
Time-Dependent Traveling Salesman Problem with

Multiple Time Windows

Jarosław Hurkała

Institute of Control & Computation Engineering, Warsaw University of Technology, Warsaw, Poland

Interdisciplinary Center for Security, Reliability and Trust – University of Luxembourg

Email: J.Hurkala@elka.pw.edu.pl

Abstract—The TSP, VRP and OP problems with time con-
straints have one common sub-problem – the task of finding
the minimum route duration for a given order of customers.
While much work has been done on routing and scheduling
problems with time windows, to this date only few articles
considered problems with multiple time windows. Moreover, since
the assumption of constant travel time between two locations at
all times is very unrealistic, problems with time-dependent travel
were introduced and studied. Finally, it is also possible to imagine
some situations, in which the service time changes during the day.
Again, both issues have been investigated only in conjunction with
single time windows. In this paper we propose a novel algorithm
for computing minimum route duration in traveling salesman
problem with multiple time windows and time-dependent travel
and service time. The algorithm can be applied to wide range of
problems in which a traveler has to visit a set of customers or
locations within specified time windows taking into account the
traffic and variable service/visit time. Furthermore, we compare
three metaheuristics for computing a one-day schedule for this
problem, and show that it can be solved very efficiently.

I. INTRODUCTION

I
N this paper we focus our work on time-dependent routing

and scheduling problem with multiple time windows. The

problem consist of an agent (tourist, sales representative, etc.)

whose aim/duty is to visit a predefined set of customers/lo-

cations (e.g. points of interest). Each customer/location may

define many time windows which indicates the availability

during the day. Furthermore, we assume, that the travel time

between the customers/locations changes due to the traffic.

In this work we also assume different service/visit time in

different time windows.

In this work we describe the theory and algorithms for com-

puting one-day schedule in time-dependent traveling salesman

problem with multiple time windows for application in many

well known operational research problems such as vehicle

routing problem (VRP) (see [2], [3], [8], [14]), orienteering

problem (OP) (see [15], [16]), or generally traveling salesman

problem (TSP) with complex time constraints. While much

work has been done on mixed routing and scheduling problems

with time windows, to this date only few articles considered

problems with multiple time windows (cf. [2]).

Throughout this article, we will denote a sequence of

customers as a route, while we use the term schedule to denote

a route with fixed visit times.

The paper is organized as follows: in Section 2 we de-

scribe the problem, and discuss additional issues arising from

multiple time windows, and time-dependent travel and service

time. Section 3 describes preprocessing of time windows and

presents the minimum route duration algorithm. In Section

4 we explain in details the algorithms used for computing

the one-day schedule in time-dependent traveling salesman

problem with multiple time windows. Section 5 shows the

results of our numerical experiments. Finally, some concluding

remarks are given in Section 6.

II. PROBLEM DESCRIPTION

We consider a Time-Dependent Traveling Salesman Prob-

lem with Multiple Time Windows (TDTSPMTW) with the

following features:

1) each customer can define multiple time windows during

which he is available and can be serviced;

2) the service time can be different in every time window

of the customer;

3) the travel time depends on the traffic time zone, in which

the transit actually occurs;

4) starting and ending depots are treated as customers so

that they also have time windows.

The TDTSPMTW problem can be defined as follows.

A. Problem notation

Let I = {1, . . . , n} be the set of customers i ∈ I that are

visited by the traveling salesman. Let Wi, be the set of i-th
customer time windows j ∈ Wi, during which the visit can

take place. The set of time windows of all the customers will

be denoted by W =
⋃

i∈IWi. Thus, [aji , b
j
i ] will denote the

j-th time window of i-th customer, where aji is the beginning,

and bji is the end of the time window, and the service time of

i-th customer in j-th time window will be denoted by sji . Let

Z , k ∈ Z , be the set of traffic time zones [pk, qk], where pk

is the beginning, and qk is the end of the traffic time zone,

and tki be the travel time from i-th customer to the next one in

the sequence, in k-th time zone. Notice, that we deliberately

define travel to the next customer instead of to the current

one - this significantly simplifies the considerations. The visit

at i-th customer will be denoted by [αi, βi], where αi is the

time of arrival at the customer, and βi is the departure time

of the visit.
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B. Traffic time zones

Before we can proceed with explaining the minimum route

duration algorithm, the problem of traffic time zones has to be

accommodated. Since the customers can already have multiple

time windows, we can take advantage of this property and cre-

ate additional, „virtual“ time windows so that the travel time

in each window is well-defined. For every time window we

have to check whether it lies in one traffic time zone, or maybe

spans across multiple zones. In the latter case, the original time

window has to be divided into smaller, overlapping windows.

We shall explain this on the following example. Let [a, b] be a

time window with service time s, that spreads over two time

zones: [p1, q1] with travel time t1 and [p2, q2] with travel time

t2, such that p1 < a < q1 = p2 < b < q2. Than, we need

to divide the original window into the following ones: [a, q1]
with service time s and travel time t1 and [p2 − s, b] with

service time s and travel time t2. Notice, that the beginning

of the second window is brought forward by the service

time, because we consider travel time to the next customer in

sequence, and the transit starts as soon as the current customer

has been serviced. Thus, let V =
⋃

i∈I Vi be the set of virtual

time windows of customers i ∈ I. Finally, we can define a

function γ : V → Z that maps the virtual time windows into

the time zones. Since each virtual time window falls within one

traffic time zone, we know that the function is well-defined.

C. The normalized formulation

Having the travel time unambiguously defined for every

time window we can normalize the model similarly to [8],

[16]. Thus, we merge the service time and the travel time into

one parameter dji = sji + t
γ(j)
i , denoting the visit duration. At

the same time, we postpone the ending of every (virtual) time

window by the travel time associated with it, i.e. windows

[aji , b
j
i ] are transformed into [aji , b

j
i + t

γ(j)
i ]. Notice, that from

this point on in the article the departure time will have

new meaning, i.e., the moment the salesman reaches the next

customer in the sequence.

D. Master problem

Let π = (π (1) , π (2) , . . . , π (n)) be the permutation of

customers.

The master problem of TDTSPMTW, i.e. the problem of

finding optimal sequence of customers to be visited during

one day, can be defined as follows:

π∗ = argmin
π

MinimumRouteDuration(π) (1)

The problem of finding the minimum route duration for a

given sequence of customers (i.e. the subproblem of TDT-

SPMTW) can be formulated as follows.

E. Subproblem formulation

Let us define the main decision variables and explain their

meaning. For the time windows selection we define:

yji =







1 if the visit at customer i takes place

within the time window j

0 else

(2)

Using these notations, we write a mathematical model for

the TDTSPMTW subproblem. The objective is to minimize the

route duration (calculated as a difference between departure

time of last customer and arrival time at first customer):

minβn − α1 (3)

(aji + dji )y
j
i ≤ βi ≤ bji +M(1− yji ) i ∈ I, j ∈ V (4)

∑

j∈Vi

yji = 1 i ∈ I (5)

αi = βi −
∑

j∈Vi

djiy
j
i i ∈ I (6)

βi ≤ αi+1 i ∈ I \ {n} (7)

y ∈ {0, 1}, β ≥ 0 (8)

Constraints (4) handle the time windows in a classical way

(the departure time must be within a time window) with the

noticeable addition of the upper index, since we have multiple

time windows. Constraints (5) ensure that exactly one time

window per customer is chosen. The auxiliary constraints

(6) compute the start of every visit (arrival time α). Finally,

constraints (7) forbid to start the next visit before the current

customer departure time, so that the visits do not overlap. The

y variables are binary, and departure times β are non-negative

real variables (8).

III. MINIMUM ROUTE DURATION ALGORITHM

The minimum route duration algorithm that we have de-

veloped requires a feasible solutions to start with. Hence, the

preprocessing of the virtual time windows is needed.

A. Preprocessing

In order for the algorithm to work, unnecessary time win-

dows from the bottom-right (see Algorithm 1) and top-left (see

Algorithm 2) corners have to be removed (if you imagine the

first window of the first customer in the bottom-left corner of

a diagram, and the last window of the last customer in the top-

right corner). Similar approach has already been proposed in

[16], but in our formulation the visit duration may be different

in subsequent time windows of a customer, hence we can

dismiss only the ones that lead to unfeasible schedule.

Algorithm 1 TDTSPMTW: top-down preprocessing

1: α← maxj∈Vn
{bjn − djn}

2: for i = n− 1 to 1 do

3: Vi ← Vi \ {j ∈ Vi : a
j
i + dji > α}

4: if Vi = {∅} then

5: return false {schedule not feasible}

6: end if

7: for j ∈ Vi do

8: bji ← min{bji , α}
9: end for

10: α← maxj∈Vi
{bji − dji}

11: end for

12: return true
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Algorithm 2 TDTSPMTW: bottom-up preprocessing

1: β ← minj∈V1
{aj1 + dj1}

2: for i = 2 to n do

3: Vi ← Vi \ {j ∈ Vi : b
j
i − dji < β}

4: if Vi = {∅} then

5: return false {schedule not feasible}

6: end if

7: for j ∈ Vi do

8: aji ← max{aji , β}
9: end for

10: β ← minj∈Vi
{aji + dji}

11: end for

12: return true

Algorithm 3 TDTSPMTW: constructing feasible sub-schedule

Require: i, β
1: while i ≤ n do

2: β ← minj∈Vi,b
j

i
−dj

i
≥β max{aji , β}+ dji

3: i← i+ 1
4: end while

5: return β

The top-down preprocessing algorithm (Algorithm 1) be-

gins with calculating the latest possible arriving at the last

customer (denoted by α). Than, starting from the second to

last customer, virtual time windows are removed, for which

the visit starting at the beginning of the window would exceed

α (line 3). If after this step there is no more time windows,

the schedule (sequence of customers) is not feasible, and the

algorithm terminates. Otherwise, the remaining windows are

tightened so that the ending of each window does not exceed

α (line 8). Finally, the α value is recalculated for the current

customer (line 10) and the procedure starts over with previous

customer.

The bottom-up preprocessing algorithm (Algorithm 2)

works almost identically as top-down. The differences are as

follows:

• the earliest possible departure time from the customer

(denoted by β) is taken into consideration (lines: 1, 10);

• algorithm iterates from the second customer to the last

one;

• windows are removed if the beginning of visit that starts

as late as possible overlaps the departure time β (line 3);

• the remaining windows are tightened so that they do not

begin earlier than β (line 8).

The minimum route duration algorithm that we propose in

this paper consists of iteratively reviewing schedules of which

the one with the shortest duration is chosen. The procedure of

constructing each schedule is divided into two phases.

B. Phase 1: constructing feasible sub-schedule

The first phase consist of computing a feasible sub-schedule

that starts from a given customer, and ends with the last

one (see Algorithm 3). This procedure requires an index of

Algorithm 4 TDTSPMTW: constructing dominant sub-

schedule

Require: i, α
1: while i ≥ 1 do

2: α← maxj∈Vi,a
j

i
+dj

i
≤α min{bji , α} − dji

3: i← i− 1
4: end while

5: return α

Algorithm 5 TDTSPMTW: minimum route duration

1: τ∗ ←∞
2: if TopDownPreprocessing() and BottomUpPreprocess-

ing() then

3: for i = 1 to n do

4: for j ∈ Vi do

5: β ← constructFeasibleSubSchedule(i+ 1, bji )
6: α ← constructDominantSubSchedule(i −

1, bji − dji )
7: τ ← β − α
8: if τ < τ∗ then

9: τ∗ ← τ
10: end if

11: end for

12: end for

13: end if

14: return τ∗

a customer and an initial departure time. Repeatedly, among

the virtual time windows that have enough room to fit the visit

after the given departure time (bji − dji ≥ β), the earliest visit

departure time (calculated as: max{aji , β} + dji ) is searched

for.

C. Phase 2: constructing dominant sub-schedule

This phase is based on the notion of the dominant solutions

(see [8], [14], [16]). To put it simply, a schedule with starting

time α1 dominates schedule with starting time α2, if α1 >
α2 and at the same time ending time β1 = β2 (cf. [8]). In

our procedure, instead of fixed visit departure time, we use

the arrival time (obviously, α = β − d). Nevertheless, the

principle is the same - we repeatedly search for the latest

possible starting time of a visit (calculated as: min{bji , α}−d
j
i )

among the virtual time windows, that are suitable (aji + dji ≤
α), i.e. windows in which the currently considered visit does

not overlap the initial one.

D. The main algorithm

The algorithm enumerates schedules, constructing them in

a particular fashion. For each virtual time window, first, a

feasible sub-schedule is constructed with the initial departure

time set to the end of the current time window (line 5).

Secondly, a dominant sub-schedule is constructed with the

initial arrival time set to the latest possible start of the visit

in the considered window (line 6). The route duration is than

computed as the difference between the departure time from

JAROSŁAW HURKAŁA: TIME-DEPENDENT TRAVELING SALESMAN PROBLEM WITH MULTIPLE TIME WINDOWS 73



last customer and arrival time at the first customer (line 7).

The best solution found during the process is stored (lines

8–10) and returned (line 14). For the algorithm overview see

Algorithm 5.

Although the main procedure of the algorithm looks self-

explanatory, the reason it finds the optimal solution is not

trivial. Savelsbergh [14] has introduced the concept of forward

time slack to postpone the beginning of service at a given

customer. It can be proven, that the optimal schedule can be

postponed until one of the visits ends with the time window.

Hence, by iteratively reviewing schedules one by one so that

every possible time window with visit at the end of it is

taken into consideration, an optimal schedule is found by our

algorithm.

E. Computational complexity

The preprocessing procedures have both O(|V|) time com-

plexity. The sub-schedule construction procedures have to-

gether O(|V|) time complexity (they consider disjoint sets

of time windows). The main procedure has O(|V|) time

complexity (every time window is taken into consideration).

Hence, the total time complexity of the algorithm is O(|V|2).

IV. TDTSPMTW MASTER PROBLEM ALGORITHMS

For solving the TDTSPMTW master problem, i.e. com-

puting the one-day schedule, we have chosen three different

metaheuristics.

A. Simulated annealing

Simulated annealing was first introduced by Kirkpatrick

[10], while Černý [1] pointed out the analogy between the

annealing process of solids and solving combinatorial prob-

lems. Researchers have been studying the application of the

SA algorithm in various fields of optimization. Koulamas [11]

presented a survey of operational research problems in which

the heuristic was applied. The effectives of the algorithm was

also inspected in particular by Hurkała and Hurkała [5], [6],

and also Hurkała and Śliwiński [7].

The optimization process of the simulated annealing algo-

rithm can be described in the following steps. Before the

algorithm can start, an initial solution is required. Then,

repeatedly, a candidate solution is randomly chosen from the

neighborhood of the current solution. If the candidate solution

is the same or better than the current one, it is accepted and

replaces the current solution. A worse solution than the current

one still has a chance to be accepted with, so called, accep-

tance probability. This probability is a function of difference

between objective values of both solutions and depends on

a control parameter taken from the thermodynamics, called

temperature. The temperature is decreased after a number of

iterations, and the process continues as described above. The

optimization is stopped either after a maximum number of

iterations or when a minimum temperature is reached. The

best solution found during the annealing process is considered

final. For the algorithm overview see Algorithm 6.

Algorithm 6 Simulated annealing

Require: Initial solution s1
1: s∗ ← s1
2: for i = 1 to N do

3: for t = 1 to Nconst do

4: s2 ← perturbate(s1)
5: δ ← C(s2)− C(s1)
6: if δ ≤ 0 or e−δ/kτ > random(0, 1) then

7: s1 ← s2
8: end if

9: if C(s2) < C(s∗) then

10: s∗ ← s2
11: end if

12: end for

13: τ ← τ ∗ α
14: end for

15: return s∗

The main building block of the simulated annealing is the

temperature decrease (also known as the cooling process),

which consists of decreasing the temperature by a reduce

factor. The parameters associated with this mechanism are as

follows:

1) Initial temperature.

2) Function of temperature decrease in consecutive itera-

tions.

3) The number of iterations at each temperature (Metropo-

lis equilibrium).

4) Minimum temperature at which the algorithm terminates

or alternatively the maximum number of iterations as the

stopping criterion.

Let τ be the temperature and α be the reduce factor. Then

the annealing scheme can be represented as the following

recursive function:

τ i+1 = α ∗ τ i, (9)

where i is the number of current iteration in which the cooling

schedule takes place.

Second building block of SA that has to be customized for

a particular problem is the acceptance probability function,

which determines whether to accept or reject candidate solu-

tion that is worse than the current one. The most widely used

function is the following:

p (δ, τ) = e−δ/kτ , (10)

where δ = E(s2) − E(s1) is the difference between the

objective value (denoted by E) of the candidate (s2) and the

current solution (s1), and k is the Boltzmann constant found

by:

k =
δ0

log p0

τ0

, (11)

where δ0 is an estimated difference between objective values

of two solutions, p0 is the initial value of the acceptance

probability and τ0 is the initial temperature. Notice that we use
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decimal logarithm rather than natural, which is most widely

seen in the literature.

B. List-based threshold accepting

List-based threshold accepting algorithm (LBTA) intro-

duced by Lee [12], [13] is an extent of the threshold accepting

meta-heuristic, which belongs to the randomized search class

of algorithms. The search trajectory crosses the solution space

by moving from one solution to a random neighbor of that

solution, and so on. Unlike the greedy local search methods

which consist of choosing a better solution from the neigh-

borhood of the current solution until such can be found (hill

climbing), the threshold accepting allows choosing a worse

candidate solution based on a threshold value. In the general

concept of the threshold accepting algorithm it is assumed

that a set of decreasing threshold values is given before

the computation or an initial threshold value and a decrease

schedule is specified. The rate at which the values decrease

controls the trade-off between diversification (associated with

large threshold values) and intensification (small threshold

values) of the search. It is immensely difficult to predict

how the algorithm will behave when a certain decrease rate

is applied for a given problem without running the actual

computation. It is also very common that the algorithm with

the same parameters works better for some problem instances

and significantly worse for others. These reflections led to the

list-based threshold accepting branch of threshold accepting

meta-heuristic.

In the list-based threshold accepting approach, instead of a

predefined set of values, a list is dynamically created during

a presolve phase of the algorithm. The list, which in a way

contains knowledge about the search space of the underlying

problem, is then used to solve it.

The first phase of the algorithm consists of gathering

information about the search space of the problem that is

to be solved. From an initial solution a neighbor solution is

created using a move function (perturbation operator) chosen

at random from a predefined set of functions. If the candidate

solution is better than the current one, it is accepted and

becomes the current solution. Otherwise, a threshold value is

calculated as a relative change between the two solutions:

∆ = (C(s2)− C(s1))/C(s1) (12)

and added to the list, where C(si) is the objective function

value of the solution si ∈ S, and S is a set of all feasible

solutions. For this formula to work, it is silently assumed that

C : S → R+ ∪ {0}. This procedure is repeated until the

specified size of the list is reached. For the algorithm overview

see Algorithm 7.

The second phase of the algorithm is the main optimization

routine, in which a solution to the problem is found. The

algorithm itself is very similar to that of the previous phase.

We start from an initial solution, create new solution from

the neighborhood of current one using one of the move

function, and compare both solutions. If the candidate solution

is better, it becomes the current one. Otherwise a relative

Algorithm 7 Creating the list of threshold values

Require: Initial solution s1, list size S, set of move operators

m ∈M
1: i← 0
2: while i < N do

3: m← random(M)
4: s2 ← m(s1)
5: if C(s1) ≤ C(s2) then

6: ∆← (C(s2)− C(s1))/C(s1)
7: list← list ∪ {∆}
8: i← i+ 1
9: else

10: s1 ← s2
11: end if

12: end while

13: return list

change is calculated. To this point algorithms in both phases

are identical. The difference in the optimization procedure is

that we compare the threshold value with the largest value

from the list. If the new threshold value is larger, then the

new solution is discarded. Otherwise, the new threshold value

replaces the value from the list, and the candidate solution is

accepted to next iteration. The best solution found during the

optimization process is considered final.

The list-based threshold accepting algorithm also incorpo-

rates early termination mechanism: after a (specified) number

of candidate solutions is subsequently discarded, the optimiza-

tion is stopped, and the best solution found so far is returned.

The optimization procedure of the list-based threshold accept-

ing algorithm is shown in Algorithm 8.

The original LBTA algorithm does not have a solution space

independent stopping criterion. If the number of subsequently

discarded worse solutions is set too high, the algorithm will

run for an unacceptable long time (it has been observed during

preliminary tests). Hence, we propose to use additionally a

global counter of iterations so that when a limit is reached,

the algorithm terminates gracefully.

In the first phase of the list-based threshold accepting

algorithm the list is populated with values of relative change

between two solutions ∆ ≥ 0. After careful consideration, we

believe that including zeros in the list is a misconception. In

the actual optimization procedure, i.e. the second phase, the

threshold value is computed only if the new solution is worse

than the current one, which means that the calculated relative

change will always have a positive value (∆new > 0). The

new threshold value is compared with the largest value from

the list (Thmax). Thus, we can distinguish three cases:

1) Thmax = 0: since thresholds are non-negative from

definition, in this case the list contains all zero elements

and it will not change throughout the whole procedure

(Thmax is constant). Comparing a positive threshold

value ∆new against zero yields in discarding the can-

didate solution. The conclusions are as follows:

a) it does not matter how many zeros are in the list,
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Algorithm 8 LBTA optimization procedure

Require: Initial solution s1, thresholds list L, set of move

operators m ∈M
1: i← 0
2: s∗ ← s1
3: while i ≤ N do

4: m← random(M)
5: s2 ← m(s1)
6: i← i+ 1
7: if C(s2) ≤ C(s1) then

8: if C(s2) ≤ C(s∗) then

9: s∗ ← s2
10: end if

11: s1 ← s2
12: i = 0
13: else

14: ∆new ← (C(s2)− C(s1))/C(s1)
15: if ∆new < max(list) then

16: list← list \ {max(list)}
17: list← list ∪ {∆new}
18: s1 ← s2
19: i = 0
20: end if

21: end if

22: end while

23: return s∗

the effective size of the list is equal to one,

b) the algorithm is reduced to hill climbing algorithm

that accepts candidate solutions which are at least

as good as the current one.

2) Thmax > 0 and ∆new < Thmax: the largest (positive)

threshold value from the list Thmax is replaced by a

smaller (positive) threshold value ∆new. The number of

zero elements in the list remains the same throughout the

whole procedure and therefore is completely irrelevant

to the optimization process. The effective list size is

equal to the number of positive elements.

3) Thmax > 0 and ∆new ≥ Thmax: the new solution is

discarded and the list remains unchanged.

The main idea behind the list is to control the diversification

and intensification of the search process. In the early stage

of the search the algorithm should allow to cover as much

solution space as possible, which means that the thresholds in

the list are expected to be large enough to make that happen. In

the middle stage, the algorithm should slowly stop fostering

the diversification and begin to foster the intensification of

the search. In the end stage, the intensification should be

the strongest, i.e. the list is supposed to contain smaller

and smaller threshold values, which induces discarding of

worse solution candidates. As a consequence, the algorithm

is converging to a local or possibly even a global optimum.

Algorithm 9 Variable neighborhood descent

Require: Initial solution s0
1: s1 ← s0
2: i← 1
3: repeat

4: for j = 1 to size(Ni) do

5: s2 ← Ni(s0)
6: if C(s2) < C(s1) then

7: s1 ← s2
8: end if

9: end for

10: if C(s1) < C(s0) then

11: s0 ← s1
12: i← 1
13: else

14: i← i+ 1
15: end if

16: until i = |N |
17: return s0

Algorithm 10 Reduced variable neighborhood search

Require: Initial solution s0
1: i← 1
2: repeat

3: s1 ← V ND(Ni(s0))
4: if C(s1) < C(s0) then

5: s0 ← s1
6: i← 1
7: else

8: i← i+ 1
9: end if

10: until i = |N |
11: return s0

C. Variable neighborhood search

Variable neighborhood search (VNS) is a metaheuristic al-

gorithm proposed by Mledanović [9]. This global optimization

method is based on an idea of systematically changing the

neighborhood in the descent to local minima and in the escape

from the valleys which contain them. It has already been

successfully used in different Vehicle Routing Problems.

The VNS algorithm consists of two building blocks: variable

neighborhood descent (VND) and reduced variable neighbor-

hood search (RVNS).

The optimization process of VND can be explained as

follows. First, an initial solution is required. Within a given

neighborhood a candidate solution is repeatedly generated and

it replaces the current one if it is better. After a specified

number of iterations (neighborhood size) the neighborhood is

changed to the first one if a better than initial solution has been

found. Furthermore, the best solution found so far replaces

the initial solution. Otherwise, if the search resulted in no

better solutions that the initial one, the current neighborhood

is changed to the next one. Either way, the whole operation is
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repeated again until the search gets stuck in a local optimum.

The best solution found during this process is returned. For

the overview of the algorithm see Algorithm 9.

The RVNS is a stochastic algorithm that executes the VND

with different initial solutions. This simple procedure, which

in fact is quite similar to the VND, can be described in the

following few steps. First, an initial solution - a starting point -

is required. Within a given neighborhood a candidate solution

is repeatedly generated from the initial one, and passed to the

VND procedure. If the VND returns a solution that is better

than the current one, it gets replaced, and the algorithm starts

over from the first neighborhood. Otherwise, the neighborhood

is changed to the next one. The whole process can be repeated

until the stopping criterion (e.g. specified number of evalua-

tions, time limit) is met. The optimization procedure of RVNS

is shown in Algorithm 10.

D. Neighborhood function

The most problem-specific mechanism of SA, LBTA and

VNS algorithms, that always needs a different approach and

implementation, is the procedure of generating a candidate

solution from the neighborhood of the current one, which is

called a perturbation scheme, transition operation/operator or

a move function. Although there are many ways to accomplish

this task for the traveling salesman problem, we have chosen

the following three operators:

1) interchanging two adjacent customers,

2) interchanging two random customers,

3) moving a single, random customer to a randomly chosen

position.

V. NUMERICAL EXPERIMENTS

The numerical experiments were performed on a number of

randomly generated problem instances of different size. The

algorithms were implemented in C++. All the computations

were executed on the Intel Core i7 3.4GHz microprocessor.

To better compare relative performance of the three algo-

rithms, the only stopping criterion for single run was reaching

the same number of schedule evaluations for all computations

and problem sizes. This way we could compare the speed as

well as the convergence per iteration.

The resulting one-day schedules are presented in Table I.

The first column indicates the instance number. The number

of customers (second column) ranges from 13 to 23. The route

durations found by the three algorithms are shown in columns

3-5. The values in columns 6-8 indicate relative difference

between the algorithms outcomes. In order of brevity, we show

the computation time in one (the last) column for the given

problem instance - it was almost the same for every algorithm

due to the (identical) stopping criterion.

The algorithms produced similar results in terms of both the

solution quality and the computation time. For some instances

one algorithm produces better results, while for some other it

is the other way around. Generally, the VNS tends to find a

little bit better solutions: 2.49% on average than LBTA, and

2.97% than SA. LBTA and SA are on the other hand almost

identical - the former is on average better by only 0.49% than

the latter.

VI. CONCLUSIONS

We have developed a novel and efficient algorithm that

computes the minimum route duration for the Time-Dependent

Traveling Salesman Problem with Multiple Time Windows,

and compared three metaheuristic algorithms that computes

the one-day schedule, which can be successfully utilized in

time-oriented TSP, VRP, OP, and other mixed routing and

scheduling problems. The minimum route duration algorithm

guarantees finding optimal solution in quadratic time in terms

of the total number of time windows. To our knowledge, this

is the first attempt of solving this kind of time-dependent TSP

with multiple time windows.
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