
Using the Interaction Flow Modelling Language for

Generation of Automated Front–End Tests

Karel Frajták, Miroslav Bureš, Ivan Jelı́nek

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University

Karlovo nám. 13, 121 35 Praha 2, Czech Republic

Email: {frajtak, buresm3, jelinek}@fel.cvut.cz

Abstract—In the paper we explore the possibilities of auto-
mated test-case generation from the IFML model of application
front–end. As opposed to the previous core UML standard, IFML
captures the structure and properties of the application user
interface, which gives us new possibilities in model–based test
case generation: produced test cases have a higher probability
of being consistent and of respecting the real feasibility of the
tests in the tested application. In the presented solution we
leverage the capabilities of an IFML model to capture details
of front–end components to generate front–end automated tests,
exercising particular actions in the tested application front–end
to verify its expected behaviour according to an IFML model.
The approach is based on the transformation of an IFML model
to an application front–end test model — a more straightforward
structure for the automated generation of test cases. Then, based
on the defined rules, the abstract test cases are created from
the model. The abstract test cases are then transformed using
a template engine, to particular physical automated test cases
which can be run to test the application.

I. INTRODUCTION

TODAY’S efficiency and short time–to–market is the key

factor in software development that creates pressure on

software development teams and a demand for more efficient

methods of software development and testing.

The mission of the development is to deliver the system (or

a modification of the system) in an agreed time. In the iterative

development it means to fix the issues from the previous cycle,

to add new features and to test the system and to verify

that every feature of the software works according to the

specification. What if a customer suddenly wants a new feature

that the developers will have a hard time implementing? Or

what if this new functionality affects the entire application,

so regression effect rates of the code changes are high and

the reliability of previously stable parts of the application is

challenged?

Testing in such a cycle is often challenging. Preparation and

execution of the tests, if performed manually, requires time

which is often not available. This can also affect the accuracy

of prepared test cases.

Automation of the test cases is one of the possible ways of

how to make the process more efficient.

In this paper we are proposing a model–driven approach

to front–end web application testing based on the Interaction

Flow Modelling Language (IFML, [3]). We are going to

describe the process of transforming the IFML model of

the tested application to a set of front–end test cases. The

automatic generation without of these tests from the IFML

model guarantees their consistency.

In this field, UML [11] is a widely adopted modelling

language made to visualize the design of the system. Never-

theless, UML does not capture all aspects of the application.

One area where UML is lacking vocabulary and tools is

in the modelling of the user interface and interaction. To

overcome this gap, a Web Modelling Language (WebML [15])

was created introducing visual notations and a methodology

for designing complex data–intensive Web applications. This

language later evolved into IFML to cover a wider spectrum of

front–end interfaces and the data flows between the application

front–end components. IFML was later adopted by the Object

Management Group (OMG, [16]) as an industrial standard.

II. PROBLEM DESCRIPTION

During the development stage, changes are frequently made

to the web application code base. On the front–end the page

layout can change, input elements are added or removed, data–

flow of the pages is modified. All of these changes must

be tested in order to prove that no error was introduced

and that everything works as expected. Without the model-

driven approach, both the code of the application and the tests

are created manually. Every change made to the code must

be synchronized with the tests, so that the tests are testing

new functionality with new input elements and new corner

case input values. When an element is added to a form, all

functional tests associated with that form must be modified

accordingly. This maintenance of the automated test scripts

causes significant overhead in the development of the software

project.

III. POTENTIAL OF IFML FOR TEST CASE GENERATION

Data driven application front–end is usually built using

reusable components (forms, list views, detail views, etc.).

These components have expected behaviour. For example,

forms are placed on the page to be filled in with data and sent

to the server, lists show record details for the user to view or

allow him or her to select one or more records and perform

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 117–122

DOI: 10.15439/2015F392

ACSIS, Vol. 6

c©2015, PTI 117



an action on these. All of these operations can be modelled

using the IFML notation (see an example in Figure 1).

With precise models and proper tooling (for instance

IBM Rational Software Architect, Enterprise Architect, An-

droMDA) these models can be transformed to code, different

models or just to generate the system scaffolding. Developing

an application with tens of screens with various components

(forms, list views, etc.) can be a lengthy and repetitive task

— every form and every list view must be manually created.

This process leads to copy paste style of programming and

any possible defects can be easily cloned and introduced many

times in the application. Even with the use of a user interface

component framework this can be a problem. The efficiency

of the process can be increased by the generation of the user

interface (UI) from the model [4, 5]. While this is efficient — it

is certainly easier to create a model of a number of components

and their interaction than to implement them physically — it

still does not prove that the application is error free and can

be delivered to the users. And in most of the cases, we don’t

have resources to test manually every screen in the application

whenever there’s a code change.

A similar approach can be also used to generate test case

scenarios — we know how to test the basic functionality of

a component and what the code for such a test should look

like. For this reason it is highly recommended to use the

IFML model originally used for the front–end code generation

to generate test case scenario code just by using a different

template.

IV. RELATED WORK

Although WebML has been used for more than ten years,

IFML is relatively new and was recently standardized. The

first applications of the standard are emerging, for instance,

a systematic model–driven reverse engineering process to

generate an IFML representation from such applications is

presented in [17].

IFML notation can be easily extended by adding new

containers, components, events or by applying custom UML

stereotypes to them as described in [4]. The authors added new

components and events (swipe, camera event, location sensor

event) to be able to describe mobile specific interfaces and

interaction.

IFML represents a prospective modelling tool to describe

application front–end and a flexible and easily extensible

notation. Hence, we decided to use its capabilities to generate

front–end test case scenarios.

In the previous approaches, a general purpose modelling

languages, such as UML, that described the system high–

level model were often used for system code generation. UML

models have normally been used for the process of automated

code generation from the model, for example [12, 1, 13]. The

same applies for the generation of test cases from the tested

application model.

From the previous approaches, sequence diagrams [2, 19],

state chart [10] or activity diagrams [9, 14] are used, but these

diagrams and the models they represent are more focused

on describing the application structure or data flow not the

user front–end interaction. In [19] sequence diagrams as the

most suitable for precise and detailed description of a system’s

actions and behaviour. UML notation was also used to generate

the user interface. In [5] a new diagram called user interface

diagram was introduced with a user interface specialization.

Our goal is to use the approach of generating the test cases

from the application model, but instead of UML, which is

already covered in the previous work, we are going to generate

automated test cases from the IFML model. This area is

currently lacking sufficient theoretical support since IFML is

a quite new modelling language. In [4] the proposals were

verified using manual testing by testers.

V. PROPOSED SOLUTION

Our proposal of generating automated end–to–end test case

scenarios from IFML model is based on the set of transfor-

mations, which are outlined in Figure 2.

In the proposed solution, the XML representation of an

IFML model is converted into a front–end model using a

predefined set of rules. The model is then used to generate

abstract test case scenarios. Physical details are added to

these scenarios by templates and a set of executable test case

scenarios are created. Details of this process are following

further on.

VI. FRONT–END MODEL

In this section we present details of the front–end model,

used for the transformation process introduced above. The aim

of this model is to formalize the user interaction with the

application.

We consider this model more suitable for generation of the

test cases, as the IFML notation is too rich and descriptive for

our use. In this proposal, we have used an already defined and

published formal model, verified in our previous work [7, 6].

We define a view window W as a set of view containers

and a view container K as a tuple 〈C,N,A,E,D,M〉, where

• C is a hierarchical set of view components placed into

this view container (components can be nested)

• N is a set of navigation flows defined as N : C ∪ E ∪
D ∪ B → C ∪ A. The user triggers an event E on

view component C with data–bound by D resulting in

displaying another view component (or the same one) or

triggering an action A

• A is a set of actions executed prior to updating the state

of the user interface

• E is a set of events a view container and a view

component is associated with, the effect of event is the

interaction flow

• B is a set of data bound variables whose values will be

used in navigation flow

• D is set of data binding expressions d defined as d :
C → B, these expressions extract a value from a view

component, for example it describes how to get the

numeric value from a text input field

118 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015



Fig. 1. Example of an IFML model of a “Search for an album” use case

Fig. 2. Transformation of an IFML model to physical automated test case scenarios

• M is a set of custom metadata m to describe the meta–

properties of the view components defined as m : C →
GM , where GM is an extensible global set of model

meta–properties holding IFML model properties, UML

stereotypes and other custom properties

In our example introduced above, the front–end model for

the view window from our album search example can be

described as the following (we have omitted the definition of

KAlbums for brevity): W = {KAlbumsSearch,KAlbums}

KAlbumsSearch = {
C = {AlbumSearchForm = {AlbumT itle, AlbumYear}}
N = {AlbumSearchForm ∪ Submit ∪ {T itle, Y ear} →
Albums}
A = ∅
E = {Submit}
D = {AlbumT itle→ T itle, AlbumY ear → Y ear},
B = {T itle, Y ear},
M = {AlbumSearchForm → {Form}, AlbumT itle →
{SimpleF ield, String},

AlbumY ear → {SimpleF ield, Y ear}}
}

The abstract test case scenario T is defined as T : N ∪C ∪
V → 0, 1, N and C are defined as before and V is a set of

rules that all has to be matched for the test not to be marked

as failed.

For simplicity just assume that when the search operation

has finished, the albums view container is displayed (no matter

how many results it will show). In that case the result of T is

success when C is AlbumList:

T = 1 ⇔ V = {Equals(C,AlbumList)}

For our purposes the front–end model is serialized into

JSON format, which is easy to read and can be injected

directly into the template engine.

VII. THE TRANSFORMATION PROCESS

As we have already introduced, the first step of the process

is the transformation of an IFML model into a front–end

model. Modelling tools use XML format to persist the models

KAREL FRAJTÁK ET AL: USING THE INTERACTION FLOW MODELLING LANGUAGE 119



(see Listing 1), however this format is quite heavy for further

processing. We have decided to transform the XML format into

more readable and lightweight JSON form. For this conversion

process, we have defined a set of rules.

<interactionFlowModelElements name="AlbumList" xsi:

type="ext:IFMLWindow">

<viewElements xsi:type="ext:Form"

name="AlbumSearchForm">

<viewElementEvents xsi:type="ext:OnSubmitEvent"

name="Search">

<outInteractionFlows>

<parameterBindingGroup .../>

</outInteractionFlows>

</viewElementEvents>

<viewComponentParts xsi:type="core:DataBinding"

name="Album"/>

<viewComponentParts xsi:type="ext:SimpleField"

name="Title"/>

<viewComponentParts xsi:type="ext:SimpleField"

name="Year"/>

</viewElements>

</interactionFlowModelElements>

Listing 1. XML representation of an IFML model

For each IFML element in order to be used in our model

a rule is defined. For example for an IFML element with the

name “viewElements” or “viewComponentParts” an entry is

added to the “components” array, for every “xsi:type” attribute

with the value ”ext:Form” a “type: form” entry is added to the

“metadata”. In order to track the original elements we also

copy the element id that uniquely identifies it. The rule is

a simple JavaScript method matching properties of an XML

element. For our example presented in Figure 1, the respective

XML notation of the IFML model is given in Listing 1 and

the JSON description of the front–end model in Listing 2.

{

"name": "AlbumList",

"metadata": [{ "type": "window" }],

"components": [{

"name": "AlbumSearchForm",

"metadata": [{ "type": "form" }],

"variables": [{

"name": "Year",

"metadata": [{

"dataType": "int",

"constraint": "not-empty"

}]

},{

"name": "Title",

"metadata": [{

"dataType": "int",

"constraint": "year"

}]

}],

"binding": [{

"name": "Title",

"from": "AlbumTitle"

},{

"name": "Year",

"from": "AlbumYear"

}],

"events": [{

"type": "submit",

"target": "Albums"

}],

"components": [{

"name": "AlbumTitle",

"metadata": [{ "type": "field" }]

},{

"name": "AlbumYear",

"metadata": [{ "type": "field" }]

}]

}]

}

Listing 2. XML representation of an IFML model

In the next step the front–end model is transformed into a set

of abstract test case scenarios. These scenarios are indepen-

dent of the specific technological platform or programming

language used to implement it — using the abstracted test

cases gives us flexibility to generate the test case in different

scripting languages and test automation APIs. From a technical

perspective the JSON representation of the front–end model

is transformed with the use of predefined transformation rules

to JSON representation of the abstract test case scenario (see

Listing 3).

{

"name": "AlbumSearchForm",

"id": "65de40fd-8283",

"specs": [

{

"name": "Search",

"type": "search",

"steps": [

"fill": {

"locator": "Year",

"type": "year"

},

"submit": { "locator": "AlbumSearchForm" },

"waitFor": { "locator": "AlbumList" }

]

},

{"name":"Reset" ...}

]

}

Listing 3. Abstract test case scenario

In the last step the abstract test case scenarios are trans-

formed into executable (platform specific or programming

language specific) test case scenarios. In this process a tem-

plate system is used to generate the test cases. The template

system chooses the desired template from the templates library

(WebdriverIO [21] template was used to generate code for our

example). The template system is based on the JavaScript Un-

derscore template [18] capability. Abstract test case scenario

serialized into JSON format is supplied as a parameter and

then processed by the template engine (see Listing 4).

var webdriverio = require(’../index’);

var templates = require(’/templates’);

describe(’<%=scenario.name%>’, function() {

var client = {};

jasmine.DEFAULT_TIMEOUT_INTERVAL = 9999999;

beforeEach(function() {

client = webdriverio.remote({

desiredCapabilities:{

browserName: ’phantomjs’}

});

client.init();

});

<% _.each(scenario.specs, function(spec) { %>

<% var specTemplate = specTemplates.getTemplate(

120 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015



spec.type); %>

it(’<%=toSpecName(spec.name)%>’, function(done) {

<%=specTemplate.renderTemplate(spec); %>

});

<%});%>

afterEach(function(done) { client.end(done); });

});

Listing 4. Underscore template

In Listing 5 we present the result of the transformation for

example from Figure 1. The executable JavaScript is code

created to be executed by Jasmine [8] test runner. In the

example, we test the basic functionality of a search form.

The test describes ‘AlbumSearchForm’ test suite with a spec

‘should search’ (spec is named set of expectations to be met).

The spec function makes call to a browser automation tool

Selenium WebDriver [18] via binding library WebdriverIO. If

we want to use different programming language to implement

the test cases, a different template can be used to generate

physical test case scenarios from abstract test case scenarios.

var webdriverio = require(’../index’);

var templates = require(’/templates’);

describe(’AlbumSearchForm’, function() {

var client = {};

jasmine.DEFAULT_TIMEOUT_INTERVAL = 9999999;

beforeEach(function() {

client = webdriverio.remote({

desiredCapabilities:{

browserName: ’phantomjs’}

});

client.init();

});

it(’should search’, function(done) {

client.url(’...’)

.setValue(’#Year’, ’2015’)

.submitForm(’#AlbumSearchForm’)

.waitForExist(’#AlbumList’, 2000);

});

afterEach(function(done) { client.end(done); });

});

Listing 5. Code generated for AlbumSearchForm form from the IFML model
(some code left for brevity)

The code first initializes the Selenium web driver to be used

with windowless browser called PhantomJS, then navigates to

our application page, fills value 2015 into the Year input field,

submits the form and waits for AlbumList element to appear.

If the element is not displayed within 2 seconds, the test fails.

VIII. VERIFICATION

The proposed solution is currently in the implementation

stage with the first results arising from experiments. We have

collected the initial feedback from the users of our prototype

and adjusted the model accordingly. We have been experi-

menting with a set of IFML models created for 3 applications

we created for our needs and the results are promising. The

test case scenarios were correctly generated, but in some

specific cases, the generation process should be improved

upon further, which nevertheless represents an implementation

task. As mentioned before the added value is the automatic

generation of test cases when any change is made to the IFML

model.

Our solution quickly discovered problems in tested applica-

tions in the cases when

• changes were made to existing server–side code introduc-

ing an error in processing the client data,

• changes were made to existing client side code introduc-

ing an error in JavaScript components,

• new elements were added with faulty behaviour or

• new elements were added, but the values of these com-

ponents were not handled properly when sent to server.

On several occasions, we ended up in a situation where

some tests were generated syntactically correctly but the

semantics of expected result assertions was not corresponding

to the state of the tested application. This would often lead to

the IFML model, a conversion rule or a used template being

updated. It was a means of feedback and an indication of how

to evolve the solution to be fully functional. Only occasionally

we have had to remove an IFML feature so that the test suite

could be generated.

The biggest advantage of the use of an IFML model

instead of an UML model as a base model for test case

generation is the power of IFML to describe the front–end

views, components and interaction between them. The test

cases are therefore potentially more consistent.

IX. CONCLUSIONS AND FUTURE WORK

IFML is a relatively new notation recently standardized by

OMG. So far it has not been widely adopted; currently there

are only 2 tools on the market (commercial WebRatio [22]

and open source Eclipse plugin [20]). The primary target of

IFML is to express the content, user interaction and control

behaviour of the front–end of software applications, which are

some of the key aspects of the application.

The first results of experiments with our proposed solution

show that using an IFML model for test case generation

is viable and promising. Initial feedback from experiments

with our solution confirms an advantage of IFML — it does

describe the front–end directly which gives relative high level

of assurance about the precision of the generated test case

scenarios and their ability to be executed.

In the future work, we are going to improve and extend the

proposed solution to support more IFML constructs and be

able to help in large–scale development projects. Our solution

does not currently support any components other than forms

and list views, but new UML stereotype can be added, or

the IFML notation can be extended by the addition of a new

component to change the transformation and generate new

types of test case scenario.

ACKNOWLEDGMENT

This research has been supported by MŠMT under research

program No. 6840770014 and by Grant Agency of the CTU

in Prague under grant SGS14/076/OHK3/1T/13.

KAREL FRAJTÁK ET AL: USING THE INTERACTION FLOW MODELLING LANGUAGE 121



REFERENCES

[1] Manoli Albert et al. “Automatic generation of basic

behavior schemas from UML class diagrams”. English.

In: Software & Systems Modeling 9.1 (2010), pp. 47–67.

ISSN: 1619-1366. DOI: 10.1007/s10270- 008- 0108- x.

URL: http://dx.doi.org/10.1007/s10270-008-0108-x.

[2] A. Bandyopadhyay and S. Ghosh. “Test Input Genera-

tion Using UML Sequence and State Machines Mod-

els”. In: Software Testing Verification and Validation,

2009. ICST ’09. International Conference on. Apr.

2009, pp. 121–130. DOI: 10.1109/ICST.2009.23.

[3] Marco Brambilla and Piero Fraternali. Interaction Flow

Modeling Language: Model-Driven UI Engineering of

Web and Mobile Apps with IFML. Morgan Kaufmann,

2014.

[4] Marco Brambilla, Andrea Mauri, and Eric Umuhoza.

“Extending the Interaction Flow Modeling Language

(IFML) for Model Driven Development of Mobile Ap-

plications Front End”. English. In: Mobile Web Infor-

mation Systems. Ed. by Irfan Awan et al. Vol. 8640.

Lecture Notes in Computer Science. Springer Interna-

tional Publishing, 2014, pp. 176–191. ISBN: 978-3-319-

10358-7. DOI: 10.1007/978-3-319-10359-4 15. URL:

http://dx.doi.org/10.1007/978-3-319-10359-4 15.

[5] F. Ferri. Visual Languages for Interactive Comput-

ing: Definitions and Formalizations. Premier reference

source. Information Science Reference, 2008. ISBN:

9781599045368. URL: https : / / books . google . co . uk /

books?id=LNOSq-q7wfoC.

[6] Karel Frajták, Miroslav Bureš, and Ivan Jelı́nek. “For-

mal specification to support advanced model based

testing”. In: Computer Science and Information Systems

(FedCSIS), 2012 Federated Conference on. IEEE. 2012,

pp. 1311–1314.

[7] Karel Frajták, Miroslav Bureš, and Ivan Jelı́nek. “Man-

ual testing of web software systems supported by direct

guidance of the tester based on design model”. In:

World Academy of Science, Engineering and Technology

(2011), pp. 542–545.

[8] Jasmine, behavior-driven development framework for

testing JavaScript code @ONLINE. http : / / jasmine .

github.io.

[9] S. Kansomkeat, P. Thiket, and J. Offutt. “Generating test

cases from UML activity diagrams using the Condition-

Classification Tree Method”. In: Software Technology

and Engineering (ICSTE), 2010 2nd International Con-

ference on. Vol. 1. Oct. 2010, DOI: 10 .1109/ICSTE.

2010.5608913.

[10] Supaporn Kansomkeat and Wanchai Rivepiboon.

“Automated-generating Test Case Using UML State-

chart Diagrams”. In: Proceedings of the 2003 Annual

Research Conference of the South African Institute

of Computer Scientists and Information Technologists

on Enablement Through Technology. SAICSIT ’03.

Johannesburg, South Africa: South African Institute
for Computer Scientists and Information Technologists,

2003, pp. 296–300. ISBN: 1-58113-774-5. URL: http :

//dl.acm.org/citation.cfm?id=954014.954046.

[11] Andrey Karpov. Myths about static analysis. The third

myth - dynamic analysis is better than static analysis

@ONLINE. http : / / www . viva64 . com / en / b / 0117/.

Accessed: 2013-09-04. Nov. 2011.

[12] D. Kundu, D. Samanta, and R. Mall. “Automatic code

generation from unified modelling language sequence

diagrams”. In: Software, IET 7.1 (Feb. 2013), pp. 12–28.

ISSN: 1751-8806. DOI: 10.1049/iet-sen.2011.0080.

[13] Abid Mehmood and Dayang N.A. Jawawi. “Aspect-

oriented model-driven code generation: A systematic

mapping study”. In: Information and Software Tech-

nology 55.2 (2013). Special Section: Component-Based

Software Engineering (CBSE), 2011, pp. 395–411.

ISSN: 0950-5849. DOI: http : / / dx .doi .org /10 .1016/ j .

infsof . 2012 .09 .003. URL: http : / /www.sciencedirect .

com/science/article/pii/S0950584912001863.

[14] Chen Mingsong, Qiu Xiaokang, and Li Xuandong.

“Automatic Test Case Generation for UML Activity

Diagrams”. In: Proceedings of the 2006 International

Workshop on Automation of Software Test. AST ’06.

Shanghai, China: ACM, 2006, pp. 2–8. ISBN: 1-59593-

408-1. DOI: 10.1145/1138929.1138931. URL: http://doi.

acm.org/10.1145/1138929.1138931.

[15] N. Moreno, P. Fraternali, and Antonio Vallecillo.

“WebML modelling in UML”. In: Software, IET 1.3

(June 2007), pp. 67–80. ISSN: 1751-8806.

[16] Object Management Group @ONLINE. http : / / /www.

omg.org.

[17] Roberto Rodriguez-Echeverria et al. “IFML-based

Model-Driven Front-End Modernization”. In: (2014).

[18] Selenium, web browser automation @ONLINE. http :

//www.seleniumhq.org.

[19] Aristos Stavrou and GeorgeA. Papadopoulos. “Auto-

matic Generation of Executable Code from Software

Architecture Models”. English. In: Information Systems

Development. Ed. by Chris Barry et al. Springer US,

2009, pp. 1047–1058. ISBN: 978-0-387-78577-6. DOI:

10.1007/978-0-387-78578-3 36. URL: http://dx.doi.

org/10.1007/978-0-387-78578-3 36.

[20] The open source IFML editor - Based on Sirius @ON-

LINE. https://github.com/ifml/ifml-editor.

[21] WebdriverIO, Selenium 2.0 bindings for NodeJS @ON-

LINE. http://webdriver.io.

[22] WebRatio @ONLINE. http://www.webratio.io.

122 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015


