
 
 

Abstract—Redefining our energy landscape by means of 
regenerative, volatile and decentralized organized systems 
represents a major challenge for the creation of distributed 
control solutions. Standards are required that permit 
describing the variety of energy conversion systems and that 
enable an interoperable exchange of energy amounts in an 
open, flexible manner by concurrently taking into account 
technical and market requirements. This paper introduces the 
concept of unifying Energy Agents. They have the potential to 
reduce the ever growing complexity that comes along with the 
various solutions presented or that are already available at the 
market. In contrast to that, the notion of Energy Agents stands 
in our view as a representative for a required methodology that 
enables a consistent development of de-centralized control 
solutions. In order to demonstrate this approach, the 
application of Energy Agents in a smart house scenario is 
discussed. It is shown how arbitrary agents with different levels 
of sophistication and abilities can cooperate with each other in 
a smooth way. It is our strong believe that a stepwise and 
standardized development of Energy Agents representing the 
needed decentralized control solutions is needed for a 
sustainable design of an open Future Energy Grid. 

I. INTRODUCTION 
eflecting the tendencies for more decentralized 
controlled energy conversion systems and the further 
increasing number of IT-enriched smart systems in 

general, a picture can be drawn, that describes the future 
energy landscape as a complex, globally connected and 
mainly software driven system. Smart Markets need to build 
on top of an underlying technical systems with inherent 
flexibility that guarantees a stable volatile energy production 
[1], in order to reach climate targets [2] or just to maximize 
organizational profit [3]. However, global goals, such as the 
stabilization of a distribution networks, require a minimum 
of adaptive interoperability that has to be expressed in one 
standard. We believe that the developments in Smart Grids 
and related areas are now at a point, were it has to be asked, 
if we want to build control systems that are creating new 
monopolies, caused by proprietary software solutions, or if 
we want to create an unbundled and open energy supply 
that, on the one hand, offers the needed intelligent flexibility 
and, on the other hand, strongly supports further 
developments over the next decades? Assuming that the 

latter is the case, it is obvious that software standards are 
required that prevent our with respect to technical basics and 
market regulations already highly complex energy supply 
from becoming even more complex and possibly 
uncontrollable.  
With the concept of unified Energy Agents and its 
associated frameworks and tools that are a unifying Energy 
Option Model (EOM) [4] and the agent execution 
environment Agent.GUI [5], we provide a development and 
validation environment that allows a systematic and 
stepwise progression for decentralized control solutions. We 
believe that a stepwise definition of concrete use case 
scenarios and a clear definition of the actual tasks and 
capabilities of the on-site software - that are in our view 
Energy Agents - are strongly required. Corresponding to 
these different scenarios, Energy Agents have to be defined 
with specific levels of sophistication that have to be 
validated through simulations and in test-bed applications 
before they can be applied in real on-site systems. 
Furthermore, energy carrier like natural gas, heat and other 
have to be considered in order to define a comprehensive 
problem description that reflects the complex and 
interconnected nature of the real energy supply.  
This paper presents an application example of our Energy 
Agent approach. For this, the next section provides the 
theoretical background. This will be followed by the 
presentation of the concept of Energy Agents. Section 4 
presents their application in a smart house scenario. A 
discussion and an outlook will conclude the paper. 

II. BACKGROUND 
Agents and Multi-Agent systems (MAS) are already used 

by a large scientific as well as industrial community due to 
their inherent ability to naturally describe the distributed 
problems and scenarios that comes along with the energy 
domain. A significant number of papers already described 
successful applications of agents in specific Smart Grid 
scenarios, as for example in virtual power plants [6], in 
Demand-Side-Management systems [7] or within price-
based, indirect controlled approaches that are known as 
Demand Response [8]. Despite these promising first 
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applications connecting IT-concepts and standards are still 
missing that enable a large-scale rollout of Smart Grid 
solutions by concurrently providing a meaningful function 
and an investment security for end users and producers. The 
problem to be tackled here is a missing open architecture. 
Right now there is the danger of new monopolies, caused by 
investment decisions towards proprietary Smart Grid 
solutions that may preclude customers from switching to a 
new energy provider. Another threat of an uncontrolled 
growth of arbitrary (software) solutions is the resulting 
complexity and a possible in-deterministic behavior of the 
overall system, especially if every software component in a 
Future Energy Grid can behave as it likes.  

Such types of problems have already been discussed in 
the scientific community that generally has been studying 
the building of agent organizations and the related topics of 
reputation and trust [9]. Following [10], MAS-organizations 
can roughly be categorized by two dimensions. The first 
dimension permits to differentiate between MAS that rely on 
existing parent organizational structures or do not. This 
classifies designs of MAS into so called “agent-centered” or 
“organization-centered” designs. The second dimension 
focusses on the abilities of agents. It distinguishes by 
whether they have organizational knowledge or not. 
Especially the latter dimension is to be equated with the 
question if an agent organization represents a concept that 
only serves the static design of a multi-agent system or if the 
organizational affiliation is relevant at the runtime of the 
individual agents. Table 1 below shows the resulting types 
of agent organizations derived from these two 
differentiations.  

 

TABLE 1: CLASSIFICATION OF AGENT ORGANIZATIONS [11] 

 Agents without  
organizational 

knowledge 

Agents with  
organizational 

knowledge 

Agent-centered Design 
 (no given formal  

organizational structure) 
I. II. 

Organization-centered 
design (given formal  

organizational structure) 
III. IV. 

 
Without discussing every type of agent organization in 

detail here, we would like to point out that in quadrant IV. 
open agent organizations are located, where agents are able 
to dynamically decide if they want to join or leave an agent 
organization. To support functionalities like this, further 
efforts has to be spent in order to enable such dynamic and 
thus adaptive behavior. We believe that this is - to some 
extent - indispensable for the further systematic 
development of an open, IT-controlled Future Energy Grid. 
Consequently, this requires commitments and standards that 
focus on the local software components on-site that we 
propose to call Energy Agents. 

III. ENERGY AGENTS  
 The concept of Energy Agents was first introduced by 

[12]. There an Energy Agent was defined as a representative 
of a technical system - or better an energy conversion 
process - that acts on an operational level and that will not 
replace but extend on-site controllers. Thus, Energy Agents 
can be seen as additional software artefacts, capable to 
autonomously manage the capacitive abilities of associated 
technical systems in terms of energy production and usage 
and on behalf of the owner or other stakeholders. According 
to the tasks assigned to it, the inherent complexity and thus 
the sophistication or so called Integration Level (IL) of an 
Energy Agent may differ; different tasks, like monitoring, 
learning or constraint satisfying planning and optimizations 
are conceivable in this context.  

Furthermore, an approach to validate decentralized 
control systems was proposed by means of a systematic 
development process that includes simulations and test bed-
applications before an on-site hard- and software usage 
should be considered. By implementing exchangeable 
behaviors for simulated or real world interactions between 
agents and local system controllers, the main software 
components of the Energy Agent are to be preserved in 
regard to the development process. Finally, a concept for a 
generalized option, cost and action model was introduced 
that is capable of describing possible and current operation 
phases of technical systems and that serves the Energy 
Agents as a unified base model for reasoning processes. In 
these considerations also hybrid energy systems and 
infrastructures were taken into account, as for example 
natural gas or heating systems. 

Figure 1 below gives an impression and compares two 
types of Energy Agents, equipped with different capabilities. 
It is shown that the shell that represents the Energy Agent is 
coupled in two ways to the outside world. First, by means a 
connection to a technical system and second by it 
capabilities for inter-agent communication. Here the 
coupling to the technical system can be realized in various 
ways; e.g. by means of well-known protocols like 
IEC61850, the Common Interface Modell (CIM), OPC UA 
and other.  

Following our proposed gradation of integration levels 
(see reference above), both Energy Agents have a domain 
specific model - the Energy Option Model (EOM) - that 
describes the operating capabilities and the scope for 
possible actions of the underlying technical system. Both 
agents can be located in IL3, as both have the ability to (re-) 
act on external signals or information in general. Beside that 
they have the ability to monitor the underlying technical 
system and provide information that help to predict the 
systems behavior in regard to its energy production or 
usage, which is recommended by the introduced lower 
integration level IL0 - IL2. 
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Fig.1: Structure and functionalities of Energy Agents with different 

Integration Level  
 

Furthermore, the picture underlines that in regard to the 
requirements for an open Future Energy Grid the definition 
of the actual application scenario is absolutely 
indispensable, since the functionalities that are to be 
implemented within an Energy Agent strongly depends on 
these scenarios. Even both Energy Agents are located in 
IL3, the upper agent just receives and accepts schedule from 
a superordinate control unit, while the bottom Energy Agent 
uses the EOM in order to determine an optimized schedule 
by itself.  

With the Energy Agents above, two different Smart Grid 
approaches are described that have often be used and 
discussed in scientific publications. While the first Energy 
Agent could be applied in a Demand Side Management 
scenario, where a central process decides for operational 
states and set-point configurations, the second can be used 
within a more decentralized Demand Response approach, 
e.g. reacting on external price signals.  

It is crucial to realize that in both cases the Energy Option 
Model, purposed with the Energy Agent approach, forms the 
base for both application cases. With its approach that 
allows to uniformly describe energy conversion systems, the 
EOM allows to transfer and relocate decision making 

processes and thus to realize different types of control 
solutions; either centralized or decentralized solutions. We 
believe that such unified descriptions is the first step 
towards the realization of an open Future Energy Grid, since 
it allows an adaptive management of net-coupled technical 
systems or energy conversion processes. As a second step, 
the application scenario with its corresponding rules, 
policies and behaviors have to be standardized, so that 
developer of Smart Grid solutions have not only 
requirements but also degrees of freedom for their 
developments. Therefore, the integration levels proposed 
have to be fully specified, while the levels needs to be 
developed and extend over the next years.  

IV. APPLICATION OF ENERGY AGENTS 
With the application scenarios presented here, we 

demonstrate different level of sophistication for Energy 
Agents by means of comparing Demand Side Management 
with a price-based Demand Response approach. As use case 
we selected a smart house, equipped with different technical 
systems that are each “interfaced” by an Energy Agent. 

 

DSO / Supplier

External Weather‐Service

Energy‐Agent

User‐Interface

Electricity

SmartHouse‐Agent

Gas

Heat

Energy‐Agent

Energy‐Agent

Energy‐Agent

Energy‐Agent

Price‐Signal

Energy‐Agent
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Fig.2: Smart-House Scenario as use case for Energy Agents 

 

As the figure shows, all considered devices are equipped 
with Energy Agents that include a corresponding EOM for 
the specific technical system. A concrete example of a single 
EOM will be shown further below with an Electrical 
Vehicle. 

In detail the dryer and the washing machine were 
modelled as “smart” batch processes. Such process allows to 
shift the actual start of the selected program by staying in a 
waiting operating state. Knowing the energy consumption of 
the device that is given by measurements of previous runs, 
the energy usage can be shifted into a designated time range.  

The fridge was modelled as repetitive system whose main 
task is to hold the inner temperature within a range of 4 - 
6°C. By varying these temperatures, using them as set-points 
for the internal controller of the fridge, the Energy Agent is 
able to increase or decrease these temperatures by ±1°C, in 
order to flexibilize the energy consumption.  
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Since the energy production of the photovoltaic plant 
basically depends on the solar radiation that occurs at the 
specific day, the power production was just statically 
considered for the experimental setup. Needed information 
were taken from historically data for the specific day. In a 
more elaborated setup the EOM could also be used in order 
to calculate energy production based on weather information 
that could be determined by forecasts.  

For the µCHP, the manufacturer information of a Vaillant 

µCHP ecoPower1.0 was modelled with EOM. Here four 
operating states were defined that are a standby, an 
acceleration phase, a normal operation and a shutdown that 
is followed by the standby of the system again. 

In the case of the Demand Side Management scenario the 
Smart House Agent plays the central role in all optimization 
issues. It collects and processes all relevant information 
from every subordinated Energy Agent, like all individual 
EOMs as well as the actual states of the systems. Thus, the 
Smart House Agent acts as an aggregator for the whole 
house. With the aim to optimize energy costs, especially also 
by first using as much energy as possible from the local 
energy sources, the optimization approach is carried out for 
a whole day. In the Demand Response scenario the role of 
the Smart House Agent was restricted and simplified. Here it 
basically forwarded external price signals or needed external 
information, like the outside temperature, needed as forecast 
from an external weather service. The actual optimization 
approaches were implemented in each of the Energy Agents. 

To demonstrate the efforts in defining a system specific 
EOM, Figure 3 below shows one exemplary Energy Option 
Model for the electrical vehicle (EV) used. 

 

 
Fig.3: Base Model of an Electrical Vehicle as example 

 

In general, a single technical system is described by the 
connections to an energy carrier-dependent network that are 
described by Interface Configurations and Technical 
Interfaces to the corresponding network (e.g. an EV can 
differently be connected to an electrical network). If a 
storage is available, as this is the case for an EV, a system 
can be defined with one storage per energy carrier. The 
Image above shows as an example that the used EV has a 
storage capacity of 24 kWh and a current load of 5 kWh. 

Beyond that, the image shows the graph of the possible 
operating states for the EV and possible subsequent states. 
Here, the operating states Idle, Charge and Discharge are 
defined. Additionally, for each of this state the actual energy 
flow are defined, as for example the 3.5 kW electrical output 
when discharging the EV battery. Figure 4 below shows the 
settings for the evaluation of a single technical system. 

 

 
Fig.4: Evaluation settings and result for a single technical system  

 

On the left hand side, the current and the wished technical 
system states can be defined for the evaluation period. Here 
the EV was connected to the network at 8 p.m., while the 
charging process should be finished at the next morning at 6 
a.m.; the wished storage load was set to the maximum 
storage capacity of 24 kWh. On the right side above, the 
specific cost functions for each energy carrier and for a 
specific direction (input or output) can defined. It can be 
seen that the consumption is defined with positive cost 
values, while the production or feed-in is defined with 
negative cost values. Developing an individual evaluation 
strategy a tailored algorithm can be developed and used in 
order to produce an optimised schedule for the actual 
technical system. Results can look like the charts shown in 
Figure 5, where the storage load and the costs over time are 
presented. In fact, the evaluation strategy used has the aim to 
cost optimally charge the EV. For this a quite simple 
algorithm was developed that uses the cost information 
(shown in Figure 4) and the demand of electrical energy that 
is given by the goal state within the specified time range. By 
a simple search of the most inexpensive time ranges for the 
charging operating state and a Greedy based decision 
process, the cost optimal schedule for the EV could easily be 
determined.  
 

  
Fig.5: Cost optimized charging of an Electrical Vehicle 

 

As general approach for an evaluation or the optimization 
of a single technical system, the framework of the EOM 
provides a graph-based decision system. Based on the time 
discretization of operational states, the decision system 
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allows to fully describe technical systems states in regard to 
(possibly predicted) input and output information, as well as 
to energy flows at network interfaces. Further, storage loads, 
transferred energy amounts, energy losses and price signals 
can be considered for the preparation of a schedule, while 
the actual optimization problem can individually differ. 
Figure 6 below shows the so called differences graph of this 
approach. 

 

Fig.6: Differences graph for evaluation strategies 
 

The graph will first be created by the current system state 
S0 that is defined with the start state for the evaluation 
process. Since an operating state that is defined by the base 
model of the EOM describes also the time range for this 
state, the subsequent state S1 can be determined with the end 
of this operating state. With this, energy flows per interface 
and energy losses that were transferred or produced within 
this period, as well as the new storage load and thereto 
corresponding costs will be calculated. After that, and 
derived from the graph of possible operating states that is 
defined with the base model of the EOM, the possible 
subsequent operating states can be determined over time. In 
order to decide which system states is to be used for a 
schedule, a decision must be taken at each of the nodes 
defined by the differences graph. To support informed 
decisions, the framework of the EOM provides the 
information mentioned above (energy flows etc.) as pre-
calculated set to the decision making process that is located 
within an individual strategy for an evaluation. Since each 
technical system might require different background 
information for such decision processes, the framework of 
the EOM provides an adaptive programming interface that is 
named as (Abstract) Evaluation Strategy and that allows to 
create individual solutions.   

The aggregation method for several technical systems that 
is provided by the EOM and that was used within the Smart 
House Agent is realized in the sense of a system of systems. 
Analogously to a single technical system, the aggregator will 
first be considered as a technical system, summarizing the 
sub systems in regard to interfaces by energy carrier and by 
add up storage capacities. In more complex scenarios, were 
wider areas than a house are to be considered, an 
aggregation may additionally require a network calculation. 

Similar to the Evaluation Strategy for single technical 
systems, a strategy for aggregated technical systems can 
individually be designed. In contrast to single systems, 
decisions must be made for each subordinate system, so that 
several decision graphs will concurrently be used during an 
evaluation of aggregated technical systems.  

What was shown in the illustrations above as user dialog 
can also be used “head-less” within an Energy Agent. In this 
case it is the task of an Energy Agent to get and provide the 
needed base information for a single technical system or an 
aggregation of technical systems (e.g. cost information) and 
start an appropriate evaluation process, if required.   

For the centrally controlled Smart House example, a first 
heuristic approach was chosen for the decision making 
process that discretized again the assessment parameter that 
in turn corresponded to the optimization goal: the price for 
energy. More concrete: a high price was rated with lowest 
priority, while a low price was rated with a high priority. 
Since we assumed a perfect prediction provided by the 
EOM’s of the technical systems, no spontaneous re-planning 
was intended in this scenario. However, we are aware that a 
re-planning would be necessary if any of the subordinated 
systems deviates from its prediction. Nevertheless, the state 
and solution space for the Smart House scenario was already 
huge and could easily exceed the available computing 
capacities. The application of the heuristic approach, 
however, reduced the search and solutions space 
substantially and with it the time to calculate a result.  

Figure 7 below shows the cost functions that were used 
for the assessment of the energy usage, while Figure 8 
presents - as an example - the resulting electrical power flow 
for the aggregated Smart House scenario. 

 

 
Fig.7: Costs and Revenue Functions by Energy Carrier 

 

 
Fig.8: Electrical Power Usage for the aggregated Smart House 

System State: global time, duration, set-points, 
measurements, energy flows and storage load  
Change of State: energy flows, amounts and losses, as well 
as resulting costs (connection-specific and in total) 
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Due to the mobility phase, the electrical vehicle was not 
connected during daytime. Hence, it was charged by night 
using the cheapest prices from 10 p.m. until approx. 4 a.m. 
in the morning. The electrical power usage for the washing 
machine and the tumble dryer was shifted into the power 
production phase of the photovoltaic plant. Since the µCHP 
and the fridge are repetitive working systems, these system 
are providing just small flexibility ranges. It is a task for the 
future work to improve our approach in order to optimize 
our first approach. 

Overall, it was found that the overall energy costs could 
be reduced by using the aggregation case and comparing it 
to the Demand Response is possible. Since in an aggregation 
the interdependencies of several technical systems can be 
considered, this result was not surprising us. However, the 
complexity which we had already to face was.  

Much more important for us was, however, to find a way 
to adaptively describe and connect hybrid technical systems 
by using the approach of the unifying Energy Option Model. 
Based on that, more sophisticated optimization approaches 
will be developed and tested in the future, as well as the 
number of technical systems considered can hopefully be 
diversified and increased. Since the developed Evaluation 
Strategies are based on a graph, several meta-heuristic 
approaches are conceivable here, as for example ant-based 
approaches and other. 

V. DISCUSSION, OUTLOOK & CONCLUSION  
This paper has presented the concept and the application 

of Energy Agents that are equipped with a unifying Energy 
Option Model. Since this model has the capability to 
describe all relevant types of energy conversion processes, it 
provides the foundation for the design of new adaptive 
methods that permit a dynamic aggregation and optimization 
of groups of technical systems. As a proof of concept an 
application scenario for a Smart House was presented that 
compares a demand response case with a case where a 
Demand Side Management for the house was realized. 
Based on the Energy Option Model and Agent.GUI, that is 
already freely available as open source, it is our intention to 
provide several predefined scenarios as the here presented 
Smart House scenario in the future. 

Moreover, the concept of the Energy Agent will be 
improved and developed under the project Agent.HyGrid in 
the next years [13]. Here it is planned to close the gap 
between agent-based simulations and real-world 
applications in order to produce comparable results for both 
cases. Thus, a realistic laboratory and test-bed environment 
will be created for decentralized control solution of Future 
Energy Grids. 

Overall, we believe that urgently standards are required 
that enable such homogeneous and in particular open 
developments; for science and for systems used in real 
applications on-site. We further believe that therefore the 
concept of a generally accepted Energy Agent with a unified 

description of the underlying technical system that we call 
Energy Option Model is the necessary foundation. Together 
with a refined and commonly accepted concept of an Energy 
Agent an open Future Energy Grid could be designed that 
provides the perfect environment for further elaborations 
and improvements over the next decades. We further believe 
that such standardization is absolutely indispensable in order 
to reach the overall objectives, associated with the energy 
transition or with the planned European Energy Union. 
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