DOI: 10.15439/2015F417
ACSIS, Vol. 6

Position Papers of the Federated Conference on
Computer Science and Information Systems pp. 249-256

& s

Multi-agent simulation of the world found in the
G. R. R. Martin’s novel "Sandkings"

Jakub Ciecierski, Viet Ba Mai, Michat Stupczyniski and Wojciech Zyskowski
Faculty of Mathematics and Information Science, Warsaw University of Technology
Plac Politechniki 1, 00-660 Warsaw, Poland

Abstract—George R. R. Martin’s novel entitled Sandkings
introduces tribes of ant-like creatures which, when locked in
a terrarium deprived of food, fight for survival. The tribes differ
in the color of their armor. However, in the novel, despite the
extreme conditions, they’ve never attempted to Kkill the queens
of different fractions for cannibalistic purposes. Approaching the
situation from the perspective of profit-driven logic, lack of such
behaviour is highly questionable. In multiple cases, attacking
another Maw to eat her could improve the odds of survival in a
hostile environment.

To provide an initial attempt to answer the question of whether
or not the queens should order an attack and try to “eat each
other”, we have developed a multi-agent simulation based on
the novel. Through analysis of its results we hoped to prove
hypothesis that with the increased hostility of environment the
Sandkings would develop cannibalistic behaviours and fight until
eventually only one tribe is left.

I. INTRODUCTION

AND KINGS is a science-fiction novel written by George
R.R. Martin in 1979 [1]. There, Simon Kress, the main

protagonist of the story, is as a collector of lethally dangerous,
exotic, and mostly extraterrestrial, animals. Due to his pro-
longed business trips, said animals often die in the span of his
absences. Eventually, when the need for another replacement
occurred, Kress stumbled upon a terrarium filled with, what
the shopkeeper described as, four colonies of Sandkings.

Each colony consisted of an immobile female, queen Maw,
and a number of ant-like Mobiles, which are controlled by
their Maw through telepathy. In order to survive, the tribe
mothers need to be fed regularly, thus one of the Mobile’s
main purposes is to hunt down and collect food for her to
digest. Luckily, the Maws are able to eat “anything” (other
than sand), so everything that can be found in the terrarium
can be brought to her. On the other hand, the Mobiles are not
able to feed on their own, they can be only fed by the Maw,
hence the second priority for mobiles is Maw defense, as when
their mother dies, they will also perish. Throughout this paper
we will use terms Sandkings and Mobiles interchangeably.

The shopkeeper informed Kress that, over time, the four
colonies would start to wage wars between each other. Excited
with this vision, Simon bought all four Sandking colonies and
decided to have them installed in the living room of his flat.
With time, the new owner hosted parties to show off his new
pupils, and he couldn’t wait for the conflicts to emerge. As
Sandkings lived peacefully for the days to come, he started to
starve them so they would become desperate.

©2015, PTI

From graceful and highly intelligent entities, the Sandkings
turned into wild and murderous creatures that sought only to
find more food to grow. Eventually, due to an unlucky event,
they have broken out of the terrarium they were imprisoned
in, and proved to be a threat not only to animals thrown into
the terrarium, but also to their owner and to other people.

In our opinion, a story like the one which has been depicted
above is not plausible, especially in the phase just before
the Sandkings got free. However, being strangely attracted to
the novel, we have decided to model the stage of the story,
that took place slightly after Sandkings were in an extreme
starvation period. This means that the only goal, which was
driving the Sandkings, was to collect as much food as possible.
In order to do so, the Mobiles not only would try to kill any
living animals that were thrown into the terrarium, but would
also fight with each other and potentially kill and eat other
Maws — if that would prove profitable.

The needed model (and simulation) could most naturally be
done using software agents. The application simulating the, de-
fined above, situation could easily be used to predict plausible
Sandkings behaviour(s). The main goal of our investigation
was to resolve any doubts regarding lack of cannibalistic
actions taken by the Maws towards “other tribes”.

We proceed as follows. First, we shortly describe related
work and tools used in our simulation. We follow by a
description of the structure of the program and entities used
in our simulation. Next, in Section IV, we list technological
solutions used to develop the model. Following Section V,
describes two scenarios and datasets used in them, (i) the
friendly environment data set, and (ii) the deadly environment
dataset. We conclude this section with overview of experi-
mental results. Finally, we summarise our results present the
resolution of our hypothesis.

A. State of the art

In nature, ants are social insects that, as individuals, are not
capable of performing complex task(s), as they are “bounded”
by their limited memory and behaviour that seems to have a
noticeable random component. However, when the collective
behaviour of ants is considered, maintaining pheromone-based
communication, they prove capable of performing complicated
tasks, like colony protection, or transporting food too heavy
for an individual. This shows that even with very limited
amount of computational resources per “agent” (ant), a swarm
of ants can efficiently solve advanced tasks. Because of this,

249

250

researchers often make use of ant-like agent modelling, most
often for optimisation purposes.

For instance, ant-like agents, used for load balancing in
telecommunications networks, have been proposed by Ruud
Schoonderwoerd, Owen Holland and Janet Bruten. If there is
too much traffic through some network’s node it might lead
to loss of calls. Agents, whose behaviour has been modelled
based on ants communicating by means of pheromones, tra-
verse the network picking their path accordingly to pheromone
distribution at each node, leaving an appropriate trail with each
move. Such ant based model proved to be more efficient than
shortest-path algorithms, or algorithm-based mobile agents [6].

Other use of ant-like agents is proposed by Stephen C. Pratt,
David J. T. Sumpter, Eamonn B. Mallon and Nigel R. Franks
in "An agent-based model of collective nest choice by the ant
Temnothorax albipennis". The ants mentioned there are known
for their ability to collectively choose the best nest site, out
of several available, even if most of the ants have not visited
more than one location. After finding a new site, the finding
it ant tries to assess quality of the nest and convince the other
active ants to move the colony. When new ants visit a location,
adding to its temporary population, they reassess it by again
trying to convince new ants. This might prove to be a kind
of collective decision, where the best potential sites have the
biggest temporary population. With proper empirical data, the
algorithmic form of a collective decision-making mechanism
can be captured and easily modelled [7].

Finally, the Biomass tool [8] allows to design ecosystem
experiments. This agent based model simulation focuses on
exploring the relationships between population in a given
ecosystem. The individual decisions are based on environmen-
tal conditions. Finally the tool provides a way to configure
the population by parametrization without having to program
it manually. This work is the closest to our approach.

II. TooLs

The Repast Simphony [3] is an open source agent-based
modeling toolkit that simplifies model creation and exper-
imentation. Out of a variety of accessible tools, we have
chosen Repast for the development of the simulation. This
was mainly due to its simplicity of use and the possibility
of run-time dynamic interactions with the simulation. A big
additional bonus for the choice of this modeling toolkit was
the continued development and support of this package, which
when compared to other agent-based modeling and simulation
toolkits is a rare commodity.

Even though the Repast Toolkit supports many programming
languages, including, among others, C#, VB.NET, Python,
C++, Prolog, we decided to implement the application in
the Java Runtime Environment. The most relevant arguments
behind this decision include multi-operating system support,
which Java provides and the fact that other programming lan-
guages were discouraged [5]. Apart from this, the developers
of the Repast Toolkit suggest the usage of the Eclipse IDE,
and thus we have followed their advice.

POSITION PAPERS OF THE FEDCSIS. £ODZ, 2015

The creation process of 2D Euclidan environments and
agents, with specific graphical properties, is particularly easy
in the Repast Simphony. Specifically, an entity extending the
class Agent is already ready for further development. Hence,
the developer does not have to worry about implementation
of the agent itself, there is only need to focus on general
architecture of the agent based simulation.

In addition to this, another useful feature is a fully concur-
rent, discrete event scheduler, which provides a straightforward
method of determining each agent type’s behaviour on every
simulation step.

Tutorial materials [2] provided by the Repast Team, espe-
cially the implementation of a zombie epidemic simulation,
were the initial foothold in the topic of multi-agent based
simulation. The extent and quality of document commentary
significantly sped-up the process of simulation development.

III. PROGRAM STRUCTURE

Agent-based computer systems are inherently object ori-
ented, which allows for modularity and ease of development.
In order for the simulation setup to closely resemble the
universe created by George Martin, the modeling application
has been divided into the following entities: Maw, Mobile,
Formation, Food and Enemy.

A. Agents

Let us start with the description of the agent-based model,
often referred to as ABM. Formally, it is a computational
method that enables to create, analyse, and experiment with
models composed of agents that interact within an environ-
ment. Most typically, they are used in social sciences, where
researchers try to depict simplified versions of phenomena
that are looked into. Based on a specific set of inputs, the
model calculates resulting output data, which often are used
to confirm or decline some theory [6], [8]. The implemented
ABM is a system composed of multiple agents, which sustain
interaction and communication. Such construct is called Multi-
Agent system, otherwise referred to as a MAS. The agents
relevant to our work are as follows.

1) Maw: The Maw (referred to as Mother or Queen) is an
immobile agent, which spawns the Mobiles, described in the
next section. Maw’s life depends on the Mobiles ability to feed
it, as once a Maw dies, so do all her Mobiles.

Four Mothers exist in our simulation (as shown in Figure 1:
denoted as la, 1b, Ic and 1d). Every one of them, as it is
supposed to exhibit a Hive-Mind behaviour, is responsible for
coordinating the actions of her Mobiles. The children of each
Maw inform her about every object found in the environment,
possible threats and available food, allowing her to collect an
extensive knowledge database. The types of threats and food
are described in the Section III-B.

Based on the available information, each Maw organises
the work of her children. This is done by means of a list of
tasks (or assignments), which is sorted by the most profitable
and least dangerous assignments being placed first. Such tasks
have the purpose of keeping her fed, safe and alive. Possible

VIET BA MAI ET AL.: MULTI-AGENT SIMULATION OF THE WORLD FOUND IN THE G. R. R. MARTIN’S NOVEL

tasks are not limited to picking up heavy food, which single
Mobiles are not able to move, or killing off monsters that can
be later eaten, but also attacking other Maws in hopes for the
acquisition of their food.

As picking up food is not related to any specific danger,
except any possible threats met on the way, it is always
considered the least dangerous and thus has the best profit
potential. Attacking and killing an enemy is usually considered
mediocre dangerous, where the profit is equal to amount of
food that can be collected from the enemy and the danger
is relative to the strength of the enemy. Finally, the profit of
killing a Maw is considered. This involves the amount of food
that can be gained by killing each of her children and the food
that she actually has, while the danger is related to the overall
strength of all her mobiles.

Depending on the strength, which is required to finish the
task, the Maw might try to create a temporary alliance with
another tribe. The lifespan of this alliance usually does not
exceed the task greatly, as the profitability of another alliance
may be calculated at any later stage of the simulation.

When one of the Maw’s population grows bigger than the
rest combined, it becomes a threat to other Maws. This can
lead to an alliance constructed between the weaker Maws
in order to start a war against the stronger fraction. Such
behaviour is supposed to keep the strength of all Maws in
balance.

2) Mobiles: The second most important element of the
simulation are the Mobiles, as they act as a set of actuators
for their Maw.

With simple autonomy, they prioritize the completion of
the task they were assigned over their own survival, Mobiles
wander around the terrarium looking for “points of interest”.
Every piece of food which is light enough to be picked up by
a single Mobile is picked up and carried back to the fraction’s
Maw. Food, which is too heavy, and Enemies which are too
strong to fight, are added to the Knowledge Base and are
scheduled to be told to the Maw on the next occasion (i.e.
when the Mobile goes home next time).

If an Enemy (in our simulation this is, most likely, a
dangerous animal — see III-A3) is spotted, Mobiles will charge
towards it, provided it is weak enough, and try to kill it in order
to bring its leftovers to their Maw as food (see III-B2), or flee
if fight would prove to be too dangerous.

As Mobiles are unable to digest on their own, they have to
bring the food firstly to the Maw and only then she can feed
them. Because of this fact, unless they have task to complete
on the other side of terrarium, they tend to stay nearby their
mother, keeping her safe and themselves fed.

3) Enemy : The opponents of Maws and Mobiles are the
Enemies, also referred to as Monsters or Creatures. They are
agents of much higher strength and health than a Mobile. They
move on the Map in random directions, but do not eat anything
they find, because their only purpose in the simulation is to
fight with the Mobiles.

As shown in Figure 1, the following three types of Enemies
exist in the simulation: Spiders [3c], Scorpions [3b], and the

strongest ones — Snakes [3a]. As the simulation proceeds, the
“damage level” of Enemies increases, depending on the current
tick count of the simulation. The visual size of the enemies
reflects their damage level (the more damaged they are, the
smaller they get). This also indicates the number of Mobiles
needed to kill them.

4) God: This is an “invisible agent” which has no graphical
representation in the simulation. In each step, God may drop
either Food, or an Enemy, in the terrarium, at a random
point on the grid. The God “appears” every 100th tick of a
simulation. Specific types of Food and Enemies to be spawned
are chosen at random, where the probability of dropping them
depends directly on their properties — the more powerful they
are / the more food-value they have, the smaller the chance
of their appearance. For example, Pizza, which is the most
beneficial Food, for the Mobiles, and Snake, which is the
strongest creature in the simulation have the least likelihood of
them being spawned. Detailed properties of each entity, used
in actual simulations, can be found in Section V.

The God module is also responsible for increasing the
damage level of the enemies, as described in more detail in the
Section III-A3. Additionally, a constraint was introduced such
that the Monsters may never be created nearby the Maws, to
prevent mobiles from dying immediately.

As opposed to the Mobiles and the Maws, neither God nor
an Enemy have an ability to learn about the environment.

B. Environment

= e 2@9' b

Fig. 1. Simulation with all elements.

The Environment of our simulation has been developed to
represent the terrarium, from the Sandkings novel, as much as
possible. As the simulation starts a Map representing sand and
rocks is created, as well as Maws, which spawn their Mobiles
during the runtime.

251

252

1) Map: The scenery of our simulation is a grid consisting
of cells painted with different shades of yellow and grey, to
graphically represent a simplified version of the terrarium,
which was filled with sand and rocks. To make observation
easier there exist icons representing an event shown for a given
timeout (usually a few ticks — 50, 100, ... to grab attention but
not to disrupt the visual flow of the simulation).

As seen in the Figure 1, the following icons — Shield[1d],
Shaking hands[1a, 1c] and Warning sign[1b] concern Maws,
hence they will appear right next to them. These icons indicate,
respectively, that the Mother needs to be defended, has made
an Alliance with another race, or that she is starving. The
shield shows up when a Maw is in danger, which means that
an opponent, either an Enemy or another fraction is about to
attack her. In the case of the fourth sign, the Sword(Figure 1,
[4]) will pop up next to every Mobile that is in a fight. The
last informative picture is a Grave stone which appears on the
Map in place of a dead Maw. Differently from the other icons,
it does not have a timeout. At the end of a simulation, when
only one Maw is left — as the others have died by hunger
or during a war, an ending screen appears in the middle of a
Map. It also contains information about which Maw was the
last to stay alive.

2) Food : Food is an object (on the Map), which does not
move. In our simulation, six types of Food with different,
yet proportional, weight and “calorie count” properties are
introduced. Weight property of each Food category affect how
many Mobiles are needed to carry that piece of Food, while
calories represent how much the ‘“Maw’s food repository”
is increased by eating it. Using eaten food the Maw may
either give birth to a new mobile or increase the overall tribe
strength, making each Mobile stronger. However, note that the
overall Food needed to feed the Mobiles may be larger thus
introducing risk of starvation.

The first four types of Food are dropped by the God agent.
As shown in Figure 1 they are represented with icons of
Grapel2a), Doughnut[2c], Pizza [2d] and Cabbage [2e] .

The last two types of Food are placed in the grid only (and
every time) when either a Maw, Mobile or Enemy dies. When
a Mobile dies, it turns into one piece of Food, shown as Meat
(Figure 1, [2b]). For balancing purposes, a piece of Meat has
less calorie value than any other kind of Food, and amounts to
roughly half of the upkeep needed to feed one Mobile. Both
Maws and Enemies become Steaks (Figure 1, [2f]) after their
death. This means that the strength of an agent is directly
proportional to the Food this agent drops when dying.

Additionally, dead Maws also drop extra Steaks proportion-
ally to the amount food she has eaten throughout the entire
simulation. The detailed values of each Food’s properties, used
in actual simulations, has been specified in Section V.

C. Formations

In order to model agent cooperation, a simple Mobile for-
mation logic has been implemented. Specifically, a temporary
agent called Formation is spawned for the duration of a
specific Task. Every Mobile, which is in a Formation, is not

POSITION PAPERS OF THE FEDCSIS. £ODZ, 2015

allowed to carry out any of the movement, item carrying or
fighting logic associated with a single Mobile. Instead, the
Formation object is responsible for the simulation algorithms
of all Mobiles in its ranks.

A new instance of a Formation gets instantiated when one of
the Maws has a Task, in her Scheduler, which is too “difficult”
for a single Mobile, i.e. object too heavy to carry or enemy
too dangerous to attack. This allows for easy planning, basic
tactics and task assignment. Formations are assembled by the
respective Maws and are provided with all relevant information
(during assembly of the Formation): the Task type (fetch food,
attack an enemy), the size needed for the Formation to be
formed and the Task location (the last known position of the
food or enemy). To find the number of Mobiles necessary for
the creation of a Formation, the Maw looks for any of her
children, which are currently not assigned to any other Task,
and are in her vicinity.

If the Task needs more Mobiles than available to the Maw
(at a given moment), the Alliance system comes into play —
Mothers of different fractions are asked whether they want to
join the Task. If the asked Maw deems this profitable, she
creates a Formation of her own. When the critical number of
Mobiles for the given Task is reached, the Formation assembly
process is finished and the Formation is sent out to carry
out its Task. All Formation in a multi fraction Alliance have
their movement synchronised so that they will arrive at their
destination at the same time.

A Formation is created “on the position of the Maw”, which
it belongs to. This is due to the fact that she has to have
the possibility to oversee the Formation assembly process by
assigning free Mobiles from its vicinity to the Task. The
Formation waits until the Maw finds enough Mobiles from
either her own ranks or through Alliances and all assigned
Mobiles arrive at the location of the Formation.

A Formation, which has not yet arrived at its goal location,
moves all its assigned Mobiles towards the goal location (in
this case, the food or enemy, which was supposed to be picked
up or attacked). If the Formation’s goal is attacking something,
all profitable Enemies in the vicinity are attacked in addition
to moving to the set goal position. Similarly to the logic of
the Mobiles, a Formation can have specific functions called
on arrival at a specific location. For example, this could check
the Food in the vicinity, pick it up and start heading back for
home. In another example, all Mobiles could attack an Enemy,
provided one is nearby.

IV. METHODOLOGY

In order for an agent to act with a logic driven approach,
a concrete set of “tools/methods” has to be introduced. Here,
tools/methods, used in our simulation, are described.

A. Fighting

Relations between each tribe in terrarium can be described
as Hostile, Neutral or Friendly, with tribes dividing into each
Maws faction and Enemy tribe. Initially, the relation between
each of mentioned tribes is set to Neutral.

VIET BA MAI ET AL.: MULTI-AGENT SIMULATION OF THE WORLD FOUND IN THE G. R. R. MARTIN’S NOVEL

When a mobile stumbles upon other Mobile, Maw or
Enemy, if the relation between them is not friendly, a fight
between them will start. If an agent is fighting, instead of
moving, during the tick it inflicts damage equal to its attack
parameter to one nearby non-friendly agents, i.e. reduces its
amount of health by the value of attack, prioritizing hostile
agents. When there are no non-friendly agents left in the
vicinity, fight ends with a victory. If agents nearby are too
dangerous to fight, it flees. In case of victory, the Mobile
restarts its previous task, in case of fleeing it will move in
the other direction than the danger is in, as to avoid it.

When mobiles are grouped into a Formation, as described
in Section III-C, they are not executing their individual tick
steps. Instead, the Formation is managing their actions, acting
accordingly to its own tick step(s). Similarly to mobile fight-
ing, the fight starts if Formation encounters non-friendly agents
nearby and might end either in victory if there are no non-
friendly agents left, or a retreat decision. Formation decides
to retreat from fight if there are less mobiles left than the half
of initial Formation size. During the fight instead of moving
during its tick step the Formation orders each subordinate
mobile to attack, as it was itself in a fight.

B. Message Exchange

We have constructed a simple mechanism to allow for an
inter-agent communication. This system does not use the com-
munication functionality provided by the Repast Simphony, as
we had to create a “non-standard communication mechanisms”
(to match the need of our simulation).

Agents can send messages to each other. This is done by
adding an abstract message object (i.e. packets — which have
sender and recipient) to a global message queue. This queue,
on notification, will process its contents, and fire specific
handlers for each message type. Based on the sender’s needs
and the recipient’s current state, a response is sent (or not).

In our simulation, Mobiles and Maws communicate between
each other on regular basis — as often as the need for
communication arises (for example, when a Mobile has found
knowledge or is hungry). Since each Maw is an immobile
agent, all knowledge about the environment comes from its
children. In order for a Mobile to send any message, it has
to be in a small distance from its potential recipient. Thus, if
a Mobile wants to message its Maw, it has to “return back
home”. Upon return, a Mobile can send a specific message to
its Maw. Sending an Inform message will simply cause the
Maw to add a given piece of information to its Knowledge
Base. Mobile can also send an Ask For Food message and
wait for a response. In this case Maw can respond with either
Acceptance or Rejection based on its food supplies.

Being true to the book, Maws have the ability to send
messages without any distance restrictions (through telepathy).
A given Maw can also start communicating with other Maws,
if it is faced with a problem it can not solve alone, e.g. dealing
with a strong Enemy creature. In such case, a series of Ask For
Alliance messages is exchanged between all Maws in order to

begin an Alliance and to send out Formations, which could
potentially defeat this Enemy.

C. Knowledge Base

Both Mobiles and Maws gather information about their
environment. A single piece of information encapsulates the
following properties: the object of interest, its location and
the time when it was discovered. This information is saved in,
unique for every Agent, Knowledge Base.

Agents do not duplicate information in their knowledge
bases. Upon encountering an object of interest, the Mobile
checks whether it already knows about it. Each piece of
information in the knowledge base can be marked as useless.
Useless information is the one that has already been processed
and no further action should ever occur based on it. This is
explained in detail in section IV-D.

Mobiles explore the Map and learn about their surroundings.
Each time a Mobile encounters something interesting, an
information about this object is added to its knowledge base.
Each Mobile can learn about other hostile Mobiles, Enemy
creatures or Food scattered around the Map. Once they find
something, they run back to their Maw to inform her about
their findings. Both Maw and her Mobiles have their own
Knowledge Bases.

As mentioned previously, Maws can not explore on their
own. Thus all information comes from the Mobiles exploring
the Map. The Knowledge Base is used to control the actions
of the Maw’s children; see, Section IV-D.

D. Scheduler

The Agents’ behaviour is scheduled dynamically during the
simulation runtime. To achieve this, each Agent is given its
own Scheduler, responsible for assigning Tasks, based on its
Knowledge Base. It runs in parallel with their Knowledge Base
by going through non-useless information and determining the
next course of action.

A Task is a sequence of steps, which an agent should
follow in order to complete a task. Tasks are split into
stages. A stage is built of an execution part, which determines
the necessary steps of the agent, and the condition, which
indicates the end of this stage, thus indicating the beginning
of another one. When the task reaches its final stage, it finishes
successfully, which in turn marks the information that initiated
this task as useless. A Task can also be finished successfully in
abnormal cases, when a given stage was impossible to execute.
Abnormality occurs, for instance, when an Agent reaches the
destination and the object of interest is no longer there. It
could mean that similar Task has been completed by different
Agent. However, the current task can be replaced with another
one having higher priority. In this case, the current Task is
stopped, but the information is kept in the Knowledge Base
without modification. This allows to restart the Task when the
Scheduler, in synchronisation with the Knowledge Base, has
determined that the Task should, nevertheless, be completed.

For example, a Mobile can be assigned a Task to pick up
Food from a location, which is stored in its Knowledge Base.

253

254

This task is split into the following stages: move to Food’s
location, pick up the Food, and return home. When the Mobile
returns home safely, the task is finished successfully. Since
Mobiles do not share any global knowledge, other Mobiles
of the same fraction could already haven returned this Food.
Of course, the same applies to Mobiles between different
fractions. Hence it can happen, that the indicated location
contains no Food at all. In this case the pickupfood stage
fails and this task is marked as finished successfully. Even
though the Mobile did not deliver the food we do not want
the Mobile to repeat the process of delivery when there is no
food to be picked up.

A Mobile can also be assigned a Task to inform its Maw
about given object. This can occur when the found Food is
too heavy for it to pick it up alone, or when it sees an Enemy
Creature or Formation. During execution of this Task, a Mobile
will try to avoid combat, if only possible. Of course, it may
happen that the returning Mobile encounters an Enemy and
gets killed by it. In such case the information it “carried” is
forgotten and has to be rediscovered by other Mobiles.

After being informed about the environment, Maw can
generate a Task, which will control Mobile units. Execution
of tasks for picking up heavy Food and fighting Enemy
creature(s) has similar structure. In the first stage, Maw has to
determine if given objective can be completed. In other words,
if it has enough Mobiles to pick up food or to defeat certain
Enemy. Then a Formation is constructed, which starts moving
towards its objective. In case of Food, the formation is ordered
to pick it up and return home. When the objective is to defeat
an Enemy, the formation has to destroy it. In both cases, at the
end of task the Formation is disbanded, and Mobiles return to
normal work that is to explore the map.

A Maw can also start a War Task. As defined previously,
War can occur when one of the fractions becomes stronger
than all other fractions combined. When this is true, a single
Maw can start communicating with other Maws using the Ask
For Alliance message in order to create a force that could
weaken the common Enemy Maw.

When a Maw is informed about an Enemy Formation, a
Defend Task is initiated. This will cause all Mobiles to return
home immediately to form a Formation of their own in order
to destroy their (incoming) enemy.

V. SIMULATION

Now, let us describe the tested input values and the results
of the preliminary simulations. The data set of our application
was divided by harshness of the environment into two scenar-
ios: friendly and deadly. Based on this division, two simulation
sets were conducted, each returning different results. The
comparison of said results leads to interesting observations
regarding our main thesis.

In our opinion (hypothesis we started with, and tested in
our simulations), cannibalism is a natural outcome of profit-
driven logic, in which the only relevant factor in the decision
making process is the amount of food that can be gathered

POSITION PAPERS OF THE FEDCSIS. £ODZ, 2015

as a profit, as it vastly increases the survival chances of an
individual Maw.

This, however is not presented in the Sandkings story, where
the survival of the race often had a higher priority than the
survival of the individual. This leads to our hypothesis that
with progressively decreasing friendliness of the environment,
the aggression level towards Mobiles of other fractions, and
other Maws, in particular, vastly increases.

In a friendly environment, Maws usually do not need to rely
on Alliances, as they are strong enough, on their own, to cope
with most threats in the terrarium. When the environment is
much stronger than their respective power levels, cooperation
— even if temporary — is the Maw’s only chance of survival.

When the terrarium is filled with enough food and relatively
weak Enemies, an endless simulation, i.e. prolonged lifespan
of each race without clear victory of one of them — should
be possible, as shifts in power balance between the fractions
should be much smaller than within a deadly environment.
This means that, most probably, with harsh configuration, a
victorious Maw will quickly emerge.

A. Shared Data set

In the simulation we have used four Maws with their
respective Mobiles, six different Food types, three Enemy
types, and a simplified automatic spawning algorithm called
the Autogod. The grid size was set to 50x50. This structure
allowed us a simplified, yet visually engaging, representation
of the environment described in the original novel.

Enemies’ graphical size changed with time, accordingly to
their health and attack level increased with time. The first was
increased by the 4th square root of the tick count and the latter
— by the 5th. There was 10% chance that an Enemy will be
dropped on each God’s step. In Tables I, II, III we present the
input data sets that are constant in both Friendly (Section V-B)
and Deadly (Section V-C) environments.

TABLE I
MAW PROPERTIES

[Property H Value { Comments

strength 0 Strength at the beginning of the simulation.
food unit 0 How much food calories a Maw has at the start.
attack 0 Initial number. Changes depending on Maw’s
strength.
health 1000 | Initial number. Changes depending on Maw’s
strength.
meat count 50 How much steak is dropped when it dies.

TABLE 1T
MOBILE PROPERTIES

l Property H Value [Comments

steps per food 150 | How much steps it can take until it starves.
stomach size 2 How much calorie at a time it can eat.
attack 5 How much damage it makes per one attack.
health 100 | How much damage it can take before it dies.
meat count 1 How much meat is dropped when it dies.

VIET BA MAI ET AL.: MULTI-AGENT SIMULATION OF THE WORLD FOUND IN THE G. R. R. MARTIN’S NOVEL

TABLE III
FOOD PROPERTIES
Property H Weight | Calorie
Cabbage 1 10
Grape 3 30
Doughnut 5 50
Pizza 7 100
Meat 1 3
Stake 1 20

As discussed above, the Weight determines how many mo-
biles are needed to carry each food. Both properties — weight
and calorie — are constant during the span of a simulation.

B. Friendly Environment Data Set

In the first simulation we have defined what we believed
to be a friendly environment; one in which it is easy for the
Mobiles to survive. Here, in the Autogod module, a 33% of
chance is given that a food will be dropped on each of God’s
step. While the probability of spawning Enemies is equal
in both environment types, in the friendly environment their
strength and health is optimized so that the Mobiles should
not have difficulty in eliminating them (see, Table IV).

TABLE IV
FRIENDLY DATA SET: ENEMY PROPERTIES

Enemy Type H Spider [Scorpion [Snake ‘

Attack 10 20 40
Health 150 300 600
Meat value 1 4 20

C. Deadly Environment Data Set

This environment was set so that it would be hard for the
Mobiles to survive. The purpose of this experiment was to
observe how long they can live under harsh circumstances.
In addition to this, the occurrence of wars and alliances
in comparison to the Friendly Environment, was expected
to change. The probability of Food being spawned by the
Autogod has been dropped to 10%, which makes surviving
much harder for the Sandkings. The Enemies’ properties were
also adjusted according to our vision of the harsh environment
(see, Table V).

TABLE V
DEADLY DATA SET: ENEMY PROPERTIES

Enemy Type H Spider | Scorpion ‘ Snake ‘

Attack 15 30 60
Health 200 450 800
Meat number 1 4 20

VI. EXPERIMENTAL RESULTS

The following tables describe the results of 20 sample
simulations (10 in friendly, 10 in harsh environment settings).
Average values of each of the simulation types are presented.

Note that we have not observed large variation in results.
Henceforth, average values presented below are “representa-
tive” to both sets of experiments.

A. Simulation with the Friendly Data Set

As shown in Table VI, the application of the Friendly dataset
(see Section V-B) resulted in simulations ending, on average,
after 7971 ticks, spawning almost 40 Enemies and dropping
134.6 Food pieces on the map. The Maws have formed, on
average, 3.2 alliances per simulation.

TABLE VI
FRIENDLY SIMULATION - GENERAL STATISTICS
l GENERAL H Tick [Enemies spawned | Food dropped | Alliances
Average || 7971.6 39.9 134.6 3.2
Per Tick —— 0.005 0.017 0.00040

In addition to this, the statistics about the average, winner
(last survivor) and losers are presented in Table VII. The
columns describe the time when the death of one of the
Fractions occurred, the number of lost Mobiles and the peak
value of the Mobile count, and the amounts of Food consumed.

Finally, a third statistic concerning the number of Tasks (and
by this, Formations) is shown in Table VIIIL.

TABLE VII
FRIENDLY SIMULATION - MAW STATISTICS
MAW H Death Tick ‘ Lost ‘ Max ‘ Meat Non-meat
Total AVG 2639.20 76.53 | 42.33 | 116.55 23.30
Per Tick 0.01 0.01 0.01 0.00
Winner AVG 89.13 | 51.25 | 136.88 30.63
Losers AVG 3650.56 73.52 | 38.11 | 103.11 19.59
TABLE VIII
FRIENDLY SIMULATION - TASK STATISTICS
TASK H Food ‘ Creature | Defend ‘ War ‘
Total AVG || 23.00 16.93 0.10 0.25
Per Tick 0.00 0.00 0.00 0.00
Winner AVG || 41.75 27.88 0.13 0.50
Losers AVG || 16.63 13.74 0.11 0.15

B. Simulations with the Deadly Data Set

In the Deadly Data Set — as shown in Table IX — the
simulation ended, on average, after 3599 ticks, almost equally
spawning 18 and 18.6 Enemies and Food pieces on the map.
The Maws have formed 4.5 alliances per simulation.

This simulation run shorter than the friendly one, which
means that the Mobiles faced a bigger difficulty level. The
comparison of the alliance count also shows that, under these
circumstances, the Maws are more likely to form an alliance
to be able to combat a common enemy. Taking into account
the difference between length of simulations and number of
alliances made in Friendly and Deadly environments, in the
first case alliances were made approximately every 2491 tick
count and in the latter - every 800. This also means that when

255

256

facing harsh simulation, the Maws formed over 3 times more
alliances.

TABLE IX
DEADLY SIMULATION - GENERAL STATISTICS

GENERAL H Tick ‘ Enemies spawned | Food dropped | Alliances ‘
Average || 3599 18 18.6 4.5
Per Tick —— 0.005 0.005 0.0013

The Maw statistics (see Table X) again show the time of
death, lost and peak amount of Mobiles and the eating habits of
the overall, winner (last standing) and losers. The lifespan per
Fraction does not differ significantly from the Friendly Data
Set, but the amounts of Mobiles and Food consumption are
proportional to the harshness of the environment and resulting
duration of simulation.

TABLE X
DEADLY SIMULATION - MAW STATISTICS

MAW H Death Tick { Lost { Max { Meat { Non-meat ‘

Total AVG 2074.25 34.20 | 17.73 | 40.95 3.75
Per Tick 0.01 0.00 0.01 0.00
Winner AVG 26.50 | 26.00 | 53.50 5.20
Losers AVG 2765.67 36.77 | 14.97 | 36.77 3.27

In direct comparison, the Task statistics (as presented in
Table XI) differ significantly. The Maws, when placed in a
Friendly Environment, sent more of their offspring to fetch
Food or to attack nearby Enemies, though this is most probably
due to the scarcity of the Food and the strength of the Enemies.

TABLE XI
DEADLY SIMULATION - TASK STATISTICS
TASK H Food ‘ Creature | Defend ‘ War ‘
Total AVG || 3.10 5.13 0.13 0.25
Per Tick || 0.00 0.00 0.00 0.00
Winner AVG || 4.20 7.10 0.00 0.30
Losers AVG || 2.73 4.47 0.17 0.23

The Deadly Data Set made the Maws focus their attacks
not on the Creatures dropped into the Terrarium, but rather
on the Mobiles of other Fractions as they were weaker and
easier to eat. In addition, the winning Maw is more likely to
have started a war — though this is only visible in the Friendly
Simulation.

In the case of the Friendly Data Set, Maws died mainly
due to starvation, where the winning Fraction would collect
more than the other three. The Deadly Data Set showed some
examples of Enemies (or, enemy Formations) attacking one
of the Maws directly, leaving the defenders not enough time
to prepare — leading to substantial losses or even death of the
Sandkings tribes.

Most of the time, the first Maw, with the weakest start, died
rather quickly in the simulation (as described in the book).
The second Fraction to fall usually lasted until approximately
3/4 of the simulation, leaving the surviving two living mostly

POSITION PAPERS OF THE FEDCSIS. £ODZ, 2015

peacefully. In rare cases, observed in multiple simulations run
during program development, all four died in a few hundred
steps.

Alliances of three Maws against the fourth occurred very
rarely, proportionally to the same strength growth for all
Fractions. The Alliance system was most often used to attack
Creatures in the Terrarium. A stronger Maw attacking one of
the weaker ones, in order to gain Food, only happened rarely
— when a Formation, which was sent out to attack a Creature,
finished its task and started chasing another Fraction’s Mobiles
running into their Maw and killing her.

VII. CONCLUSIONS

Analysis of results from both Friendly and Deadly Data
Sets led to surprising results. Our initial hypothesis was that,
with the increased hostility of the environment, the Sandkings
would develop cannibalistic behaviours and fight until even-
tually only one tribe is left.

Contrary to it, with harsher environment the Sandkings
showed tendencies to cooperate in order to increase their own
chances of survival, and refrained from attacking each other, as
the sustained losses most probably would prove incomparable
to the potential food gain. On the other hand in friendlier
environment, where Sandkings amassed sizable amounts of
food and grew in size and numbers, raiding other Maws proved
profitable enough that acts of cannibalism have been observed.

Concluding, our hypothesis was faulty, as our Sandkings
model proved that their aggressiveness increases not with
harshness of environment they are located in, but with its
friendliness. With the results presented, it is safe to state
that the vision presented in work of George R. R. Martin
was plausible, as Sandkings when facing extremely unfriendly
conditions had to cooperate in order to survive.

ACKNOWLEDGEMENT

We would like to thank Marcin Paprzycki and Maria Ganzha
for a fascinating introduction into this topic, wise guidance and
constant kindness.

REFERENCES

[1] Martin, G. (1981). Sandkings. New York: Pocket Books.

[2] Collier, N. and North, M. (2015). Repast Java Getting Started.
Ist ed. [ebook] Repast Developement Team. Available at:
http://repast.sourceforge.net/docs/RepastJavaGettingStarted.pdf
[Accessed 30.05.2015].

[3] Repast.sourceforge.net, (2015). Repast Suite. [online] Available at: http:
/lrepast.sourceforge.net/ [Accessed 30.05.2015].

[4] Railsback, Steven F., Steven L. Lytinen, and Stephen K. Jackson. *Agent-
Based Simulation Platforms: Review And Development Recommenda-
tions’.

[5] Crooks, Andrew. ’An Introduction To The Repast Software Recursive
Porous Agent Simulation Toolkit’. 2015. Presentation.

[6] Schoonderwoerd, R., Holland, O., Bruten, J. and Rothkrantz, L. (1997).
Ant-Based Load Balancing in Telecommunications Networks. Adaptive
Behavior, 5(2), pp.169-207.

[7] Pratt, S., Sumpter, D., Mallon, E. and Franks, N. (2005). An agent-
based model of collective nest choice by the ant Temnothorax albipennis.
Animal Behaviour, 70(5), pp.1023-1036.

[8] Candelaria E. Sansores, Flavio Reyes, Hector F. Gémez, Juan Pavén,
Luis E. CalderAln-Aguilera. BioMASS: a Biological Multi-Agent Sim-
ulation System. Proceedings of the Federated Conference on Computer
Science and Information Systems pp. 675-682.

