Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 6

Position Papers of the 2015 Federated Conference on Computer Science and Information Systems

Processing Imprecise Database Queries by Fuzzy Clustering Algorithms


DOI: http://dx.doi.org/10.1543920151

Citation: Position Papers of the 2015 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 6, pages 3138 ()

Full text

Abstract. Nowadays database management systems are one of the most critical resources in every company. Despite advanced possibilities of SQL, relational database management systems do not support flexible query conditions. Main assumptions of this work were two facts. First, that real data not representing random distribution (white noise), but have natural trend to granularity. The second one, that in everyday contacts we do not using strict defined conditions. The second feature lead us to use fuzzy logic which closer representing natural communication. First gives us opportunity to automatically construct functions defining membership to discreet groups based only on data distribution. The problem of extending database systems with natural language expressions is a matter of many research centers. The basic idea of presented research is to extend an existing query language and make database systems able to satisfy user needs more closely. This paper deals mostly with gaining imprecise information from relational database systems. Presented concept is based on fuzzy sets and automatic clustering techniques that allow to build membership function and fuzzy queries. Thanks to applied solutions, the relational database system is more flexible, and similar to natural way of communication.


  1. Bezdek, J. (1981). Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press.
  2. Bosc, P., Pivert, O. (1995, luty). SQLf: A Relational Database Language for Fuzzy Querying. IEEE Transactions on Fuzzy Systems, 3(1), pp. 1-17.
  3. Bosc, P., Tré, G. D., Dujmovic, J. J., HadjAli, A., Pivert, O., Ribeiro, R. (2012). On advances in soft computing applied to databases and information systems. Fuzzy Sets and Systems 196: 1-3.
  4. Buckles, B. P., Petry, F. E. (1982). A fuzzy reprezentation of data fo relational database. Fuzzy Sets and Systems(7), pp. 213- 226.
  5. Buckles, B. P., Petry, F. E., Sachar, H. S. (1989). A domain calculus for fuzzy relational databases. Fuzzy Sets and Systems(29), pp. 327-340.
  6. Center for Machine Learning and Intelligent Systems, U. o. (2007). Retrieved from Machine Learning Repository: http://archive.ics.uci.edu/ml/
  7. Chang, S., Ke, J. (1979). Translation of fuzzy queries for relational database systems. IEEE Transactions on Pattern Analysis and Machine Inteligence PAMI-1, pp. 281-294.
  8. Chu, S.-C., Roddick, J. F., Pan, J. S. (2002). An Incremental Multi-Centroid, Multi-Run Sampling Scheme for k-medoids- based Algorithms – Extended Report. Knowledge Discovery and Management Laboratory; Technical Report KDM-02-003.
  9. Dembczyński, K., Przybył, D., Kalinowski, P. (2006). Retrieved from SQLf_j: http://calypso.cs.put.poznan.pl/projects/sqlf_j/pl/index.php?page=intro
  10. Dunn, J. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3, pp. 32-57.
  11. Dziedzic, B., Małysiak, B., Mrozek, D. (2008). Interpreter wyrażeń rozmytych stosowanych w składni języka SQL. BDAS. Ustron.
  12. Galindo, J. (n.d.). Retrieved from A Fuzzy Query Language: http://www.lcc.uma.es/~ppgg/FSQL/
  13. Pelikant, A., Kowalczyk, A. (2007). Implemntation of automatically generated membership functions based on grouping algorithms . The International Conference on "Computer as a Tool". Warsaw.
  14. Pelikant, A., Kowalczyk-Niewiadomy, A. (2009). Fuzzy queries in relational databases. System Modelling and Control.
  15. Pelikant, A., Kowalczyk-Niewiadomy, A. (2011). Algorytm etykietowania analizujący rozmyte zapytania w metajęzyku naturalnym. Bazy Danych Aplikacje i Systemy. Ustron.
  16. Rubio, E., Castillo, O., Melin, P. (2011). A new validation index for fuzzy clustering and its comparisons with other methods. Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference., (pp. 301-306). Anchorage, AK.
  17. Takahashi, Y. (1991). A fuzzy query language for relational databases. IEEE Transactions on Systems, Man and Cybernetics, 21, pp. 1576-1579.
  18. Takahashi, Y. (1993). Fuzzy database query languages and their relational completeness theorem. IEEE Transactions on Knowledge and Data Engineering, 5, pp. 122-125.
  19. [Xie, X. L., Beni, G. (1991, Aug). A validity measure for fuzzy clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on(13, 8), 841-847.
  20. Xiong, H., Zhan, G., Wu, J., Shi, Z. (2009, September). Distance Measures for Clustering Validation: Generalization and Normalization. Knowledge and Data Engineering, 21(9), 1249- 1262.
  21. Yager RR, F. D. (1994). Approximate clustering via the mountain method. IEEE Trans Syst Man Cybern 24, (pp. 1279– 1284).
  22. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
  23. Zamenkova, M., & Kendel, A. (1985). Implementing imprecision in information systems. Information Sciences (37(1–3)), pp. 107-141.