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Abstract—Nowadays, companies collect data at an increas-
ingly high rate to the extent that traditional implementation
of algorithms cannot cope with it in reasonable time. On the
other hand, analysis of the available data is a key to the business
success. In a Big Data setting tasks like feature selection, finding
discretization thresholds of continuous data, building decision
threes, etc are especially difficult. In this paper we discuss
how a parallel implementation of the algorithm for computing
the information gain can address these issues. Our approach
is based on writing Pig Latin scripts that are compiled into
MapReduce jobs which then can be executed on Hadoop clusters.
In order to implement the algorithm first we define a framework
for developing arbitrary algorithms and then we apply it for
the task at hand. With intent to analyze the impact of the
parallelization, we have processed the FedCSIS AAIA’14 dataset
with the proposed implementation of the information gain. During
the experiments we evaluate the speedup of the parallelization
compared to a one-node cluster. We also analyze how to optimally
determine the number of map and reduce tasks for a given cluster.
To demonstrate the portability of the implementation we present
results using an on-premises and Amazon AWS clusters. Finally,
we illustrate the scalability of the implementation by evaluating
it on a replicated version of the same dataset which is 80 times
larger than the original.

Keywords—Hadoop, MapReduce, information gain, paralleliza-
tion, feature ranking

I. INTRODUCTION

THE volume of data that needs to be processed has
increased significantly in recent years. Most of the or-

ganizations in the world base their decisions on the data they
collect and they need large volumes of data to be processed
in as little time as possible. Over the years many ideas
have been developed for solving the Big Data challenge.
Increasing the processing power is the logical way to go but
this has proven to be effective up to a certain point. After
that the hardware scaling is not yet effective enough. The
idea of distributing the computation has become popular in
recent years since the publications of Google’s approaches for
MapReduce [1] in 2004 and the concept of Big Table [2] in
2006. Other companies have followed similar paths introducing
open-source solutions. One such system is Apache Hadoop that
contains a set of algorithms for distributed processing, storage
of large datasets on computer clusters, scheduling etc. It is a
framework that is employed by industry leaders like Yahoo,
Facebook, Ebay, Adobe, etc [3].

Machine learning algorithms such as decision trees [4],
neural networks [5], Naive Bayes [6, 7] and many others can

automatically analyze data and make conclusions, predictions
or even find patterns that otherwise cannot be detected. The
main drawback of these algorithms is the degrading per-
formance in presence of redundant and irrelevant features.
Other algorithms such as Support Vector Machines are able
to cope with this problem to some extent, however, this ability
increases the computational time so much that the algorithm
doesn’t give result in reasonable time. This has already been
confirmed in the literature [8, 9, 10]. One way to resolve this
is to perform feature selection [11, 9, 12], defined as the task
of selection of feature subsets that describe the hypothesis at
least as well as the original set. In [13] the most widely used
methods for feature selection are introduced.

The rest of this paper is organized as follows. First, in
section II we review the most recent approaches to paral-
lelization of various algorithms. Afterwards in section III we
describe the definition and applications of information gain.
Next, in section IV we present we describe the services in
the Hadoop ecosystem and then we present a framework for
parallelization of algorithms. Thereupon, in section V we apply
it for parallel and distributed computation of information gain
based on MapReduce. Next, in section VI we present the
experimental setup and the obtained results. Finally, in section
VII we discuss the contribution of our work and our plans for
further research.

II. RELATED WORK

This section describes some of the most recent work on par-
allelizing different algorithms with MapReduce. The general
approaches and limitations of different data mining algorithms
when applied to massive datasets are described in [14]. Here
some common data mining problems are explained from a Big
Data perspective, but a MapReduce implementation is given
only for some common problems like matrix manipulation and
joins between tables.

A good overview of the parallel programming paradigms
and frameworks in the Big Data era is presented in [15].
Here the authors describe the MapReduce paradigm, but more
importantly introduce the frameworks that are built on top of
it like: Pig Latin for processing data flows, Hive for non-real
time querying of partitioned tables, and Spark and Twister for
iterative parallel algorithms.

The authors in [16] address the problem of efficient feature
evaluation for logistic regression on very large data sets.
Here they present a new forward feature selection heuristic

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 181–192

DOI: 10.15439/2015F89

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 181



that ranks features by their estimated effect on the resulting
model’s performance. They test the method on already avail-
able datasets from UCI, but also generate artificial datasets for
which they know the logistic regression coefficients. They use
that to evaluate the selected features.

By using the MapReduce paradigm in [17] a data intensive
parallel feature selection method is proposed. In each map
node, a method is used to calculate the mutual information
and combinatory contribution degree is used to determine the
number of selected features.

In [18] an implementation based on the MapReduce pro-
gramming model of Naive Bayes is proposed. During the
map phase all counts needed for calculating the conditional
probabilities are emitted, and during the reduce phase they are
aggregated.

A parallel implementation of the SVM algorithm for scal-
able spam filtering using MapReduce is proposed in [19]. By
distributing, processing and optimizing the subsets of the train-
ing data across multiple participating nodes, the distributed
SVM reduces the training time significantly. Merging of the
results is actually a union of the individually computed support
vectors. The cost of the parallelization is that because not all
training data is available on all nodes, the performance can
degrade. However, if the data is properly distributed on the
nodes in regards to stratification per class, this problem can be
mitigated.

A method for reducing the dataset to a small but repre-
sentative subset is proposed in [20]. The idea is to use the
representative subset for faster machine learning because the
dataset size will be significantly reduces. The speedup is being
calculated against a cluster with one node. However, if the
dataset is too large, or the computation takes a lot of time
the authors suggest to use more than one for estimating the
speedup. By doing this one can calculate the speed of the
current configuration versus the cluster with some smaller
number of nodes.

In [21] an approach based on MapReduce for distributed
column subset selection is proposed. In this approach each
node has access to a random subset of features. This approach
has a limitation that the datataset has to be manually splitted
and the MapReduce jobs need to be written on lower level. The
reason for this is that HBase segments the data horizontally
by rows, so either the dataset needs to be transposed or to
manually start different jobs and not to rely on a higher level
language like Pig Latin or Hive.

Authors in [22] propose a wrapper approach for parallel
feature selection. Here features are added to the selected set
if after their addition, the performance of the classifier does
not degrade. Then in a second phase from the subset obtained
in the previous step, features are removed if their discarding
does not degrade the classifier performance.

Apache Mahout [23] is an environment for quickly creat-
ing scalable performant machine learning applications based
on MapReduce. Even though there are plenty of algorithms
available in it, at the time of this writing, only two algorithms
related to feature selection and dimensionality reduction in
Mahout are available: Singular Value Decomposition (SVD)
and Stochastic SVD.

III. INFORMATION GAIN AND ITS APPLICATIONS

Information gain is a synonym for KullbackLeibler di-
vergence and has variety of applications. Very often it is
used for ranking individual features as described in [24, 25].
The research discussed in [26] shows how information gain
can be used for feature selection in text categorization prob-
lems. Authors in [27] propose using the information gain
for discretization of continuous valued features into discrete
intervals. In like manner, in [28] information gain is analyzed
as an unsupervised method for discretization of continuous
features. Likewise, in [29] it is applied for improving decision
tree performance by prior discretization of continuous-valued
attributes. In fact these papers have inspired many other
researchers to propose various other applications based on the
information gain and entropy. In [30] the information gain
in conjunction with methods based on particle filters is used
for exploration, mapping, and localization. Another application
of information entropy for extending the rough set based
notion of a reduct is proposed in [31]. There it is applied for
calculation of minimal subsets of features keeping information
about decision labels at a reasonable level.

In the remaining of this section when describing the
information gain we use the notation we have also used in [32].
In order to calculate the information gain, first the entropy
H(X) of the dataset should be calculated. Let X denote a
set of training examples, and each of them xi is in the form
(x1

i , x
2

i , ..., x
k
i , yi). Let each column (i.e. feature) be a discrete

random variable that takes on values from set V j , j = 1..k.
Let the set of possible labels (i.e. classes) is L, such as yi ∈ L.
Then the entropy of the dataset X can be calculated with
equation (1), where p(l) is the probability of instance xi to
be labeled as l (i.e yi = l) and is defined with equation (2).

H(X) = −
∑

l∈L

p(l) log p(l) (1)

p(l) =
|{xi ∈ X|yi = y}|

|X|
(2)

The information gain of the j-th feature of the dataset X
can be calculated with equation (3), where first part in the sum
is the probability of the instance xi to have value v of the j-th
feature. The second part in the sum in equation (3) denotes
the entropy of the subset of instances of X that have the value
v of the j-th feature.

IG(X, j) = H(X)−

∑

v∈V j

∣

∣

∣

{

xi ∈ X|xj
i = v

}∣

∣

∣

|X|
H(

{

xi ∈ X|xj
i = v

}

) (3)

As shown by equations (1),(2) and (3), calculation of
information gain of all features boils down to counting the
number of instances per feature, value and class. After we
compute these counts, we can calculate the probabilities and
consequently calculate the information gain. In section V we
propose parallel implementation for calculating the informa-
tion gain of each feature j in the dataset X .

182 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



IV. FRAMEWORK FOR PARALLELIZATION

Parallelization of algorithms introduces a handful of po-
tential software bugs of usually related to race conditions,
communication and synchronization between the different sub-
tasks. Owing to that, writing parallel computer programs is
more challenging than writing sequential ones. In Hadoop
most of those challenges are already addressed by various
mechanisms and services, so when it is used as a platform for
implementation of algorithms, the programmer does not have
to put much effort for solving those kinds of issues. Before
explaining the details we want to point out that the proposed
framework uses the principle of data-parallelism. Having that
in mind, the same principles could be used in a regular SQL
environment. Nevertheless, while many of the limitations and
benefits of SQL vs NoSQL are much argued in the research
community, the scalability properties of NoSQL databases are
undisputed.

Given that understanding of the Hadoop ecosystem is
essential for understanding our parallelization framework, first
in the next subsection IV-A we review its services. Then in the
following subsections we describe the several phases of the
proposed framework. We have applied similar logic in [32],
but the solution was not a generic one and was custom for
the task at hand. On Fig. 1 is shown a general overview of
the data flow during these phases. For data partitioning we
propose using HBase tables which are pre-splitted for optimal
data distribution, where as for parallel processing and writing
MapReduce jobs we suggest using Pig Latin with appropriate
user-defined functions.

Fig. 1. Data flow phases for processing HBase tables with Pig Latin

A. Hadoop

The MapReduce [1, 33] paradigm is essential to the
distributed computation and storage that Hadoop achieves. It
consists of two phases: map and reduce. The first phase, map,
splits the data into subsets. The reduce phase, aggregates the
result from the output that the map phase produces. Procedures
that can be performed in the map phase are: filtering, sorting,
projecting and reading the data. The map phase returns an
intermediate result consisted of keys and values. The reduce
procedures use this data and perform aggregation. Hadoop del-
egates the data from the map phase to the reduce procedures.
The MapReduce simplicity makes it very efficient for large-
scale implementations on thousands of nodes.

Hadoop with its different services provides all the logistics
and monitoring for the processes like scheduling, distribution,
communication and data transfer, and also provides redun-
dancy and fault tolerance. Many services or subsystems exist
in Hadoop, but the most notable are: YARN (MapReduce2),
HDFS and HBase [34][35].

YARN (Yet Another Resource Negotiator) [36] takes care
of job scheduling, monitoring and resource management. Two
separate daemons are responsible for these tasks: a global
ResourceManager and per-application ApplicationMaster. The
ResourceManager deploys resources among all the applica-
tions and the per-application ApplicationMaster negotiates
for resources with the ResourceManager and works with the
NodeManager to execute tasks and perform monitoring. YARN
does the resource allocation and the distribution of MapReduce
jobs to the apropriate nodes.

Hadoop Distributed File System (HDFS) [37] provides
scalable, fault-tolerant, distributed storage system that works
closely with MapReduce. It was designed to span large clusters
of commodity servers. An HDFS cluster is consisted of a
NameNode and DataNodes. The NameNode is responsible
for the cluster metadata and DataNodes are responsible for
data storage. The data is usually split into large blocks (typi-
cally 128 megabytes), independently replicated across multiple
DataNodes.

HBase is an open source, non-relational, distributed
database modeled after Google’s BigTable. It runs on top of
HDFS (Hadoop Distributed Filesystem), providing BigTable-
like capabilities for Hadoop [38, 39, 40]. HBase is a NoSQL
(Not Only SQL) database in which the tables are designed
by analyzing usage patterns. This allows simplicity of design,
horizontal scaling, and finer availability control. The data
structures in NoSQL databases, such as HBase, allow faster
executions of some operations than the execution of similar
operations in relational databases. This mostly depends on the
problem that must be solved. Tables in HBase can be used
as the input and output for MapReduce jobs run in Hadoop.
According to Eric Brewers CAP theorem, HBase is a CP type
system (i.e. Consistent and Partition tolerant) [41].

The MapReduce programming model is very popular due
to its simplicity. The extreme simplicity of MapReduce leads
to much low-level coding that needs to be done for some oper-
ations that are much simpler when using relational databases.
This increases development time, introduces bugs and may
obstruct optimizations [42]. A group at Yahoo motivated by
these repeatable tasks on daily basis, has developed a scripting
language called Pig Latin. Pig is a high-level dataflow system
that is a compromise between SQL and MapReduce. Pig
offers constructs for data manipulation similar to SQL, which
can be integrated in an explicit dataflow. Pig programs are
compiled into sequences of MapReduce jobs, and executed in
the Hadoop MapReduce environment [43].

B. Loading data into HDFS

This is the first and most simple phase. This phase should
be performed once or multiple times, depending on how the
dataset is structured. The most common formats for datasets
are:

• CSV (comma separated values). This format is usually
used to store dense datasets.

• ARFF (Attribute-Relation File Format). Also used to
store dense datasets.

• EAV (Entity Attribute Value). Used to store sparse
matrices that have a lot of zeros and some non-zero
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elements.

If the dataset is only one file then it will be copied from
the Linux File System to HDFS using a simple command. This
means that for such cases during this step we cannot have
parallelism. However if the dataset is dispersed into multiple
files, then all of them can be copied simultaneously to HDFS.
Be that as it may, this step usually is very fast compared to
the following steps for machine learning, so its parallelization
may not be necessary at all.

C. Facilitating data parallelism with HBase

After the previous step IV-B is finished the dataset files
reside on HDFS. As it is extensively described in [37], each
file in HDFS is replicated across several nodes for reliability.
A typical file in HDFS is gigabytes to terabytes in size, splitted
in blocks of 128 MB by default. If the files are too small than
that could degrade the performance of the system and limit
the level of parallelism. Map tasks usually process a block of
input at a time. If the file is very small and there are a lot
of them, then each map task processes very little input, and
there are a lot more map tasks, each of which imposes extra
bookkeeping overhead. Ideally the dataset will be one large
file dispersed on multiple blocks on HDFS so when loaded,
transformed and stored into HBase, greater parallelism can be
achieved. Be that as it may, datasets are not always so large
that HDFS can distribute them on all nodes and get optimal
parallelization. One way to mitigate this is by splitting the
dataset in multiple smaller files and store them in one folder, so
later the Pig script can read from all files in the folder instead
of a specific file. Nevertheless, this step again is usually very
fast especially compared to the steps that comprise the actual
algorithm, so we do not recommend to spend too much time
on optimizing the file sizes for better parallelism.

Even though we can achieve parallelism while processing
files stored on HDFS, the control of degree of parallelism is
difficult, more involved and at very low-level. For instance, we
if we have a large file then HDFS will automatically partition it
and distribute it on different nodes. Be that as it may, we do not
have control of how HDFS will do this, on how many partitions
it will store it, where are they going to be distributed, etc. On
the opposite side, if we have a small dataset file, it will not be
partitioned at all. To have a better control on this one would
need to manually split the file in the desired number of chunks
and then let HDFS distribute them. Moreover, this process has
to be repeated again and again if we have continuous stream
of data.

On the other hand, HBase offers many other services built
on top of HDFS, among which is a much better control of
the degree of parallelism. This is due to the fact that the
data in HBase is stored in a structured manner, while having
various mechanisms that simplify random reads and writes
from rows and columns. Namely, HBase tables are divided
into potentially many regions, while one or more regions are
serviced by a region server. The tables can be horizontally
and vertically segmented while they are physically stored in
HBase. Because many machine learning applications access
the data by rows, in this paper we will continue to discuss
only horizontal segmentation. As HBase was designed with
very large tables in mind, a common use case is the following.

A table at creation has only one region, which is serviced by
one region server (a physical node in the Hadoop cluster).
When this table is loaded with data it gets bigger and at some
point it will become too big, so HBase will split its region
into two regions. Then the new region will be assigned to the
same region server or can be moved to another region server.
The default splitting threshold is 10 GB. There are numerous
reasons why HBase was designed that way, and we will not
go into details about that. From parallelization perspective,
this can pose a challenge, because for the automatic splits
there are no guarantees that every region will contain equal
amount of data, when are the splits going to occur exactly,
are the regions going to be served by different region servers
(nodes) etc. Further more, if one is using Hadoop for research
purposes only then the dataset may not be that large, thus
never overcoming the threshold for splitting. To overcome this
challenge we can pre-split the tables on creation. This in turn
means that the table can be configured at creation time to be
stored on as many-regions as needed. Usually the number of
regions is a multiple of the number of HBase region servers.
The logic for having more region servers than acutal nodes is
because the nodes are multi-core machines, so different threads
on the same node can service different regions.

Before loading the dataset in HBase, we need to define
the table structure and create it. Column names and data types
are provided when storing data in each row, so at creation
time we need to only specify a table name and a column
family. There are some advanced configuration features that
can be specified, but they are not topic of this discussion. Be
that as it may, there is one very important decision that we
need to make before loading data in the table. Because HBase
tables, unlike SQL tables, cannot have secondary indexes, the
primary key (row key) needs to be designed according to the
usage patterns of the table. There are many considerations
when designing the row key and they are very important for
production use of HBase tables. However, for scientific use
and for parallelizing machine learning algorithms, we need
a simple design that allows uniform data distribution across
nodes. In most scientific datasets the data instances (i.e. rows)
do not have ids for their instances, or if they do they are not
used for the actual machine learning. Nevertheless, in order
to store a row in a HBase table, it needs a row key. For flat
flies like CSV or ARFF the row key can be the line number
of the instance. However, sequential row keys are very bad
choice for HBase tables because the inserts will always be
on the last region, therefore having no parallelism during the
load, a problem called Region Server hotspotting. There are
multiple ways of overcoming this problem, and one of them
is a technique called salting [38]. With this technique each
sequential id is salted with a prefix. The prefix is usually the
modulo number of the original sequential id and the number
of regions. Even though, this is very important topic, the step
of loading the datasets in HBase is not the focus point of this
paper.

Once the dataset files are loaded into HDFS we need to
transform them if needed and store them in HBase. If we have
totally M rows in the dataset, and R regions, then we would
like to distribute the data uniformly so each region gets M/R
rows. This in turn means that we need to specify R − 1 split
points when creating the table. If we use sequential ids for
the row key (like the line number in the file), than these split
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points would be: M/R, 2M/R, 3M/R, ..., (R−1)M/R. If we
use a more sophisticated row key design, then the split points
should reflect that design. For instance, if we take the modulo
number of the id and the number of regions, then each region
would get almost the same number of rows. This design of the
row key allows fast random reads and writes, and additionally
it facilitates addition of new data to the table at a later time
without needing to redesign the table for equally dispersed load
across regions. The following example shows how a table can
be pre-splitted on creation. The row key design is described
with the function in listing 1. It returns a tuple in which the
first element is the padded modulo number and the second
part is the padded sequential id. The numbers are padded with
zeros so that they are lexicographically sorted.

1 (pad(seq_id % num_regions), pad(seq_id))

Listing 1. Row key design

Once the HBase table that should contain the dataset is
created with appropriate split points for even data distribution
across the cluster, we can start loading the data. One can write
pure MapReduce jobs in Java or Python. If we choose that
path, then we need to write a separate map and reduce function
for each task. However, by using the scripting language Pig
Latin [42, 43] we can write scripts from a higher-level per-
spective. These Pig scripts generate MapReduce tasks in the
background so the programming effort is simplified and the
development time is greatly reduced. The downside of using
Pig is that when Pig scripts are compiled into MapReduce jobs,
there is some overhead. Additionally one may write a more
optimal implementation of map and reduce functions manually
than the ones generated by the Pig compiler. Nevertheless,
these are corner cases and for longer running MapReduce tasks
the overhead is insignificant in the range of up to couple of
minutes in the worst case. When loading the data usually only
a map phase is required. It reads the data from the HDFS
files and stores it in HBase tables. In most cases when loading
the data there is no grouping of keys, so a reduce phase is
not needed. During this step we can add various methods for
data preprocessing like discretization, transformation and other
methods that rely only on the value in one row of the dataset.

D. Processing HBase tables

After the dataset is loaded in a HBase table we can continue
implementing machine learning algorithms. In general, this
phase can be comprised of several substeps or iterations of
data processing, depending on the nature of the algorithm
that is being implemented. For each of the intermediate steps
that we need to store some data we need a HBase table that
will also be pre-split at creation time, similar to what we
described in the previous subsection IV-C. What happens in the
background when a particular HBase table is being processed,
is very peculiar. Pig will determine the number of regions of
the table and it will start that number of map tasks. Then each
map task will process the data of a particular table region
on the node where the data resides, therefore leveraging data
locality. Note that, in order to benefit from the principle of data
locality, each node in the cluster should run HDFS, HBase and
YARN (MapReduce) services. The number of reduce tasks is
by default one, but this can be also manually specified and

Fig. 2. Data flow during the parallel computation of information gain

does not depend of the table structures. If we specify more
than one reduce tasks, then this will solicit a merge phase
which will combine the intermediate results from each reduce
task. Usually, for smaller datasets specifying more than one
reduce task does not improve performance, on the contrary, it
can degrade performance. However, being able to specify the
number of reduce tasks provides flexibility that can improve
the performance for larger datasets or some specific problems.

During this phase, depending on the type of algorithm that
is being parallelized, many tables can be used by multiple
MapReduce jobs. In the following section V we illustrate this
by when we parallelize the computation of information gain.

V. PARALLEL COMPUTATION OF INFORMATION GAIN

In this section we illustrate how we can use the framework
proposed in section IV for computing the information gain
of a dataset. Fig. 2 shows the data flow during the steps of
the framework. The first steps of loading the data to HDFS
and subsequently into HBase tables corresponds to what we
explained in subsections IV-B and IV-C. Then, after the dataset
is loaded in a HBase table, the processing takes place in
three phases explained in the following subsections and they
correspond to the specific properties of the current algorithm.
This is an illustration how the framework step described in
subsection IV-D can contain multiple phases consisted of
many different MapReduce tasks that read and store data from
several HBase tables.

A. Calculating entropy of a dataset

As explained in section III, the definition of information
gain requires calculation of the entropy of the whole dataset.
In order to calculate it, first we need to count the number of
instances per class, and afterwards to sum the class probabil-
ities. Notably this is a very simple step and does not require
parallelization because its complexity is O(N), where N is
the number of instances in the dataset. Moreover, if we are
interested in only sorting the features without having the actual
information gain for each of them, then we can eliminate
the entropy from equation (3). Be that as it may, for other
applications we need the actual information gain. If we decide
to parallelize this step, despite of its simplicity, then we need
two MapReduce jobs. The Pig Latin script shown in listing 2
performs this. Each parameter starting with $ can be passed
to Pig script when it is started. In line 2 we specify that we
only want to read the cell where the class is stored, denoted as
$label. The first MapReduce job that calculates the counts per
class and the class probabilities corresponds to the code from
line 2 to line 16. Then from line 17 till the end of the script the
second MapReduce job calculates the entropy of the dataset.
Notwithstanding, the peculiar thing that is demonstrated here is
how easy MapReduce jobs can be combined into a flow. In like
manner, one can combine many MapReduce jobs in one flow
without any need of manual synchronization between them.
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1 register ’$udf_path’ as paddingUDFs;

2 pfdata_tmp = LOAD ’$table_dataset’ USING

org.apache.pig.backend.hadoop.

3 hbase.HBaseStorage(’r:$label’,

4 ’-loadKey=true’

5 ) AS (rowkey:tuple(prefix_padded:chararray,

id_padded:chararray),

6 class:int);

7 pfdata_class_group = GROUP pfdata_tmp BY

class;

8 pfdata_class = FOREACH pfdata_class_group

GENERATE

9 flatten(group) as class,

10 COUNT(pfdata_tmp.class) as count;

11 pfdata_class_prob = FOREACH pfdata_class

GENERATE

12 class,

13 count,

14 (count/$num_instances) as prob:double,

15 ((-count/$num_instances)*
16 UDFs.log2(count/$num_instances)) as

entropy:double;

17 total_entropy_group = GROUP pfdata_class_prob

ALL;

18 total_entropy = FOREACH total_entropy_group

GENERATE

19 SUM(pfdata_class_prob.entropy) as

entropy:double;

20 STORE total_entropy INTO

’$hdfs_export_entropy’ USING

PigStorage(’\t’);

Listing 2. Pig script for calculating entropy of a dataset

B. Counting instances per feature index, feature value and
class

After the entropy is calculated, the definition of information
gain, as presented with (3), requires counts of instances per
feature index, feature value and class. This step is the most
computationally expensive step in the algorithm. The source
code of this step is shown in listing 3 and it is based on the
pseudo code we have reported in [32]. Parameters that are
passed to the script are the table names, number of features,
index of the class value, number of padding digits, etc. First
we need to load the dataset from a HBase table (lines 3
through 6). A row of the dataset is represented by the row
key, and the dictionary r in which keys are the column names
and values are the actual values. This representation allows
us to store only the non-zero values of a dataset. Then we
need to expand each row of the dataset (denoted as dictionary
r) to tuples: (feature index, feature value, class, 1). This is
performed in lines 7 through 8 with the user-defined function
decode sparse row. If the dataset has M rows (instances) and
N columns (features), then from each row we will generate N
tuples because now also the zero-valued cells are also included.
To summarize, when the whole dataset is processed M × N
tuples will be generated. These tuples are afterwards grouped
by the key (feature index, feature value, class) in lines 9
through 12, and finally the count is stored in another table
(lines 13 through 15). All of the code in listing 3 is compiled in
one MapReduce job. The number of generated map tasks will
be equal to the number of regions of the input table (denoted
by $table dataset in the script), and the number of reduce
tasks is set by the parameter $parallel.

1 register ’$udf_path’ using jython as UDFs;

2 set default_parallel $parallel;

3 pfdata_tmp = LOAD ’$table_dataset’ USING

org.apache.pig.backend.hadoop.hbase.

4 HBaseStorage(’r:*’, ’-loadKey=true’) AS

5 (rowkey:tuple(prefix_padded:chararray,

id_padded:chararray),

6 r:map[]);

7 pfdata_short = FOREACH pfdata_tmp GENERATE

8 FLATTEN(UDFs.decode_sparse_row(r,

$num_features,

9 $num_features_digits, ’$feature_data_type’,

’$label’));

10 feature_value_class_counts_group = GROUP

pfdata_short BY (feature_index,

feature_value, class);

11 feature_value_class_counts = FOREACH

feature_value_class_counts_group GENERATE

12 group as rowkey,

13 SUM(pfdata_short.instance_count) as

instance_count;

14 STORE feature_value_class_counts INTO

’$table_feature_index_tmp’ USING

15 org.apache.pig.backend.hadoop.hbase.

16 HBaseStorage(’r:instance_count’);

Listing 3. Counting number of instances per feature index, feature value and
class with Pig Latin

C. Calculating the information gain

Having the counts calculated in the previous step V-B, this
step only calculates the probabilities and entropies in (3) and
stores this result in HBase or HDFS. Nevertheless, it is usually
the second longest running step from this list. The code for
this is shown in listing 4. First in the lines 3 through 8 it reads
the tuples (feature index, feature value, class, instance count)
which were calculated in the previous step, and now are stored
in the table $table feature index tmp. This table was properly
pre-splitted on creation so the Pig script will be compiled in
one MapReduce job with multiple map tasks. In particular, if
the number of features is N and the desired number of regions
of the table is R, then we specify R−1 split points, and in that
way each region will contain the tuples for N/R features. We
acknowledge that this might not be ideal distribution because
some features might have significantly more distict values
then others, but nevertheless, it provides decent parallelism.
Given that this step is not as computationally intensive as the
previous, we did not consider it necessary to further optimize
this table. Then when the MapReduce job is compiled, it will
have R map tasks and each of them will work with the data
of the appropriate table region.

1 register ’$udf_path’ using jython as UDFs;

2 set default_parallel $parallel;

3 feature_value_class_counts_tmp = LOAD

’$table_feature_index_tmp’ USING

org.apache.pig.backend.hadoop.hbase.

4 HBaseStorage(’r:instanceCount’,

5 ’-loadKey=true’

6 ) AS (

7 id:tuple(feature_index:chararray,

feature_value:int, class:int),

8 instanceCount:double);

9
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10 feature_value_class_counts = FOREACH

feature_value_class_counts_tmp GENERATE

11 flatten(id) as (feature_index, feature_value,

class),

12 instanceCount;

13 feature_index_group = GROUP

feature_value_class_counts BY

14 (feature_index);

15 feature_index_info_gain = FOREACH

feature_index_group GENERATE

16 flatten(group) as feature_index_padded,

17 flatten(UDFs.

18 calc_feature_info_gain(($entropy), group,

feature_value_class_counts,

($num_instances))) as info_gain:double;

19 STORE feature_index_info_gain INTO

’$table_feature_index_info_gain’ USING

org.apache.pig.backend.hadoop.

20 hbase.HBaseStorage(’r:ig’);

Listing 4. Calculating information gain with Pig Latin

The most peculiar part in the script in listing 4 is at line
13. Here all tuples are grouped by feature index. When the
Pig Script is translated into a MapReduce job, the during the
map phase the feature index is emitted as a key, and during the
reduce phase all tuples that are for the same key (in this case
the feature index) are grouped together on the same node. The
Python UDF calc feature info gain utilizes this because for
each feature it has the count of instances of all its values per
class. Having that it is easy to compute the information gain
by (3). Finally, the results can be stored in a HDFS file or in
a HBase table. In this script we store them in the HBase table
$table feature index info gain, performed in the last line.

VI. EXPERIMENTS

With intention to monitor various aspects of the parallel
implementation, a relatively large dataset was essential. Fur-
thermore, we did not want to focus on significant preprocessing
like discretization or transformation of values so we can
easily compare our results with other research. The FedCSIS
AAIA’14 data mining competition dataset [44] has exactly
those properties. It is a sparse matrix with 50000 instances and
11852 numeric features, most of which are have the value 0
or 1. There are about 0.9% non-zero values in it. It represents
a multi-label problem that has 3 binary labels, that can be
merged with the powerset technique as used in [45] into one
one-label multi-class problem that has 8 (23) possible classes.

We have tested the same dataset on three completely
different Hadoop clusters. Each of them was running the same
version of Apache Hadoop 2.3.0 (integrated in Cloudera CDH
5.3.0). This is an extension to what we did in [32], where
we analyzed the speedup only on one on-premises cluster.
Additionally in this paper we analyze the effect of the number
of reduce tasks, while in [32] we have used only one reduce
task. Finally, the most important difference is that we have
evaluated the scalability of the approach by replicating the
dataset 80 times. We have performed this by replicating the
dataset horizontally so from each instance there are 80 exact
copies. This in turn results in a dataset that has 4 million
instances and almost 12 thousand features. It should be noted
that the computational complexity of the algorithm depends
only on the dataset size and not on its sparsity or feature types.

Keeping in mind that our goal is to evaluate the execution time
and speedup based on the cluster size, the expansion of the
dataset serves this purpose.

The first cluster (denoted by Amazon32 in the remaining
of the paper) was deployed on Amazon AWS. It contained
a total of 32 nodes, each of them a m1.xlarge instance with
15GB RAM and 8 compute units (4 cores with 2 compute
units each). From the 32 nodes, 8 were hosting HBase Region
Servers and HDFS Data Nodes, 3 were specifically dedicated
to HDFS Data Nodes and 19 were running only YARN. We
acknowledge that this configuration may not be optimal for
the current task, but we were given access to this cluster
without the ability to modify its configuration. Therefore we
have decided to run tests using up to 8 nodes at a time, because
when using more it would be difficult to estimate the speedup.

The second cluster (denoted by FCSE24 in the remaining
of the paper) was deployed on-premises at the Faculty of
Computer Science and Engineering (FCSE) at the Ss.Cyril
and Methodius University, Skopje, Macedonia. It had a total
of 24 nodes, each of them an Intel Xeon Processor E5640
with 12M Cache, 2.66 GHz, 24 GB RAM, 4 cores and 8
threads. From them 21 were configured to run the following
services: HBase Region Servers, HDFS DataNodes and YARN
MapReduce NodeManagers. The remaining nodes were used
for other Hadoop and Cloudera management services.

The third cluster (denoted by FCSE65 in the remaining
of the paper) was also deployed on-premises and it was an
extended version of the second, containing a total of 65 nodes,
of which 54 were running the following services: HBase
Region Servers, HDFS DataNodes and YARN MapReduce
NodeManagers. A variant of this cluster with 59 instead of
54 active nodes was also used for the experiments presented
in [32].

During our tests none of these clusters was executing other
tasks. On all of them we ran tests with different table structures
in order to simulate clusters with smaller sizes. By pre-splitting
the HBase tables to a specific number of regions we were able
to force Pig Latin to start the desired number of map tasks for
each job. For all these configurations we are computing the
speedup of the parallelization against a cluster with one node.
We are simulating the one-node cluster by configuring the
tables to have only one region, thus all MapReduce jobs that
read from those tables have only one map task. We have tested
using different number of reduce task by setting a configuration
property in the Pig scripts. The remaining of this section is
divided in two, VI-A containing summary information for all
steps that are fast and did not benefit significantly from the
parallelization, and VI-B containing detailed information about
the step described in V-B, which was the most computationally
expensive. Table I shows the information gain of the top 50
features which can be used for verification of the correctness of
our implementation. In the following subsections we describe
the results from our experiments.

A. Computationally cheap steps

The dataset was stored in two files: one containing the data
in EAV (entity attribute value) format, and one containing the
labels. The EAV format greatly reduces the file sizes to 72
MB compared to 1.1 GB when stored in full format as CSVs.
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TABLE I. TOP 50 FEATURES ORDERED BY INFORMATION GAIN

Rank Feature InfoGain Rank Feature InfoGain

1 11701 0.07422 26 7407 0.0256033

2 143 0.07000 27 11825 0.0249701

3 11832 0.06009 28 4505 0.0249698

4 1509 0.05154 29 11100 0.0249225

5 5909 0.04936 30 10331 0.0247915

6 8635 0.04539 31 7529 0.0247519

7 2182 0.04012 32 2274 0.0247061

8 865 0.03817 33 10261 0.0246147

9 6523 0.03817 34 7592 0.0245778

10 5827 0.03795 35 4319 0.0245677

11 5188 0.03467 36 1349 0.0245448

12 5513 0.03296 37 7405 0.0245288

13 6162 0.03294 38 11463 0.0245111

14 5967 0.03271 39 11000 0.0244753

15 2835 0.03223 40 6779 0.0240003

16 139 0.0318404 41 10428 0.0236240

17 9306 0.0318030 42 460 0.0235250

18 1772 0.0296594 43 7291 0.0233440

19 3257 0.0283169 44 8853 0.0232071

20 9848 0.0283169 45 2883 0.0232064

21 675 0.0282140 46 5925 0.0231852

22 73 0.0273487 47 8114 0.0225087

23 7275 0.0266788 48 5330 0.0223354

24 7419 0.0266100 49 1156 0.0219374

25 1244 0.0262854 50 2701 0.0218273

The effect is that copying them to HDFS is very fast (about
a second). The step described in subsection IV-C was actually
two MapReduce jobs. The first is for loading the labels which
took 58 to 70 seconds, and the second for loading the data
which took 130 to 145 seconds on the on-premises and 175 to
195 seconds on the Amazon cluster. Calculating the entropy
of the dataset, described in section V-A, took 118 to 152
seconds on both clusters. The step described in subsection V-B
is analyzed in more detail in the following subsection VI-B.
After it completed and stored the results in a pre-splitted table,
calculating the information gain of each feature, described in
subsection V-C, took 69 to 97 seconds on both clusters. The
final step, the export of the list of information gain of all
features, took 46 to 70 seconds. All of the MapReduce tasks
had an overhead of up to 60 seconds for compilation of the
Pig script, generating JAR files, distributing them on the cluster
and negotiating resources.

When preparing the 80 times replicated dataset we stored
it in a slightly different format so we can later process the
data and the labels at the same time. Namely, each line of
the enlarged file contains pairs of the column indexes and
values of all non-zero features. This representation takes 3
GB, whereas if we stored it in pure EAV format we would
need about 5.5 GB (80 × 72) owing to the redundancy of
line numbers. This does not have effect of any of the other
steps except of how is it stored in HDFS. This file when
copied on HDFS was automatically fragmented on 24 nodes
(not counting the nodes for replication). On Fig. 3 is shown
the data load time depending on the cluster configuration. It
should be noted that even though there are 54 active nodes in
the cluster in some cases we have intentionally created tables
with more table regions (108, 162 and 216) aiming to leverage
the multiple cores on each node.

Important to realize is that the 24 HDFS nodes on which
the file is dispersed is an upper bond to the maximum number
of map tasks when processing the file from HDFS and storing
it in HBase tables. As a result, even though some tables have
more than 24 regions during this phase it does not have an
effect of the parallelism. Nevertheless, in the next steps when

the data source is an HBase table, its number of regions
dictates the number of generated map tasks. Another important
thing to notice is that when using less nodes than 24 for the
HBase tables, the number of map tasks is still 24 because
this is dictated by the data source (HDFS file) and not by the
destination (HBase table). From Fig. 3 it is evident that the
load time is not reduced when more than 24 nodes HBase
table regions are used. Also we see that when using less
then 24 table regions the bottle neck is during the writes to
the HBase tables. Finally, we want to emphasize the HBase
table with only one region (the right-most case on Fig. 3).
Even tough it was configured to have only one region by not
specifying any split points for it at creation time, during the
load it got larger than some configurable threshold, so HBase
automatically splitted in two regions. Nevertheless, those two
regions are on the same node.

Fig. 3. Data load time for the 80 times replicated AAIA’14 dataset depending
on cluster configuration

B. Computationally expensive step - Calculating counts

The step described in subsection V-B was the most com-
plicated and the speedup for it varied significantly depending
on the cluster size and configuration. The remaining of this
subsection describes details of the impact of the parallelization
of this step and all listed speedups and durations are only for
it.

First, we conducted experiments using the original
AAIA’14 dataset on the FSCSE65 cluster. These results were
published in [32], so here we are only reviewing them. These
experiments were using only one reduce task, the default in
Pig Latin. Also here we used more map tasks than actual
nodes because each node is a multi-core machine. The results
confirmed that indeed using more map tasks is beneficial,
which is intuitively logical. Nevertheless, when we further
increase the number of map tasks, the performance gradually
degrades. The explanation for this is that as the number of
map tasks gets larger, the operating system on the nodes
needs to spend more time on task switching, swapping, while
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Fig. 4. Speedup depending on the number of active nodes, map and reduce tasks on the Amazon32 cluster

Fig. 5. Speedup depending on the number of active nodes, map and reduce tasks on the FCSE24 cluster

also needing to run many Hadoop and other services in the
background. The total duration of this step on the one-node
cluster was 3656 seconds, while the quickest solution obtained
when using 59 nodes and 177 map tasks took 129 seconds on
this cluster and the corresponding speedup was 28.34.

Then we continued our experiments on the Amazon32
cluster, trying to determine the impact of the number of nodes,
maps and reduces. We have tried three options when trying to
utilize the nodes of the cluster: use as much as possible nodes
to run map tasks and have only one reduce task; use as much
as possible nodes to run both map and reduce tasks; and use
only one node for one map task and use all available nodes for
reduce tasks. The speedup compared to the one-node cluster

depending on the available nodes using these three options are
shown on Fig. 4. It indicates that for this dataset it is best
to have only one reduce phase, but use as many nodes as
possible for the map tasks. This, in fact, makes sense because
the work is performed during the map phase and during the
reduce phase these results are only grouped together. Having
more than the default of one reduce task actually increases the
duration because the partial results in each reduce task need
to be merged together. The total duration of this step on the
one-node cluster was 4732 seconds, while the quickest solution
with speedup of 6.83 took 693 seconds.

Aiming to confirm these findings we continued testing on
the FCSE24 cluster, using the same approach. Additionally
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Fig. 6. Execution time for calculating counts of the 80x replicated AAIA’14
dataset depending on the cluster configuration

we have tried using 1,3,5,7 or 9 reduce tasks, depending on
the number of available nodes. Our intent was to confirm that
using only one reduce task (the default value in Pig Latin)
will be more appropriate for a dataset of this size. The charts
shown on Fig. 5 indeed confirm this assumption. The greatest
speedup was always achieved when using only one reduce task,
regardless of the number of available nodes. The total duration
of this step on the one-node cluster was 3637 seconds, while
the quickest solution with speedup of 13.72 took 265 seconds.

Finally, we have analyzed the execution time on the
FCSE65 cluster using the 80 times replicated dataset. We have
started experimenting using 54 nodes and gradually reducing
the number of nodes by 5. When using 54 nodes we have also
tried used 2, 3 and 4 times more table regions than actual
nodes. Fig. 6 shows the execution times depending on the
various configurations. In all cases the number of reduces was
1. Owing to the fact that this dataset is quite large, executing
this step on smaller clusters took a significant amount of
time. Additionally because HBase splitted the table on the
one node cluster to two regions, using that execution time
for calculating speedup would have been inconsistent with
the previous setups. Therefore, for this experiment on Fig.
6 we are reporting the execution time and not the speedup.
By performing this experiment we have confirmed that the
proposed parallel implementation is scalable to large datasets
for which the processing with a sequential implementation
would be quite difficult if not impossible.

VII. CONCLUSION AND FUTURE WORK

In this paper we have reviewed the applications of the met-
ric information gain for ranking individual features, discretiza-
tion of continuous valued features, improving decision tree
performance, localization, rough sets, etc. In a Big Data setting
those tasks become a significant challenge, and therefore the
need for its parallelization. In this paper we have proposed
a parallel implementation of it. In oder to facilitate this, we
have proposed a generic framework for data parallelization
and then all steps from the algorithm for computation of
information gain were parallelized using it. The benefits from
using the scripting language Pig Latin were evident by the

code listings which allowed fast development of MapReduce
jobs. We have also demonstrated how can we manually set
the degree of parallelism by pre-splitting the HBase tables so
they have optimal number of regions and even data distribution
across regions. The experiments confirmed that for this type of
algorithm it is best to use only one reduce task. We have also
validated that the multi-core nodes are providing increased per-
formance when they execute more map tasks simultaneously.
By deploying the implementation on Amazon AWS and on-
premises clusters we have demonstrated the portability of the
approach. The correctness of the implementation was verified
by comparing the ranked features with the results we obtained
from WEKA. Not to neglect were also the findings related to
the scalability of the approach to an even larger dataset with
millions of instances and dozens of thousands of features.

In our future work we plan to utilize the proposed im-
plementation for other task In that manner, we also need
to propose valid data transformation and normalization tech-
niques, so we can generalize the approach and make it avail-
able for datasets that contain non-discretized continuous or
nominal features. Additionally, we aim to apply the current
parallelization for building decision trees. Finally, we plan to
parallelize other more advanced feature selection algorithms
using a similar framework.

ACKNOWLEDGMENT

This work was partially financed by the Faculty of Com-
puter Science and Engineering at the Ss.Cyril and Methodius
University, Skopje, Macedonia.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” in Proceedings
of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, ser.
OSDI’04. Berkeley, CA, USA: USENIX Association,
2004, pp. 10–10. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1251254.1251264

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” in Proceedings of the
7th USENIX Symposium on Operating Systems Design
and Implementation - Volume 7, ser. OSDI ’06.
Berkeley, CA, USA: USENIX Association, 2006, pp.
15–15. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1267308.1267323

[3] “Hadoop wiki: List of institutions that are using hadoop
for educational or production uses, howpublished = https:
//wiki.apache.org/hadoop/poweredby, note = Accessed:
2015-01-29.”

[4] J. R. Quinlan, C4.5: Programs for Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1993. ISBN 1-55860-238-0

[5] T. M. Mitchell, Machine Learning, 1st ed.
McGraw-Hill Science/Engineering/Math, 3 1997.
ISBN 9780070428072. [Online]. Available: http:
//amazon.com/o/ASIN/0070428077/

[6] D. Mladenic and M. Grobelnik, “Feature selection
for unbalanced class distribution and naive bayes,” in

190 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015
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