
 

 

 

 

 

Abstract—Metal ions in protein are critical to the function, 

structure and stability of protein. For this reason accurate 

prediction of metal binding sites in protein is very important. 

Here, we present our study which is performed for predicting 

metal binding sites for histidines (HIS) and cysteines from 

protein sequence. Three different methods are applied for this 

task: Support Vector Machine (SVM), Naive Bayes and 

Variable-length Markov chain. All these methods use only 

sequence information to classify a residue as metal binding or 

not. Several feature sets are employed to evaluate impact on 

prediction results. We predict metal binding sites for mentioned 

amino acids at 35% precision and 75% recall with Naive Bayes, 

at 25% precision and 23% recall with Support Vector Machine 

and at 0.05% precision and 60% recall with Variable-length 

Markov chain. We observe significant differences in 

performance depending on the selected feature set. The results 

show that Naive Bayes is competitive for metal binding site 

detection. 

I. INTRODUCTION 

Protein plays a crucial role in all biological processes. And 

they consist of one or more long chains of amino acid 

residues. In the frame of this perspective, amino acids are 

important ligands with nitrogen and oxygen as the donor, 

constituent of many biological important molecules [1]. 

It is estimated that approximately half of all proteins 

contain a metal [2]. A significant fraction (about one third) 

of all known proteins is believed to bind metal ions as 

cofactors in their native conformation [3]. The biological 

activities of proteins require these cofactors to assist their 

daily routines. For this reason, a metal ion in a protein and 

prediction of its binding point is very important to 

understand the function of proteins in biological activities. 

Metal ions in proteins are responsible for multiple tasks. 

They help stabilizing protein structure [4], induce 

conformational changes [5–7], and assist protein functions 

(e.g. electron transfer, nucleophilic catalysis). 

There are many related studies about predicting metal 

binding sites, however, machine learning techniques have 

been recently applied to predict the metal binding sites of 

residues. 

Predicting metal binding sites by using non-computational 

methods has some drawbacks.  X-ray absorption 

spectroscopy (HT-XAS) has been recently proved to be 

capable of identifying metalloproteins with high reliability 

[8, 9].  However, the specific ligands involved in binding 

metal ion(s) cannot be identified by these techniques [9]. 

Motif-based system has also been developed by using 

regular expressions but since regular expressions can be 

quite specific, their results have many false negatives. To 

overcome these drawbacks, many computational learning 

techniques have been developed to predict metal binding 

sites. Early approaches can be found in the work of Nakata et 

al. (1995). In this study, they focused on predicting zinc-

finger DNA-binding proteins with a neural network. In this 

approach, applicable results were generated by a method for 

certain types of zinc-binding protein in spite of limitation 

about scarcity of data at that time. Recently-developed 

approaches for metal-binding sites prediction have mainly 

focused on CYS only [10], CYS and HIS binding transition 

metals [3] or CYS, HIS, ASP, and GLU binding zinc ions 

[12, 13]. 

In addition, recent studies in predicting metal binding sites 

indicate that Support Vector Machine is a popular machine 

learning technique in this area. In many works, Support 

Vector Machine was employed as a single solution of a 

problem or it was used with some other techniques to predict 

metal binding sites. For example, developed architecture 

consists of two stages. In the first stage of this study, Support 

Vector Machine was employed for local classification and 

these outputs were used as inputs for second stage to refine 

these local predictions [13]. 

In this study, we employed three different methods to 

predict metal binding for CYS and HIS by using only 

sequence information and amino acid composition: Support 

Vector Machine, Naive Bayes and Variable-length Markov 

Chain. Obtained results were compared with each other to 

give information for future works. Furthermore, we used 

some different feature compositions to train our model and 

prediction results were compared to give some clues about 

used features which were valuable for metal binding sites 

prediction. 

This paper is organized as follows: in Section 2, we 

provide detailed description of materials and methods. Our 

obtained results are discussed in Section 3. We finally draw 

some conclusions in Section 4. 
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II. MATERIALS AND METHODS 

A. Feature Representation 

To obtain feature vector for SVM and Naïve Bayes, we 

found all target residues (CYS and HIS) for each protein 

sequence. Each target residue refers individual instances for 

our input vectors. These individual instances were obtained 

by building a window.  This window consisted of flanking 

residues of target residue and target residue was located in 

the middle of the window.  Each position in the window was 

represented by the corresponding value of PAM 120 (Table 

I. values of pam are shown) substitution matrix. By this way, 

each position of window was represented by 23 finite 

numbers. In other words, the total size of window equals to 

(2w-1) X 23 because the target residue value was ignored for 

input vectors. Also some characteristic values of selected 

window were obtained by running script version of Protein 

Composition Server [14] and these values were added to 

input vectors. Additionally, we used four different types of 

amino acid compositions. These are Pseudo Amino Acid 

Composition (PAAC), Amphiphilic Pseudo Amino Acid 

Composition (APAAC), Five Factor Score of Amino Acid 

Composition (5FSS) and PhysioChemical Properties (PC). 

By using different types of amino acid compositions, we 

made four different individual instances for each target 

residues. Hence, we could compare their contributions to 

prediction results. Finally, one additional feature was coded 

for the relative position of the target residue with respect to 

the sequence length for each individual instance. Input vector 

generation steps are illustrated in Fig 1. 

To obtain features for Variable-length Markov chain, first, 

we found all target residues for each protein sequence. Then, 

we built a window which consisted of flanking residues of 

the target residue and this target residue was located in the 

middle of the window. Window size was set to 15. After 

building the window, it was split at its center. After splitting 

process, four different feature sets were created. This feature 

sets contained different parts of the window according to the 

metal binding state of target residue. Content of these feature 

sets differed from each other. The mentioned content was 

constructed via the following steps.  

If target residue is metal-bonded and flanking amino acids 

are located at the left side of target residue, one part of the 

window is considered as a left-side metal-bonded sample. 

If target residue is metal-bonded and flanking amino acids 

are located at the right side of target residue, one part of the 

window is considered as a right-side metal-bonded sample. If 

target residue is not metal-bonded and flanking amino acids 

are located at the right side of target residue, one part of the 

window is considered as a right-side non-metal bonded 

sample. If target residue is not metal-bonded and flanking 

amino acids are located at the left side of target residue, one 

part of the window is considered as a left-side non-metal 

bonded sample. 

B. Classification 

Support Vector Machines: In this study, we applied three 

different methods for our problem. One of these is Support 

Vector Machine (SVM). 

SVM learning has been applied to many prediction 

problems in bioinformatics. Furthermore, obtained prediction 

results are acceptable for many problems in this search area. 

For this reason, we chose SVM for our solution. For 

classification, publicly-available at github libsvm package 

was used to implement SVM. The radial basis kernel was 

selected for this process (gamma = 0.05, cost = 0.1).    

In this process, SVM was used to train feature vectors of  

 

TABLE I. 

PAM 120 MATRıX 
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Fig.1 Input vector generation steps 

 

the training data set and to make the prediction on the test 

data set. Detailed information about data set is mentioned in 

Section 2.3. 

Naïve Bayes: As mentioned above, we applied different 

methods on our test sets and another one of these methods is 

Naive Bayes. The Naïve Bayes classifier has proved to be 

very effective in many real data applications [17]. Naive 

Bayes classifiers are of the family of simple probabilistic 

classifiers. It is based on applying Bayes’ theorem with 

strong independence assumptions between the features. 

 

        (1) 

 

For classification, the publicly-available MATLAB Naive 

Bayes package was used to train and predict our data set. We 

chose Gaussian Naïve Bayes because our data set consisted 

of continuous data. Applied kernel function is shown in 

Equation 1.  

C. A Generative Approach: Variable Length Markov 

Chain 

Markov chains are used to model sequential data in terms 

of the order of individual letters. In zero-order Markov 

Chain, the likelihood of a sequence 
N
S
1  is given by the 

probability that is obtained by multiplying the probabilities 

of each symbols contained, i.e., 

              (2) 

 

where P(.) refers to probability,  is the random variable 

representing the letter position j with  as  its realization. 

A more flexible version of higher order Markov models 

allows a variable length that depends on the preceding 

subsequence to given position such that the order of the 

model becomes a function the context at each position. This 

model is called as Variable Length Markov Chain (VLMC) 

built on the sequence likelihood defined as: 

        (3) 

where
jL is the optimal length preceding subsequences 

respectively and 
1−

−

j

Lj j
s is that sub-sequences. 

 

An efficient implementation of VLMC can be realized 

using Probabilistic Suffix Trees (PST). The PST method was 

introduced by Bejerano and Yona to model the protein 

families [15]. The original PST model was based on 

identifying significant short segments among the many input 

sequences, regardless of the relative position of these 

segments within the different proteins [16]. In this study, to 

classify a sequence into one of the families, a separate PST is 

constructed for each family in the data set, and according to 

the probability distribution over PST, a probability that the 

sequence belongs to that family is assigned to the query 

sequence. By comparing this probability score the sequence 

is determined as belonging to that family or not. 

For this approach, we created four different train data sets 

for training processes as mentioned in feature representation 

section. We trained each data set to obtain probabilistic 

suffix trees(PST) so we created four different PST (PST1 

consists of data such as flanking amino acids that are located 

at the left side of metal-bonded CYS or HIS; PST2 consists 

of data such as flanking amino acids that are located at the 

left side of CYS or HIS which are not bonded by a metal; 

PST3 consists of data such as flanking amino acids that are 

located at the right side of metal-bonded CYS or HIS; PST4 

consists of data such as flanking amino acids that are located 

at the right side of CYS or HIS which are not bonded by a 

metal.) for each train data set. After PST generation, we built 

a window for each CYS and HIS from test sets. Then, for 

each created window, we ran prediction processes for all 

obtained PSTs. Finally, the outputs of the prediction 

processes were compared with each other and we marked 

predicted CYS or HIS as metal bonded or not by evaluating 

comparison results. However, before comparison, we 

multiplied outputs of metal-bonded and nonmetal-bonded 

ones between each other. 

D. Dataset  

We used a non-redundant set of PDB containing 2727 

protein sequences to test our methods. The used data set was 

prepared by [3] for their research. The detailed and well 

defined explanation can be found in the mentioned paper. In 

Table II, we listed some information about this data set. 

 

Table III. 
NUMBER OF CYS & HIS AND THEIR STATE OF METAL BOUNDED 

 Metal Bounded   Non-Metal Bounded 

CYS 933 4702 

HIS 678 12982 

 

 

 

 

 

SERKAN KUCUKBAY, HASAN OĞUL: PREDICTING METAL-BINDING SITES OF PROTEIN RESIDUES 85



 

 

 

 

TABLE V 

PREDICTION RESULT OF VARIABLE LENGTH MARKOV CHAIN 

PRECISION RECALL AUC 

0.05 0.60 0.39 

 

III. EVALUATıON CRıTERıA 

In this work, we use precision, recall and area under the 

curve as performance measurements. The precision was 

defined as TP/(TP + FP), where TP (true positives) was 

referred to the number of correctly-identified positive 

examples (metal binding residues); FP (false positive) was 

the number of negative examples (residues predicted to bind 

metal, although they do not bind to a metal according to 

PDB) that were incorrectly predicted as positive. The recall 

was defined as TP/(TP + FN), where FN (false negative) 

was the number of positive examples that were incorrectly 

predicted as negative. In this study, the negative examples 

were far more than the positive examples. For such an 

unbalanced dataset, Area Under Curve (AUC) can present an 

overly optimistic view of the performance of a method. To 

TABLE IVII. 

CHANGE OF SVM PREDICTION RESULTS ACCORDING TO SELECTED FEATURE FOR TRAINING 

PAM Relative 

Position 

5FSS APAAC PAAC PC RECALL PRECISION AUC 

X - - - - - 0.22 0.24 0.58 

X - X - - - 0.23 0.25 0.58 

X X X - - - 0.22 0.24 0.59 

X - - X - - 0.11 0.18 0.51 

X X - X - - 0.11 0.18 0.61 

X - - - X - 0.24 0.27 0.60 

X X - - X - 0.24 0.27 0.45 

X - - - - X 0.11 0.14 0.45 

X X - - - X 0.11 0.13 0.45 

X X - - - - 0.23 0.25 0.60 

 

TABLE IIIV 

CHANGE OF NAIVE BAYES PREDICTION RESULTS ACCORDING TO SELECTED FEATURE 

PAM Relative 

Position 

5FSS APAAC PAAC PC RECALL PRECISION AUC 

X - - - - - 0.65 0.45 0.78 

X - X - - - 0.75 0.35 0.80 

X X X - - - 0.72 0.36 0.76 

X - - - X - 0.65 0.44 0.77 

X X - - X - 0.66 0.45 0.77 

X - - - - X 0.51 0.11 0.59 

X X - - - X 0.50 0.13 0.64 

X - - X - - 0.43 0.18 0.62 

X X - X - - 0.43 0.18 0.61 
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obtain AUC values,  we used  publicly available  MATLAB

package.

IV. RESULTS

In this study, we created ten different feature vectors to

train with SVM and Naive Bayes. Also we evaluated the pre-

dictions  for  Variable-length  Markov  chain.  All  obtained

scores are listed in Table III, Table IV and Table V.

The obtained results show us that Naive Bayes is competi-

tive for metal binding site detection.

On the other hand, we used varied feature combinations

and they give us a chance to evaluate their prediction score

changes according to feature type. For ex; using pam matrix

representation is very smart way to identify amino acid for

classification  because  the  result  is  really  acceptable  and

length of this feature limited by number of amino acid count

in nature. Also using global descriptors as a feature is practi-

cable for this area. 

As a result, we presented a method to predict metal bind-

ing sites from amino acid sequences by SVM, Naive Bayes

and Variable-length Markov chain .We obtained many results

for different feature sets and we reached higher results with

Naive Bayes(used features were PAM and 5FSS). The men-

tioned case predicted CYS/HIS with 35% precision at 75%

recall level and 80% AUC value, when tested on a non-re-

dundant set of PDB containing 2727 unique protein chains.

V. CONCLUSION

Predicting  metal-binding  conformations  of  proteins

through computational techniques is a favorable effort in the

wake of estimating final protein structures. In this study, we

evaluate different feature representation schemes and imple-

ment different methods to predict metal binding sites of pro-

tein residues. Obtained results are compared with each other

and valuable feature types are observed. The results justify

that Naive Bayes approach can produce acceptable predic-

tions for residue classification. We believe that this study is

going to lead our future works and our approach can have an

impact on metal binding site detection. We will use Naive

Bayes classification for large data set using big data tech-

nologies such as spark and storm.
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