 

np Nos of iterations Time of eigenvalue 
solution, s 

SBPCG without shift (σ = 0, kmax >> N) 
1 Lock of convergence on 27-th mode, solution is failed 
2 Lock of convergence on 27-th mode, solution is failed 
3 Lock of convergence on 45-th mode, solution is failed 
4 Lock of convergence on 48-th mode, solution is failed 

SBPCG with shift correction over each 100 iterations (kmax = 100) 
1 5 295 43 151 
2 3 471 29 775 
3 3 126 34 869 
4 2 873 32 859 

SBPCG with shift correction over automatically accepted number of 
iterations (flag_auto = true) 

1 2 828 35 271 
2 1 373 19 989 
3 1 452 22 089 
4 1 082 20 708 

SBLANC (core mode) 
16 – 6 228 

The introduction of properly chosen shift in 
preconditioning is a factor of crucial importance in 
achieving of stable convergence. Considered problem with 
large number of very close eigenvalues underline this. 

When we use SBPCG method without shift (σ = 0, kmax >> 
N), the convergence of method is not stable. The increasing 
of block dimension np slightly improve a situation, but does 
not solve fully this problem. 

Only a shift in the preconditioning provides a stable 
convergence of the method and significant reduces the 
number of iterations (kmax = 100 and flag_auto = true 
options affect only to the technique of shift correction). 

It is interesting to note that in all of the examples, as well 
as in other similar tests performed by authors, when using 
shift correction an optimal result is achieved with a block 
size of np = 3 – 4. Further increase the dimension of the 
block slightly reduces the number of iterations required to 
reach convergence for all required eigenmodes. We believe 

it is because the shift is as close as possible to the current 
approximation of eigenvalue corresponding to the lowest 
frequency for iterated vectors in block. Therefore, the higher 
the frequency for the iterated vector in block, the weaker the 
influence of shear. 

Shifted block Lanczos method runs in core mode and 
solved this problem about 3 times faster than SBPCG 
method. 

Solution of this problem on computer B with 8 GB RAM 
allows keeping parameters of SBPCG method as ψ = 10-13, 
ψ1 = 10-8, tol = 10-3, np = 3, 20 eigenpairs are extracted. We 
compare these results with shifted block Lanczos method, 
which run in out-of-core mode. The comparison of 
eigenvalue solution time presented in Table VII 
demonstrates that SBPCG method is about 3 times faster. 

TABLE VII 
PROBLEM 3. TIME OF EIGENVALUE SOLUTION. COMPUTER B (INTEL 

CORE™ I7-27600QM, 8 GB RAM) 

np Nos of iterations Time of eigenvalue 
solution, s 

SBPCG with shift correction over automatically accepted number of 
iterations (flag_auto = true) 

3 798 3 913 
SBLANC (out-of-core mode) 

4 – 12 765 

D. Comparison of different methods of parallelization 
In this section, we consider the PCG eigenvalue solver 

with the same type of preconditioning and shift technique, 
presented in given article, but with another type of 
parallelization on SMP multicore computers. The 
parallelization is produced internally in procedures 
mkl_dcsrsymv() and mkl_dcsrtrsv() taken from Intel MKL. 
First procedure performs matrix vector product Kv and 
second – triangular solution Bz = r → z. We denoted earlier 
such option of analysis as PCG MKL. 

The Problem 1 (Fig. 1) with the same parameters of 
preconditioning is considered. Analysis is done on computer 
A. Table VIII shows the duration of matrix vector product 
procedure during all iterations, duration of triangular 
solution, total duration of iterations and number of iterations 
depending on thread numbers np. We accept ψ = 10-16, 
ψ1 = 10-13, tol = 10-3. 

 TABLE VIII 
PROBLEM 1. PCG MKL APPROACH –PARALLELIZATION INTERNALLY 
MATRIX VECTOR PRODUCT AND TRIANGULAR SOLUTION PROCEDURES. 

COMPUTER A (AMD OPTERON 6276, 64 GB RAM) 

np Time of 
K*v 

Time of B*z = 
r → z 

Time of 
iterations, s 

Nos of 
iterations 

PCG MKL with shift correction over each 100 iterations (kmax = 100) 
1 242.2 8 137.5 9 342 1144 
2 163.5 8 150.2 9 277 1144 
3 127.8 8 121.3 9 212 1144 
4 113.1 8 121.1 9 196 1144 

We found that increasing of thread numbers accelerates 
only matrix vector product procedure Kv. The duration of 
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triangular solution procedure practically does not depend on
number of threads.  The duration of triangular  solution for
considered  class  of  problem  of  structural  mechanics,
requiring  a  preconditioner  of  high  ability  to  improve  of
convergence,  is essentially larger  than duration of  Kv and
other  remaining  procedures.  Therefore,  namely  this
procedure should be accelerated firstly. However, it is a large
problem on SMP multicore computers [6].

Table IX depicts results obtained by non-block sequential
PCG eigenvalue solver presented in [3], [4].

TABLE IX

PROBLEM 1. NAÏVE SEQUENTIAL APPROACH. COMPUTER A (AMD

OPTERON 6276, 64 GB RAM)

np Time  of

K*v

Time  of  B*z

= r → z

Time  of  it-

erations, s

Nos of  it-

erations

PCG with shift correction over each 100 iterations (kmax = 100)
1 326 6107 7601 1144

This method uses naïve algorithms of matrix vector prod-
uct and triangular solution, taking into account only symme-
try of sparse matrices. Besides, the loop unrolling is used in
triangular solution procedure. 

Comparison between Tables VIII and IX show that the ap-
plication of the matrix vector product procedure in the Intel
MKL runs up to 3 times faster. However, the procedure of a
triangular solution of Intel MKL is slower than naïve. This
leads to the fact that the naïve sequential PCG method solves
the problems of this class faster. 

The problem with acceleration of triangular solution pro-
cedure does inefficient the approach based on internal paral-
lelization of leading procedures of PCG method.

III. CONCLUSION

The block conjugate gradient method with shifts in sparse
incomplete  Cholesky  factorization  preconditioning  is  pro-
posed for extraction of lower eigenpairs applying to natural
vibration problems arising due to application of finite ele-
ment method to problems of structural mechanics.

On examples of typical problems of structural mechanics,
it is shown that on achievement of high computing stability
of a method the specific construction of a preconditioning,
introduction of shifts to a preconditioning, and iterations in
the block have a crucial importance.

The comparison with shifted block Lanczos method based
on parallel sparse direct solver PARFES shows that proposed
SBPCG method may be very efficient on computers with re-
stricted amount of core memory, when factorized stiffness
matrix block-by-block is stored on disk. In such a situation,
the proposed SBPCG method in contrast to Lanczos method
runs in core memory.
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