
The Serialization of Heterogeneous Documents

Peter John Hampton, William Blackburn, Hui Wang

Artificial Intelligence and Applications Research Group

Ulster University, Jordanstown

United Kingdom, BT37 0QB

Email: hampton-p1@email.ulster.ac.uk

{wt.blackburn, h.wang}@ulster.ac.uk

Abstract—Tasks involving the analysis of natural language
are typically conducted on a corpus or corpora of plain text.
However, it is rare that a document is unstructured and freeform
in its entirety. Documents such as corporate disclosures, medical
journals and other knowledge rich archive contain structured
and loosely-structured information that can be used in a variety
of important text mining tasks. In this paper we propose a
syntactical preprocessing architecture to serialize presentation-
oriented documents to a machine readable format that aspires
to preserve the document structure, contents and metadata. We
introduce a hybrid pipeline architecture, discussing the various
processes and the future research direction that could potentially
lead to a holistic representation of heterogeneous documents.

I. INTRODUCTION

K
NOWLEDGE mining researchers and practitioners have

been implementing techniques to aid and enact decision-

making from knowledge discovery tasks. However, various

challenges restrict the computational understanding of lan-

guage found in such documents as analysis has traditionally

focused on plain text (1; 2; 3). This paper proposes a hybrid

preprocessing architecture for preserving a documents contents

in its entirety and converting selected entity classes to their

canonical form, enabling deeper analysis.

Although there are arguably many documents of interest,

we focus the attention of this paper on corporate disclosures,

specifically interim financial reports (10-Qs) due to the depth

of knowledge and the complexity of their composition. We

demonstrate, at a high level, a multistage architecture in Fig.

1 that combines both statistical and rule based approaches for

serialization to preserve the documents structure and content.

Diverse developments in Information Retrieval methodology

have been made over the past two decades, which could

make it sufficiently easier to represent unpredictable document

formats and associated contents. We describe related work

and motivations behind this research in Section II. Section

III analyzes the document structures of five company interim

disclosures. In Section IV we compare various mainstream

data serialization formats while concluding the advantages and

disadvantages among them. Section V describes the pipeline

components depicted in Fig. 1 in substantive detail, breaking

down each process into a set of processes. The paper concludes

in Section VI which sets a future direction for our research.

Fig. 1. The Hybrid API Architecture described in this paper for the syntactic
representation of heterogeneous documents. At a high level, the depicted
analysis pipeline is broken down into 6 stages: Detection (a), Acquisition
(b), Segmentation (c), Entity Morphing (d), A cache object for document
representation (e) and a duel error handling module (f). A document is
introduced into the pipeline and subject to numerous decomposition stages.

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 25–30

DOI: 10.15439/2015F380

ACSIS, Vol. 6

c©2015, PTI 25

II. RELATED WORK

Early attempts at analyzing structured data in heteroge-

neous documents include the Douglas et al study (4) which

represented tabular data using spaces in plain text. These

researchers presented an analysis of table layout and the

associated linguistic characteristics. However, wider linguistic

complexities are presented in plain text representation of

tables. This can include complex header parsing, redundant

or null cell representation and wider linguistic complexities.

We aim to extend their problems of characteristic syntax and

apply a set of transformations to the contents.

More recent work includes the Clark & Divvala research

(5) which aims to discover a holistic view of the document,

achieving a deeper semantic understanding of articles such as

academic computer science papers by placing emphasis on

figures such as charts. Likewise, the data found in corporate

disclosures tend to be multifaceted in nature, that being a mix

of unstructured, loosely-structured, unstructured text and mis-

cellaneous data. Their open-source solution agnostically parses

a document and locates the areas wherein figures or tables

could reside by reasoning about the empty regions within

that text, achieving success due to it’s relaxed formatting

assumption.

III. BACKGROUND & ANALYSIS

In this paper we refer to freeform text, that is sentences with

no predictable syntactical structure as unstructured content. In

turn, we refer to information in tabular form as structured data.

Although the term ‘loosely-structured data’ is typically used

to refer self-describing data (6; 7), we use it in this paper as

a means of classifying information that is not presented in

a structured or unstructured form. This can take the form of

bullet points, footnotes, images etc.

We analyzed a random sample of five interim statements

published by different software companies between July and

December 2014 as listed on the British Alternative Investment

Market (AIM). The results portrayed in Fig. 2 show that

although the majority of content is unstructured in nature,

the sample set had structured and loosely-structured data

accounting for 22% to 65% in terms of token count.

Fig. 3 on the other hand shows that although unstructured,

free form text and miscellaneous data increased with page

count, structured and loosely-structured data could be consid-

ered random and unpredictable. The share of structured and

loosely-structured information is, in our opinion, substantial

and shouldn’t be left out of text mining tasks due to the

risk in knowledge loss. We propose syntactically serializing

the document in a machine readable format whose schema is

flexible enough to adapt to unpredictable content and volatile

formatting. It is clear however from this preliminary analysis

of the small data set that if it is possible to serialize documents,

a format would require several characteristics to make this

possible such as flexibility, system interoperability, etc. We

review multiple data serialization formats in the next section

0 20 40 60 80 100

Firm 1

Firm 2

Firm 3

Firm 4

Firm 5

Percentage %

Representative Format

Structured Other Unstructured

Fig. 2. Five Interim statements broken down to their representative cluster.
This initial study found there was no predictable cluster share of the docu-
ments studied.

and select the most appropriate for serializing multifaceted

documents written by specialist humans.

Firm
1

Firm
2

Firm
3

Firm
4

Firm
5

−2

0

2

4

6

8

10

12

14

16

18

P
ag

es

Token Count over Page Quantity

Fig. 3. The change in token count over page count. The results show
that although unstructured content increases with page count, it can be
deemed unpredictable the share of structured, loosely structured and other
miscellaneous data will represent of the over all document. The blue line
shows the change in unstructured data wheras The red line shows changes in
structured data and The green line shows the changes in other data formats.

26 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE I
THE DATA TYPES OF JAVASCRIPT OBJECT NOTATION

Data Types Example Description

Numeric 1, -5, 0.9, 34543987584 Can represent a signed integer or floating-point number and may use exponential E notation.

String “Jack”, “Jill”
A sequence of characters. This data type supports 8, 16 and 32 bit unicode
transmission formats.

Boolean true or false Either True or False values.

Array [0, “Jill”, [1, 2], null] An ordered list of all the data types in this table including null.

Object “names”{ “name”: “Jack”}
An unordered set of key-value pairs, where the keys must be specified
explicitly in a String format.

None Type null A vacant value often used as a placeholder.

IV. SERIALIZATION FORMATS

Data Serialization is the process of translating data struc-

tures into a sortable format to be loosely reconstructed at a

later time if required. We focus our attention on formats that

are data oriented rather than document markup oriented. In the

upcoming subsections we review XML, JSON and YAML.

A. XML

XML (eXtensible Markup Language) is probably one of

the most popular document serialization formats since the rise

of Web 2.0, a milestone in web evolution that democratized

content, converting a generation of information consumers

into content creators. XML is described by the World Wide

Web Consortium as a flexible user specified markup scheme,

whose elements are not subject to formatting rules (7). One

advantage XML has is that it is human readable and can be

converted to various serialization formats using XLST (eXten-

sible Stylesheet Language Transformation) or an independent

parser.

B. JSON

JSON (JavaScript Object Notation) is a relatively newer

serialization format compared to XML, which is lightweight,

thus lower processing overhead (8). It is regarded as a

lightweight alternative to XML, which can preserve the native

data type of the selected entity and can be used for server

parsing (9; 10). We describe an overview of JSON data types

in Table I.

C. YAML

YAML (YAML Ain’t Markup Language) is a superset

of JSON that offers an alternative, user friendly syntax by

replacing various nested delimiters, such as list braces, object

colloquially and quote marks with whitespace. YAML supports

a powerful feature that we believe could benefit many natural

language processing researchers called anchoring, which en-

ables embedded object referencing and can handle relational

information similar to a traditional SQL database (11).

D. Discussion

Due to its popularity, XML seems an attractive choice.

However to query an XML, XPATH (XML Path Language)

is required to parse the document and would be considered

inefficient compared to newer standards. Further we believe it

could prove difficult to train a machine to autonomously parse

the semi-structured nature of XML document. Adopting JSON

on the other hand, a specified path could be explicitly declared

or discovered with ease due to the tree like structure. After

reviewing numerous studies and experimentation, we chose to

rule out YAML in it’s current state1 as it typically requires

an external parser and we found that when automatically

generating YAML documents there was possible corruption.

However, future experimentation with YAML could yield an

interesting study as it is much more verbose and is being used

in various innovative ways.

JSON compared to XML has a steeper learning curve and

debatably a much more complex syntax. The comprehensive

Eriksson-Halberg study surveyed performance and the syntax

of JSON and YAML and found JSON implementations to be

‘many times faster than YAML for both serialization (dumping)

and deserialization (loading).(12)’ The researchers concluded

that the complexity behind processing YAML formats to be

the reason for this. We feel that due to the level of expressivity

and efficient performance of JSON that we should adopt it, for

the current time being, to represent document inputted to our

pipeline.

V. PIPELINE ARCHITECTURE

In Fig. 1, we showcased and briefly discussed our high-

level pipeline architecture for serializing documents with an

unpredictable structure and format at a high level. Here, we

describe the various stages an inputted document goes through

to be serialized. As corporate disclosures, medical journals

and academic papers are commonly published in Portable

Document Format (PDF), we describe a PDF as the input to

this propositional system.

A. Detection

The document format is first determined by the MIME type

(Multipurpose Internet Mail Type). This phase inserts the con-

tent type header along with the document to the Acquisition

phase (b) for the documents conversion and decomposition.

B. Acquisition

Disclosures released by a company are often published

in Portable Document Format (PDF). This presentation over

1At the time of publication, the latest version of YAML was v1.2

PETER HAMPTON, WILLIAM BLACKBURN, HUI WANG: THE SERIALIZATION OF HETEROGENEOUS DOCUMENTS 27

content oriented format presents a number of problems for

natural language acquisition and analysis. Further, the doc-

ument’s structure is unpredictable and can change between

structured, loosely-structured or free form texts at any time.

Therefore, we first propose an introduction stage dedicated

to the decomposition of the document, which we call the

Acquisition and Segmentation phase of our pipeline shown in

Fig 4.

Once the pipeline has accepted the document, two concur-

rent processes must take place. The first process aims to extract

the document metadata. This metadata can include information

such as creation date, modified date, author name(s), publisher

geo-coordinates and other miscellaneous information (13).

Fig. 4. The Acquisition Process: The detected document format is accepted
bu the pipeline. One process extracts the metadata (if any) and the second
process clusters the document into one of three categories.

C. Segmentation

The segmentation process converts the document into an

HTML (HyperText Markup Language) format, assuming the

content type header is not already in HTML format, preserving

bullet points and table formats, the latter for example by

placing null values in redundant cells. The source document is

first converted to HTML in order to traverse semi-structured

nodes in the document. To categorize the unstructured, loosely-

structured, structured and other miscellaneous information, we

propose a black box clustering mechanism to classify innumer-

able sections of the document that the set of token sequences

belong to. During this phase, we also assign various reference

data to the section, which includes the page number, the

section number, the paragraph index, and index of the sentence

in that paragraph, to somewhat preserve the presentational

elements of the document.

D. Entity Morphing

Due to the unpredictable and creative use of language within

corporate disclosures, the need to manipulate tokens became

apparent at early stages of this research. This component

described is a series of objects that manipulate text into a

common reusable and storable format in the form of objects.

We narrow the research direction to seven named entity types,

which can be efficiently remodeled using pattern matching

techniques such as regular expressions. These entity types are

monetary values, percent, decimals, durations, times, dates

and miscellaneous quantity values with examples provided in

Fig 5.

($1.1b → {′$′, 1100000000})
($4.7million → {‘$′, 4700000})
(6.3p → {′GBP ′, 0.063})
(12thMarch2015 → {′20150312000000′})
(e66, 000, 000 → {′e′, 66000000})
(5.2% → {0.052})
(−2perc → {−0.02})

Fig. 5. Parsed Tokens: examples depicting an input x and output y where (.)
represents an input to the annotator object’s helper function. (x) → y

We advocate the removal of PERCENT objects by convert-

ing all percentages found in the text to a decimal format. It was

found that performing calculations on the extracted entities

was possible if presented in a decimal format, a technique we

plan to explore further in future research.

E. Object Representation

We refer to unstructured content as content that has no

predefined data-model and has an unpredictable structure,

often mass text that can contain various objects such as money,

time, quantities, and so on. We serialize the sentences into

an array of JSON objects, maintaining the various indexes

discussed in Section A of the pipeline. We use the Punkt

Tokenizer in the NLTK as described by Bird (13) which

is a model trained using a unsupervised machine learning

algorithm for sentence boundary detection. However, various

popular tokenizers could also prove appropriate for this task

such as the Stanford Tokenizer or TrTok which prove effective

when parsing messy web text data. We provide a serialization

example of an unstructured paragraph in 5.1.

Example 5.1 (Unstructured Paragraph Example):

{

"sentences": [{

"paragraph_index": 1,

"sentence_index": 1,

"cluster_index": 1,

"page_index": 1,

"sentence": "This is a sentence."

},

{

"paragraph_index": 1,

"sentence_index": 2,

"cluster_index": 1,

"page_index": 1,

"sentence": "...also a sentence."

}]

}

28 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

Khusro et al (15) note that the detection, extraction and

annotation of tables within heterogeneous documents have

been quite a significant research problem in Information Re-

trieval for many years. The structured serialization stage of the

hybrid pipeline aims to serialize complex and unpredictable

tables into JSON format. Tables are information rich data

stores, which contain a lot, often audited factual or objective

information. We show how a parsed table (Table II) would

be serialized in JSON in Example 5.2. This is possible using

a very carefully programmed set of rules. This white box ap-

proach has proved effective for our small sample of documents

but may need to be extended with intelligent based processing

as our architecture scales and formats become increasingly

complex.

TABLE II
FDP.L PROFIT & LOSS EXCERPT DATED NOVEMBER 2014

6 Months Ended,

31 August 2014

6 Months Ended,

31 August 2013

£’000 £’000

Revenue 37,507 34,381

Cost of Sales (27, 606) (25,313)

Gross Profit 9,900 9,068

Example 5.2 (FDP.L Table Serialized):

{

"profit_loss": {

"revenue": {

"2014-08": 37507000,

"2013-08": 34381000

},

"cost_of_sales": {

"2014-08": -27606000,

"2013-08": -25313000

},

"gross_project": {

"2014-08": 9900000,

"2013-08": 9068000

}

}

}

F. Error Checking & Tolerance

We implement two logic based error checking modules

depicted in Fig. 1 as f1 and f2 respectively. The error handling

processes verifies the accuracy and corrects mistakes made by

the various concurrent processes. Scenarios covered by the

error checker include:

• The document format has been correctly identified.

• Verify an objects reference data.

• Cast string named entities to their native format.

• Testing the structure of the tree-like output.

VI. FUTURE WORK

In this initial study we have proposed a novel architecture to

serialize and represent a document and its contents for further

analysis. We feel there is still scope for vast improvement and

research into converting presentation oriented documents into

a machine readable format that a human can easily debug.

First, with the rise of the semantic web and linked data,

we believe that extending our serialization model to JSON-

LD (JavaScript Object Notation for Linked Data) may be

appropriate. Secondly, there is potential to cluster knowledge

together as in Example 6.1 to solve various interoperability

and distribution problems within Big Data systems.

Example 6.1 (Multiple Sources Serialized):

{

"id": 1,

"name": "Company X",

"collection": {

"disclosures": { ... },

"social_media": { ... },

"company_news": { ... },

"media_news": { ... },

"stock_price": { ... }

}

}

Finally, many messages published over the web are trans-

mitted natively in a JSON format and could prove appropriate

to build up a profile of different sources into a single object

for efficiency. We believe from this early study that this

would make Big Data analysis on these documents much more

efficient and manageable (15).

REFERENCES

[1] Comeau, D. C., Liu, H., Doğan, R. I., & Wilbur, W. J.

(2014). Natural language processing pipelines to annotate

BioC collections with an application to the NCBI disease

corpus.

[2] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,

Bethard, S. J., & McClosky, D. (2014). The Stanford

CoreNLP natural language processing toolkit. In Pro-

ceedings of 52nd Annual Meeting of the Association for

Computational Linguistics: System Demonstrations (pp.

55-60).

[3] Liu, M., Xu, W., Ran, Q., & Li, Y. (2015). Using Natural

Language Processing Technology to Analyze Teachers’

Written Feedback on Chinese Students’ English Essays.

[4] Douglas, S., Hurst, M., & Quinn, D. (1995). Using nat-

ural language processing for identifying and interpreting

tables in plain text. In Proceedings of the Fourth Annual

Symposium on Document Analysis and Information Re-

trieval (pp. 535-546).

[5] Clark, C., & Divvala, S. Looking Beyond Text: Extract-

ing Figures, Tables and Captions from Computer Science

Papers.

PETER HAMPTON, WILLIAM BLACKBURN, HUI WANG: THE SERIALIZATION OF HETEROGENEOUS DOCUMENTS 29

[6] Ding, L., Zhou, L., Finin, T., & Joshi, A. (2005).

How the semantic web is being used: An analysis of

foaf documents. In System Sciences, 2005. HICSS’05.

Proceedings of the 38th Annual Hawaii International

Conference on(pp. 113c-113c). IEEE.

[7] Li, X., Li, F., & Chen, X. (2015, April). Distributed

GIS framework design based on XML and Web Service.

In 2015 International Conference on Intelligent Systems

Research and Mechatronics Engineering. Atlantis Press.

[8] Hwang, C. G., Yoon, C. P., & Lee, D. (2015). Exchange

of Data for Big Data in Hybrid Cloud Environment.

[9] Niu, Z., Yang, C., & Zhang, Y. (2014). A design of

cross-terminal web system based on JSON and REST.

In Software Engineering and Service Science (ICSESS),

2014 5th IEEE International Conference on (pp. 904-

907). IEEE.

[10] Smith, B. (2015). Creating JSON. In Beginning JSON

(pp. 49-67). Apress.

[11] Ben-Kiki, O., Evans, C., & Ingerson, B. (2005). YAML

Ain’t Markup Language (YAMLTM) Version 1.1. yaml.

org, Tech. Rep.

[12] Eriksson, M., & Hallberg, V. (2011). Comparison be-

tween JSON and YAML for data serialization. The

School of Computer Science and Engineering Royal

Institute of Technology.

[13] Bird, S. (2006). NLTK: the natural language toolkit. In

Proceedings of the COLING/ACL on Interactive presen-

tation sessions (pp. 69-72). Association for Computa-

tional Linguistics.

[14] Smutz, C., & Stavrou, A. (2012, December). Malicious

PDF detection using metadata and structural features.

In Proceedings of the 28th Annual Computer Security

Applications Conference (pp. 239-248). ACM.

[15] Khusro, S., Latif, A., & Ullah, I. (2014). On methods

and tools of table detection, extraction and annotation in

PDF documents. Journal of Information Science.

30 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

