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Gdansk University of Technology

Department of Applied Informatics in Management

Faculty of Management and Economics

Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland

Email: pawel.kaplanski@zie.pg.gda.pl

Paweł Weichbroth

Gdansk University of Technology

Department of Applied Informatics in Management

Faculty of Management and Economics

Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland

Email: pawel.weichbroth@zie.pg.gda.pl

Abstract—“If knowledge can create problems, it is not through
ignorance that we can solve them.” (Isaac Asimov). Nevertheless,
at any point of human activity, knowledge (besides practice) is
a key factor in understanding and solving any given problem.
Nowadays, computer systems have the ability to support their
users in an efficient and reliable way. In this paper we present
and describe the functionality of the Cognitum Ontorion system.
Firstly, we identify emerging issues focused on knowledge rep-
resentation and reasoning. Secondly, we briefly discuss models
and methodology of agent-oriented analysis and design. Next,
the semantic knowledge management framework of the system
is reviewed. Finally, the usability of Ontorion is argued based on
a case study, in which a software process simulation modeling
environment is developed. At the end we provide future work
directions and final conclusions.

I. INTRODUCTION

D
AVID GARVIN notes that “to move ahead, one must of-

ten first look behind” [1]. Let us ask this cinch question:

how do you want to understand the past, sense the present and

predict the future, if you are unable to preserve your knowl-

edge? Indeed, a lot of human effort and material resources

have been exploited in preserving knowledge. Indubitably,

humans have been using many different forms to express

and share knowledge (e.g. drawings, symbols, words and

numbers, which nowadays are commonly encoded in computer

memory). Now, let us focus on some formal representation

methods of knowledge which are the prominent subfield of

artificial intelligence (AI).

In the AI canon, knowledge seems to be always defined in a

strictly functional way. However, from all incoming questions

to the mind of an attentive reader, which one would be the first

to reveal the question: What is knowledge? – This might be the

question for the majority of us. Bearing in mind a computer

“brain” – central processing unit (CPU) is principally able to

process sequences of bits where a single bit is represented by

two exclusive numbers: 0 (zero) or 1 (one), as a consequence,

at the moment we are able to represent “only” facts and

rules in computer memory. A distinct fact (or a set of facts),

represented by a sentence (or a set of sentences), is used in

deductive reasoning. A single rule (or a set of rules), expressed

in a form: if → then, may be a logic or be inductive in

its genesis. Elements of particular knowledge (intra- or inter-

connected facts or rules) are often named as “knowledge

chunks” [2]. A single chunk is commonly attached to an

exclusive agent (an independent and separate application unit).

In the beginning, AI research investigated how a single

agent can exhibit singular and internal intelligence. However,

in recent years, we have observed an interest in concurrency

and distribution in AI which have been named as distribution

artificial intelligence (DAI). This recent discipline can be

divided into two primary areas: distributed problem solving

(DPS) and Multi-Agent (MA) systems. It is not a straightfor-

ward task to coordinate knowledge, goals and actions among

a collection of autonomous agents.

Some successful application of agent-oriented architecture

can be pointed in decision support systems (DSS) in the area of

the discovery of stock market gamblers patterns [3], [4], web

usage mining [5] and the evaluation of information technology

[6].

II. REASONING IN AGENT-ORIENTED DESIGN AND

ANALYSIS. A HYBRID APPROACH

There is a long history of symbolic reasoning usage in order

to provide intelligent behavior in Multi-Agent & Simulation

systems (MASS). Deductive Reasoning Agents, which use

logic to encode a theory defining the best action to perform

in a given situation, are the “purest” in terms of their formal

specification. Unfortunately, they suffer from all the practical

limitations of formal representation: firstly, the complexity

of theorem proofs (it may even lead to undecidable state-

ments) and secondly, the boundaries of expressivity formed by

core knowledge representation attributes (e.g. monotonicity of

knowledge, open world assumption).

Making deductive reasoning requires the selection of un-

derlying logics that support the nature of agents. It is worth

mentioning that the most prominent implementations of de-

ductive reasoning agents are based on intentional logics like

formal models of intention logics [7] (e.g. Belief – Desire –

Intention, BDI), which take into account some subset of the

Saul Kripke modal logic [8].

Problems with symbolic reasoning led to the establishment

of the “reactive agent movement” in 1985, revealing an era

of reactive agent architecture. The reactive agent movement
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manifested in the form of requirements for so-called behavior

languages [9]:

1. Intelligent behavior can be generated without explicit

representations of the kind that symbolic AI proposes.

2. Intelligent behavior can be generated without explicit

abstract reasoning of the kind that symbolic AI proposes.

3. Intelligence is an emergent property of certain complex

systems.

Reactive agents are nowadays well recognized but still

they lack formal foundations and therefore these kind of

MASS are very hard to analyze with formal methods and

tools. Nevertheless, the reactive agent movement resulted in

Agent Oriented Programming (AOP), e.g. JADE [10], which

is currently considered as a step beyond Object Oriented

Programming (OOP) in Software Engineering.

A novel approach to designing MA systems – Hybrid Agent

Architecture, attempts to combine the best of symbolic and

reactive architectures. The system itself is built up of at least

two subsystems: (1) a symbolic world model that allows

plans to be developed and decisions made and (2) a reactive

engine which is capable of reacting to events without involving

complex reasoning.

As an example let us consider Ferguson’s “TouringMa-

chine” [11], which fits into the definition given above.

Ferguson defines: “The TouringMachine agent architecture

comprises three separate control layers: a reactive layer, a

planning layer, and a modelling layer. The three layers are

concurrently-operating, independently-motivated, and activity-

producing: not only is each one independently connected

to the agent’s sensory apparatus and has its own internal

computational mechanisms for processing appropriate aspects

of the received perceptual information, but they are also

individually connected to the agent’s effectory apparatus to

which they send, when required, appropriate motor-control

and communicative action commands”.

We present a novel approach to hybrid agent architecture,

which is implemented on top of a scalable Knowledge Rep-

resentation & Reasoning (KRR) system. KRR allows each

environment to be described formally as well as giving the

possibility to build a reactive agent system based on a knowl-

edge base (KB) triggering subsystem. Moreover, it provides

agents with synthesis tools.

Here, we consider a reactive agent that is able to maintain its

state [12]. This agent has an internal stand-alone data structure,

which is typically used to record information about the state

and history of the environment and to store a set of all the

internal states of an agent (Fig. 1).

The perception of an agent is realized in its see function if

the function is time-independent. The agent’s action selection

is defined as a mapping from its internal states to actions. The

next function maps an internal state and percept to an internal

state. The abstract agent control loop is then:

1. Start with the initial internal state s← s0.

2. Observe the environment state e, and generate a percept

p← see(e).

Agent

see

next

action

Environment

state

Fig. 1. An agent with its internal state

3. Update the internal state via the next function s ←

next(s, p).

4. Select an action via the action function a← action(s).

5. GOTO 2.

The environment state e is (in hybrid architecture) given

by the symbolic system – here we use ontology to encode it.

The function next is one that needs to be implemented either

by the programmer or by an automated process. In the first

case, however, it is hard to distinguish such an agent from

a (considerably complex) object oriented program (formerly,

active-object design pattern implementation [13]). On the other

hand, automated agent synthesis is an automatic programming

task: given an environment, let’s try to automatically generate

an agent that succeeds there. The synthesis algorithm should

be both sound and complete. Sound means here that the agent

will succeed in the given environment once it is correctly

constructed, and completeness guarantees the possibility to

create the agent for the given environment.

The hybrid approach allows us to build a semi-formal

foundation for MASS that allows for a sound and complete

synthesis of agents as long as their definition fits into the

expressivity frame of underlying logic and if the underlying

logic has the reasoning task to be sound and complete itself.

This is true for Description Logic (DL) [14] – the foundation

for OWL [15], therefore we selected OWL compliant KRR.

III. ONTORION ARCHITECTURE

Modern Scalable Knowledge Management Systems give the

possibility to use KRR in a similar way as we tend to use

RDBMS. We have focused on a KRR system the functionality

of which allows a user-interface in natural language to be

implemented and used.

Ontorion [16] is a Distributed Knowledge Management Sys-

tem that allows semi-natural language to be used to specify and

query the knowledge base. It also has a built-in engine trigger

which fires the rules each time if the corresponding knowledge

is modified. Ontorion supports the major W3C Semantic Web

standards: OWL2, SWRL, RDF, SPARQL. Ontologies can

easily be imported from various formats, exported to various

formats, and accessed with SPARQL [17]. Solutions built on
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top of Ontorion can be hosted both in the Cloud and On-

Premise environments.

By design, Ontorion allows one to build large, scalable

solutions for Semantic Web. The scalability is realized by

both – the noSQL, symmetric database Cassandra [18] and

the internal ontology modularization algorithm [19]. Ontorion

is a cluster of symmetric Nodes, able to perform reasoning on

large ontologies. Every single system node is able to do the

same operations simultaneously on data sets – it tries to get

the minimal suitable ontology module (part) and perform any

requested task on it.

The symmetry of the architecture of the cluster provides

system scalability and flexibility – Ontorion can be deployed

and executed in a computing cloud environment, where the

total number of nodes can be changed on request, depending

on user requirements.

The fundamental algorithm in a KRR system such as

Ontorion ought to reason over description logic selected as a

foundation for OWL called SROIQ(D) [20], and should be

able to process complete or selected segments of ontologies.

If performance is more important than expressivity power,

then it is possible to switch Ontorion into OWL-RL+ mode.

OWL-RL+ mode is constructed in a similar way to how it was

first implemented in DLEJena [21]. The reasoning process in

OWL-RL+ mode remains in SROIQ(D) for the T-Box, while

for the A-Box the reasoning is based on the OWL-RL ruleset.

Furthermore, the modular separation of complex ontologies

also allows the reasoning process to be partitioned, which

can be performed on knowledge modules (independent pieces

of knowledge) – in parallel, at the same time on separate

machines. In other words, the modularization algorithm is

scalable and traceable.

In Ontorion, conclusions that are the results of new incom-

ing knowledge can fire triggers at extension/reactive points

(Fig. 2). On the other hand, if some chunk of knowledge

meets a set of predefined conditions, a knowledge modification

trigger executes the procedures responsible for interaction with

external systems (e.g. sending a notification using an SMTP

server). We observed that knowledge modification triggers

allow the Hybrid Agent MASS to be built on top of the

Ontorion KRR.

The underlying storage for Ontorion is the BigTable [22]

implementation (namely Cassandra), which is able to main-

tain a petabyte of data. Together with an analytic cluster

e.g. Hadoop [23] it forms a BigData solution. In these terms,

we can consider Ontorion as a BigKnowledge solution and our

Agent application as a BigAgent, which together constitutes a

highly scalable hybrid agent infrastructure.

Distributed systems lack the one common model of time. In

a distributed environment, time is relative and the serialization

of events requires an internode negotiation algorithm. In

modern distributed noSQL databases like Cassandra 2.0, the

serial time model can be preserved with the use of the Paxos

algorithm [24], which allows a distributed atomic “Compare

and Set” (CAS) functionally to be efficiently implemented.

CAS in Ontorion is used to maintain the Agent state in

a coherent way, therefore the existence of CAS is critical

for proper system functioning. CAS also provides a way to

make the Agent System fault-tolerant by transactional-queue

implementation, which is crucial for long-running simulations.

Ontorion
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Fig. 2. The Ontorion KRR

IV. PROGRAMMING AGENTS WITH NATURAL LANGUAGE

An important, novel feature of Ontorion, among other KRR

systems, is the ability to describe knowledge and interact with

the user in semi-natural language. The language represents

the family of controlled natural languages that is expressive

enough to describe OWL. Controlled natural language (CNL)

is a subset of natural language with a reduced grammar and

vocabulary, which – in this case – translates directly to logic

with formal semantics capabilities.

In general, controlled natural language should be unambigu-

ous and intuitive, ultimately forming an easy way for human-

machine interaction (understandable by humans, executable by

machines). Due to its limitations, it needs to be supported

by a predictive (structural) editor which is Ontorion FluentE-

ditor tool [25]. The other, well-known implementation of a

controlled natural language is “Attempto Controlled English

(ACE)” [26], developed by the University of Zurich. However,

the origins of CNL can be found in the famous novel by

George Orwell: “1984”, where he discusses the NEWSPEAK

– a controlled language. The most used industrial implementa-

tions nowadays are Domain Specific Language (DSL) (imple-

mented as a part of the Drools project) [27] and Semantics of

Business Vocabulary and Rules (SBVR) [28], whereas CNL

allows the representation of BPML diagrams.

In Ontorion Fluent Editor controlled language is equipped

with formal semantics expressed in logic. General groups of

sentences are allowed which include:

1. Concept subsumption, represents all cases where there is

a need to specify (or constrain) the fact about a specific

concept or instance (or expressions that evaluate the

concept or instance) in the form of subsumption (e.g.:

Every cat is a mammal, Pawel has two legs or One cat

that is a brown-one has red eyes).
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2. Role (possibly complex) inclusion specifies the proper-

ties and relationships between roles in terms of the ex-

pressiveness of SROIQ(D) (e.g.: If X loves something

that covers Y then X loves-cover-of Y).

3. Complex rules; If [body] then [head] expressions

that are restricted to the DL-Safe SWRL subset

[29] of rules (e.g.: If a scrum-master is-mapped-to

a provider and the scrum-master has-streamlining-

assessment-processes-sprints-level equal-to 2 then the

provider has-service-delivery-level equal-to 1 and the

provider has-support-services-level equal-to 2).

4. Complex OWL expressions; the grammar allows the use

of parentheses that can be nested if needed in the form

of (that ) e.g.: Every human is something (that is a man

or a woman or a hermaphrodite).

5. Aforementioned knowledge modification triggers that

have the form of: If P then for-each P execute Q, where

P is a premise and Q a consequence. Premise P is an

expression that evaluates a set of connected instances

that fulfill some conditions, while the consequence Q is

a procedure written in C# programming language (e.g.:

fig. 5).

V. THE DEFINITION OF THE MULTI-AGENT SYSTEM IN

TERMS OF KNOWLEDGE MANAGEMENT SYSTEM TRIGGERS

Here, we present a modern scalable KRR as a foundation for

MASS. The discussed KRR (Ontorion) enables the specifica-

tion of knowledge-modification triggers in the form of reactive

rules: if → action. Ontorion knowledge modification triggers

allow the knowledge itself to be modified and therefore it

is possible to build a set of triggers here that are fired

continuously. A reactive trigger like this breaks the decidability

of the underlying knowledge base and, as a consequence, KRR

tasks based on Ontorion are decidable only if all deductive

rules are DL-Safe (e.g. they are SWRL equivalent) – otherwise

these tasks are non-decidable.

The above property of system modification triggers is very

useful for the development of the hybrid MASS. The hybrid

agent paradigm can be adapted, by using triggers, even if the

environment is modelled in Ontorion as an OWL Ontology,

with all its limitations (e.g.: lack of modality or time repre-

sentation). We can define agents here as OWL individuals.

The behaviour of the agents is implemented in reactive rules

called moves. These rules combine the see, next and action

functions discussed earlier (the reactive, state based and ab-

stract model of an agent). Moreover, agent-individuals and

“ordinary” OWL individuals are different as agent-individuals

are equipped with a transactional, CAS protected internal state,

represented by related data-values.

A single move function as a parameter takes a percept

which is a result of a reasoning process (here, we consider

reasoning as an implementation of the abstract see function)

over the current state of the environment. In the implemen-

tation of this function a CAS operation is used to preserve

transactional semantics. The move function is only activated

if the perceived-message is equal to the expected-message.

If ... then ... execute <?

    Move(agent, "current-state", message, 

        "expected-message", ()=>

    {

/* the agent action */

        return "new-state";

    });

?>.

Fig. 3. General form of the move function

There is not one single agent that activates on perceived-

message - it can be any agent that fulfills the rule premise,

therefore a rule conclusion can be reused by many agents and

the overall execution result of the system is non-deterministic.

Messages are transferred between agents using a distributed

message queuing system, managed by the KRR.

A single agent is determined by its state and all the move

functions that can be ever executed in the context of its state,

therefore here, the agent synthesis process, is a process of

the assignment of the move functions to the single agent-

individual.

The reactive-rule bodies of the move function determine

the specific environment state that allows the system to assign

the function to the agent; however, the overall behaviour of

MASS is non-deterministic. This is due to the fact that the

concrete run (the MASS run) needs the selection of agent

instances made in runtime – and runtime (in opposition to

reasoning time) is a part of the reactive model that is non-

deterministic by nature. The non-deterministic selection of

choices, often by use of pseudo-random number generators,

and the parallel execution of different threads, are required by

underlying technologies to provide an efficient computational

model.

Therefore, we need to keep in mind, that simulations based

on the reactive/hybrid approach are non-deterministic. In this

case, we have to perform a large set of experiments with the

same initial state and then use analytical tools and methods to

verify the statistical hypothesis.

VI. THE SCALABILITY OF KRR ORIENTED MASS

In practical scenarios, when it comes to simulating large

societies, it is important to simulate a large amount of agents at

the same time. From the technological perspective, currently,

we can model large societies of people. Nowadays, the exis-

tence of 7 × 109 beings can be encoded in less than 1 GB

of memory. If we encode a single human being as a 1 kB

vector of bits then we can store an entire population in a single

modern hard drive at a relatively low cost. Working with cloud-

based environments, we can hire thousands of computers for a

few hours with a similar amount of money. Therefore MASS

scalability – the ability of the system to scale together with the
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size of the problem - is regarded as a mandatory and critical

property.

Ontorion is a scalable KRR system, approximately asso-

ciated with the size of maintained knowledge due to mod-

ularization algorithms embedded, whereas Cassandra, as the

underlying storage solution, is scalable by its design.

In distributed systems, task synchronization is a burden

and sometimes even an obstacle. Task distribution over a

set of physical machines demands synchronization protocols.

Satisfyingly, the Cassandra database has the Paxos protocol

implemented, which allows a global CAS functionality to

be implemented. The ability of agents to modify particular

chunks of knowledge indicates influence on the surrounding

environment as well. What can be seen as a common task

in terms of RDBMS (e.g. some database modification), might

have large and complex implications in terms of a distributed

knowledge base. Given the subset of First Order Logic (FOL),

we deal with the monotonic knowledge model. The mono-

tonicity implies that there is no impact on the overall meaning

when the order of adding knowledge is one way or another.

When we modify knowledge the problem is somehow more

complicated – besides agents tend to modify knowledge very

often. The cost of knowledge modification depends on its level,

scale and size. The relation between knowledge generality and

its modification cost is positive as a result of the replacement

of all revalued conclusions. Moreover, knowledge modification

triggers, used to implement the next functions, break the open

world assumption (OWA) [14]. This effect is caused by their

ability to modify knowledge depending on the “known” parts

of the knowledge. An agent may learn knowledge even when

it stays in contradiction to what it already knows. In addition,

knowledge modification triggers break the monotonicity of the

knowledge base. Therefore, the order of agent Next firing is

significant in terms of the final knowledge base shape. As

previously mentioned, simulations based on the reactive/hybrid

approach are non-deterministic due to both the distributed

system properties and the internal non-determinism of the

reactive agent system.

VII. EXPERIMENTAL SETUP - SOFTWARE PROCESS

SIMULATION MODELLING (SPSM) ENVIRONMENT

Software Process Simulation Modelling (SPSM) [30] is

widely used nowadays to support planning and control during

software development [31], [32]. MA systems play a very

important role here as they naturally can be used to simulate

social behaviors in the software testing phase. In our approach,

the SPSM is divided into two components: ontology and

knowledge modification triggers. In the example given below

(see Fig. 4), the ontology defines (with CNL) the core concepts

such as: competency, task, developer, manager:

We also defined agent-rules by making use of knowledge

modification triggers (see Fig. 5,6). Those triggers implement

the following scenario: a developer with certain competencies

starts to realize a task. After the task is finished, new knowl-

edge about the task realization process is added, and a “Busy”

Cpp-Programming is a competency.

Java-Programming is a competency.

...

Task-0 is a task.

Task-1 is a task.

Task-1 is-dependent-on Task-0.

Task-1 requires-competency Cpp-Programming.

Task-1 has-estimated-realization-md equal-to 500.

Task-2 is a task.

Task-2 is-dependent-on Task-1.

Task-2 requires-competency Java-Programming.

Task-2 has-estimated-realization-md equal-to 500.

...

Anna is a developer .

Anna has-competency Cpp-Programming .

Anna has-competency Java-Programming .

John is a developer .

John has-competency Java-Programming .

John has-competency Web-Programming .

...

Fig. 4. Configuration of the SPSM environment

state is set on the developer. The second trigger is fired when

the task is finished and a “Ready” state is set back.

Every time the environment contains a situation where one

task is dependent on the other, finished task, we execute the

trigger that forces previous triggers to start a simulation.

Here, we use the once function, which ensures that the

execution of the trigger happens exactly once (note that this is

not a trivial task, not executed in a stand-alone system but in

a distributed system which requires dispersed CAS operation).

The last step is to define the simulation entry point (see fig.

7).

The start event (see fig. 8) sets up the agents and defines

the initial task for the “Done” state to activate the overall

simulation.

In the above simulation, to make a long story short, in the

beginning, we defined three distinct sets: task, competence

and individual. Each agent represented a particular individual

(developer). Each task required a precise competency and was

time specified. This simplified description of the modelled

micro-world was given as an input to the system. Next, on

a user request the simulation was executed and a set of rules

started to be processed due to accomplish a given set of tasks

(Fig. 10).

Ontorion usability has been evidenced in one of many

possible applications. In highly complex systems or projects,

it seems that it is a considerable issue to design, estimate

and finally test all possible dependency relationships between

processes and their execution sequence. We showed how

to optimize the selection of a developer’s competency to a

particular tasks. In this instance, we were able to identify

“hidden” bottlenecks and constraints.

The experiments performed on the Ontorion cluster show
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If a task-realization-query requires-competency a 

competency and a developer has-competency the 

competency and the task-realization-query has-origin 

a task then for the task-realization-query and the 

developer and the task execute <?

    Move(developer, "Ready", 

      task_realization_query, "Programming", ()=>

    {

// read the realization time

var realizationTime = 

  (from v in Values where   

      v.source==InstanceDL(task) &&

      v.datarole=="have-estimated-realization-md" 

   select v.value).

   FirstOrDefault().

   SetConsistencyLevel(ConsistencyLevel.Quorum).

   Execute();

// create the wake-up message

        var msgid = CreateMessage(developer, 

"WakeUp",task);       

 

// delayed (by the realization time) modification // 

of KB 

  KnowledgeInsertWithDelay(

      msgid + " is a wake-up-message."+

      msgid + " has-origin " + developer + "."+ 

      msgid + " has-task-realization-query " 

            + task_realization_query + "."+ 

      msgid + " has-target "+ developer + ".",  

   int.Parse(realizationTime)); 

// mark the agent state as busy

        return  "Busy";

    });

?>.

Fig. 5. The move function written in C# is fired when the developer is ready
and fit for the given task

If a wake-up-message has-target a developer and the 

wake-up-message has-origin the developer and the wake-

up-message has-task-realization-query a task-

realization-query and the task-realization-query has-

origin a task then for the wake-up-message and the 

developer and the task-realization-query and the task 

execute <?

    Move(developer, "Busy", 

         wake_up_message, "WakeUp", ()=>

    {

// modify the status of task

       KnowledgeInsert(task+" has-status Done.");

// mark the agent state as ready

       return "Ready";

    });

?>.

Fig. 6. The move function written in C# is fired when the developer is done
with the task

If a start-event exists then for the start-event execute 

<?

    Once("Lets the simulation start.", ()=>

    {

      CreateAgent("Mark","Ready");

      CreateAgent("John","Ready");

      CreateAgent("Tom","Ready");

      CreateAgent("Gabi","Ready");

      CreateAgent("Anna","Ready");

      KnowledgeInsert("Task-0 has-status Done.");

    });

?>.

Fig. 7. The simulation entry point

Start-Event is a start-event.

Fig. 8. The simulation start event

flexible system scalability, persistent intra-communication du-

ration between nodes and overall system stability. As an illus-

tration, let us present this factual operation. A new node added

to the server farm was properly initialized and broadcasted

to other nodes and a scheduled job was again distributed.

Still, a systematic empirical measurement needs to be made to

monitor system behavior, especially when some changes have

taken place. A cloud-based environment is our choice due to

the obvious benefits of machine virtualization.

For Ontorion cluster setup, we used cluster of 3 standard

VM nodes. On top of this cluster we executed MASS made

of 5 agents.

Fig. 9. The result of a particular SPSM simulation (assignment of program-
mers to tasks)
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Fig. 10. The system’s console with detailed information of task status,
performer and dependencies

VIII. EXAMPLES OF ONTORION APPLICATIONS

Due to the limitations of this paper, we only briefly mark

a few Ontorion applications which we think give an objective

perspective on its functionality.

First of all, our system has been successfully deployed as

an intelligent semantic tool in a company from the energy

sector located in the USA. There are several benefits worth

mentioning of customizing Ontorion to this client. Primarily,

we were able to semantically describe data sources due to

automating the process of infrastructure management.

Another interesting application, which has taken place re-

cently in a company in the Aeronautics and Space industry, is

a case-based reasoning solution. Here, we combine text mining

with a dedicated ontology to mine and structure information

residing inside messages, incoming from users, which expose

some third-party system errors and defects. Next, to those

extracted chunks of information, the inference engine adds

relevant tags based on a semantic analysis and together, such

enhanced information (someone may even define such rich

data as knowledge [33]) is exported to a database (knowledge

base). Later, we execute triggers to combine this knowledge

with rules and reason a possible set of actions. Nevertheless,

an expert is responsible for selecting the final action to be

taken due to the solution of the reported problem.

In medicine, for the Maria Skłodowska-Curie Institute of

Oncology we built a highly complex ontology which repre-

sents a set of rules describing cancer procedure treatment. First

and foremost, we are able to centrally manage all the rules,

where, on a user’s rule change request, with little effort, we just

need to modify the semantic description preserving other rules

from unnecessary modifications. The most beneficial is the

usage of (semi) natural language that is readable for medical

oncology experts. Thus in this way they are able to verify the

knowledge input.

In the production sector, we have developed a common

dictionary for different actors to communicate and collaborate

world-wide. Actors include employees (located in different

countries and continents) and heterogeneous information sys-

tems (from different software vendors). The deployment of

semi-natural language, integrated inside the Fluent Editor

(Ontorion ontology editor), proved to be a tool, on the one

hand, easy to understand and use by its users, and on the

other hand, easy to configure and maintain for administrators

during systems (applications) integration.

Finally, we can use Ontorion to manage authorization and

authentication, versioning, auditing and what distinguishes us

from the competition is collaborative ontology engineering.

Moreover, we are able to deploy a solution for semantic

enhance searching which, based on taxonomy, efficiently im-

proves sharing and searching for information in response to a

user query, and interpreting strings of words not only using

statistical techniques, but in the sense of logical connections

existing between them. On the other hand, such a taxonomy

can be seen as an asset of organization knowledge, which can

be used to acquire knowledge from individuals and next to

preserve it in a formal way.

IX. FUTURE WORK DIRECTIONS

First, we plan to explore the scalability of MASS created

in the way described in this paper. Even if Ontorion itself is

a scalable solution, it is not obvious that the knowledge and

inter-agent communication via a distributed queue will have

the property of scalability too. Secondly, we want to explore

an automated agent synthesis, based on theorem proofers. The

synthesis should select rules in an adaptive way from the set

of available rules by activating them with some threshold.

X. CONCLUSIONS

In this paper, we showed that the Ontorion server is able

to execute, maintain and control massive simulations based

on a hybrid MASS approach. The resulting MASS fits well

into the definition of a Hybrid MASS. The perception of

an agent is realized by description logic theorem proofers

(reasoners). Agents are modelled as instances equipped with

a relevant time model, which allows them to interact with the

environment and with each other. Inter-agent communication

is realized by messages that together with the environment are

represented by an ontology managed by the server. Finally,

actions performed by agents are encoded in a particular

programming language, which brings our approach close to

AOP.

An agent synthesis benefits from a formal reasoning engine

(being a central component of KRR) and is based on an action-

selection procedure. An expressive and distinct Ontorion func-

tionality is the ability to encode agent logics in semi-natural

language in the interest of a less professional user. We also

observed that this allows end users to understand actions taken
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by an agent, even if a user is not well trained in formal

representation systems.

Obviously, we are aware of some obstacles which can

be pointed out in the presented simulation. The key issue

is to verify the usability and then estimate the degree of

functionality adoption on the client side. We have also not used

any technique of knowledge verification and validation [34].

On the other hand, we presented some Ontorion applications

in the medicine, aerospace and production industries which

were positively evaluated and are still in use. Based upon

preliminary feedback from our clients, we think that the

presented system, as a multi-agent simulation platform, is a

promising prospect not limited to any particular industry or

purpose.

Ontorion is free of charge for academic institutions and

independent researches. For more information, please visit our

website available at http://www.conitum.eu/semantics/.
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