

Abstract—The paper deals with OTT TV service based on

adaptive HTTP streaming to deliver video content to various

devices over unmanaged, best-effort IP network. One of major

drawbacks of adaptive streaming technology is a significant

video latency comparing to traditional TV broadcast. In this

paper, causes of video latency in Internet TV architecture are

identified and quantified by theoretical analysis of protocol

behaviour and by testbed measurements.

I. INTRODUCTION

IDEO entertainment over the Internet has become a

very popular service all over the world. Customers

benefit from services offered by multitude of providers,

which include pure OTT (Over The Top) players: local

providers or worldwide giants like Netflix or Amazon,

customer equipment manufacturers (Apple), content

providers and TV stations (HBO, BBC), as well as legacy

network and cable operators (Orange, Telefonica, Comcast).

A VOD (Video on Demand) service is mainly offered by

OTT service providers, but live TV is also gaining

popularity, especially for watching live sports in the case of

globally popular events. Television audience during events

like 2014 Brazil Football World Cup is reaching its peaks all

over the world and important part of this audience is

watching on their PCs, smartphones and tablets [2].

Most commercially offered TV services over the Internet

use so-called adaptive HTTP streaming technology [4]. It

assumes that player is able to adapt to temporary network

conditions by choosing among several profiles (versions of a

stream encoded with certain bitrate), available on the server.

The continuous stream is divided into fragments of certain

size (“chunks”) and delivered to clients using standard
HTTP protocol. The format of delivered video fragments

and manifest file (an index which allows clients to reach

specific stream version) is governed by a streaming protocol,

among which the most popular ones are: Microsoft

SmoothStreaming, Apple HTTP Live Streaming, MPEG-

DASH [4].

 Work carried out within EUREKA CELTIC project NOTTS (Next

generation Over-The-Top multimedia Services) [1]

A. Video latency in OTT TV

Live OTT TV service may suffer from significant video

latency. A continuous video stream is divided into chunks

(files), which suggests that certain amount of buffering must

be applied in the streaming server. In addition, buffering is

required in the end-device to circumvent network jitter and

server overloads. As a consequence, end-to-end delay

experienced by user is much larger than in the case of

traditional broadcast, DTT, cable or IPTV service.

Normally, a constant and stable delay is not a problem for

viewers of movies or other non-live programs. However, the

problem intensifies when someone is watching for example a

football match, and may surprisingly hear his neighbors

cheering over a scored goal, which he will only see on his

screen in next minute, due to the delay introduced by OTT

streaming. This problem may become more and more

important with the advent of Social TV phenomenon. You

may not really hear your neighbor shouting over the goal, but

you will immediately see the comments posted by other

viewers on Twitter, or you will see the news notification on

your mobile phone, before you actually see the goal scored

on the screen of your tablet. The issue of end-to-end (e2e)

delay is thus becoming an important factor for overall QoE

(Quality of Experience) of OTT services [3].

The discussed effect of e2e delay in OTT live TV is

illustrated in Fig. 1, which depicts a photo taken while

watching live transmission of a football match. The photo

shows two screens at the same time: big TV screen

connected to cable TV (DVB-C), and laptop screen,

displaying an OTT TV service. One can see that match time

shown on the laptop (OTT TV) is about 1 minute behind

what is presented on the cable TV. Viewers of OTT TV are

clearly experiencing a disadvantageous situation, not being

able to follow the match truly live.

V

Analysis of video delay in Internet TV service over adaptive HTTP

streaming

 Marek Dąbrowski, Robert Kołodyński, Wojciech Zieliński
Orange Polska, Centrum Badawczo-Rozwojowe,

ul. Obrzeżna 7, 02-691 Warszawa

Email: marek.dabrowski@orange.com,

Email: robert.kolodynski@orange.com,

Email: wojciech.zielinski@orange.com

Position Papers of the Federated Conference on
Computer Science and Information Systems pp. 143–150

DOI: 10.15439/2015F91
ACSIS, Vol. 6

c©2015, PTI 143

Match time on cable TV -
21:23

Match time on a tablet
(OTT TV) – 20:25

Fig. 1. Illustration of video latency problem in OTT Live TV

This study aims to identify, quantify and explain the

causes of delay experienced by end user of OTT TV. The

analysis will be supported by measurements in a testbed

reproducing operational service architecture of OTT TV and

video service offered by Orange Polska.

B. Delay budget in end to end delivery chain

Fig. 2 depicts typical architecture of OTT content delivery

system and identifies major components which may

contribute to e2e delay experienced by user.

IPTV head-end

CDN

over Internet

Packager

Client devices

PC

Tablet

Delay of

transcoding

Delay of

distribution of

chunks over

regional CDN

nodes

Player

delay:

buffering,

decoding

Transcoder

Delay of

packaging

(publication of

encoded chunks)

Fig. 2. Delay components in live OTT video

 IPTV head-end. Input content for OTT delivery chain is

obtained from IPTV or satellite TV headend.

 Transcoder applies video compression, using several

profiles appropriate for transmission over the Internet.

H.264 is currently most popular compression standard,

with HEVC (H.265) considered as future candidate.

 Packager applies streaming format (MS

Smoothstreaming, MPEG-DASH, HLS,…). It divides

continues stream to chunks of fixed size, prepares the

manifest and publishes files on HTTP server.

 CDN (Content Delivery Network) is used for stream

delivery to regional nodes in a wide area network. Since

HTTP standard is used for message delivery, a typical

Internet CDN is capable for supporting video streaming

[6].

 Video player on the client device performs buffering,

decoding and video playout. Length of receiving buffer,

which is a major source of e2e delay, is a result of

compromise between short e2e latency (small buffer), or

better resilience against packet-level jitter and losses

that may occur in the transport network (long buffer).

II. ADAPTIVE STREAMING CHARACTERISTICS

In this section, essential characteristics of adaptive

streaming technology will be analyzed from the point of

view of impact on e2e video delay.

A. Transcoder behavior

The transcoder takes as input a continuous video stream,

decodes it and encodes again, producing video fragments

suitable for further processing by the packager. The

encoding standard used in tested scenarios is H.264, the

same as the input stream. The format of output file is fmp4,

containing the amount of video equal to the packager’s
chunk duration. Remark that the encoder and packager use

the same configuration of chunk duration, and are thus not

totally independent in their operation.

Illustrative explanation of encoder impact on video delay

is presented in Fig. 3. After the end of time period

corresponding to chunk duration, the input video frames are

stored in encoder’s buffer. Next, they are processed by the

encoder and the encoded chunk is saved on the encoder’s
storage disk as fmp4 file. The time of processing a video

chunk by the encoder is non-negligible, and thus the video

chunk that is saved on the disk at the output is delayed

comparing to the input stream by the value of Denc.

Remark that configuration of encoding profile may impact

on the value of this delay, as better quality profiles surely

require more processing at the encoder.

0 1
Encoded

chunks

T0: begining

of chunk 0

T0+2s+D: chunk 0

encoded and

saved

Chunk

length = 2s

Period 0

T0+2s:

chunk 0

buffered

Video

stream
Period 1

Encoding delay

Fig. 3. Illustration of encoder behavior

B. Packager behavior

The following two parameters are crucial for operation of

packager (see Fig. 4):

 Chunk (fragment) length: amount of video (expressed in

time units) that is encoded and packaged in a single

HTTP message transmitted over the network. The

default value in Microsoft SmoothStreaming is 2s.

 Number of lookahead fragments: succeeding fragments

that have to be collected by the packager before

releasing a given chunk. The default value is 2.

144 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

0 1 2

0

Encoded

chunks

Published

chunks
1 2

T0: begining

of chunk 0

T0+4s: chunk

1 encoded

and buffered

T0+6s: chunk 2

encoded and

buffered, chunk

0 published

Chunk length = 2s

Lookahead = 2

Period 0

T0+2s: chunk

0 encoded

and buffered

Video

stream
Period 1 Period 2

D

Tp

Fig. 4. Illustration of packager behavior

For the purpose of example, let us assume that the chunk

length is 2s. The upper timeline in Fig. 4 shows a continuous

video stream that is being served to the encoder. At the end

of each period of 2s, the encoder produces a chunk (packet

with encoded portion of the video). Thus, the chunk

numbered 0, containing video period starting at T0 and

lasting 2s, is produced at time T0+2s and at the same

moment it is stored by the packager in its internal buffer for

further processing. However, since the lookahead parameter

is set to 2, the packager will wait for next 2 consecutive

chunks, because some information about these chunks must

be built-in the header of chunk 0. Since chunk number 2 is

available at time T0+6s, only then the chunk number 0 may

be published and made available for clients.

Remark that player may request live stream at an arbitrary

moment Tp (see Fig. 4). The first (newest) chunk available at

this random moment Tp, is the chunk number 0, which is

already aged 3*chunk length, plus the duration of D, which is

random. We may suppose that D is uniformly distributed

between 0 and chunk length, with average value chunk

length/2.

Thus, on average, the packager introduces delay equal to

(l is the lookahead, and tf is the chunk length):

2
)1(

f

fpack

t
tlD (1)

C. Player behavior

Video player on the end-device is a major delay

contributor in e2e delay budget. Microsoft SmoothStreaming

introduces the following three parameters which have

significant impact on behavior of the player when it starts

receiving a live video stream:

• Buffer: size of receiver buffer (number of seconds of

stored video). Default value is 5s.

• Backoff: when the player requests a live stream, it

actually does not reach for the recent (current) video

chunk, but rather for content that is delayed by a sum of

backoff and offset parameters. Default value is 6s.

• Offset: together with backoff time, the value of this

parameter determines playback delay in relation to

actual “live” position. Default value is 7s.

When player requests to receive a live video stream, it

downloads first a manifest file, which describes technical

parameters necessary for the player to decode the stream and

advertises the chunks that are available for download on the

server. The timestamp of the latest (newest) chunk available

within the manifest window is t0.

However, the player does not normally reach for the

chunk t0. First, it goes back in time by the value of backoff

plus offset. The sum of backoff and offset determines the

timestamp of a chunk, from which the player starts

downloading video fragments to fill its buffer (tstart). Now,

the player immediately requests for next chunks, until it fills

its buffer or reaches the limit determined by the offset value

(player may not reach for chunks newer than “t0 – backoff”.
We should now distinguish two situations: buffer ≤ offset,

buffer > offset.

Player behavior when buffer is smaller or equal to offset

The player immediately requests for sufficient number of

chunks to fill entire buffer. It gets them as fast as network

bandwidth can support. Now it is ready to start video

playback, beginning with the oldest chunk stored in the

buffer. The timestamp of first chunk that will be displayed by

player is:

offsetbackoffttstart 0
 (2)

The video delay as seen by the user will thus be t0-tstart,

that is:

offsetbackoffDplay 1
 (3)

Remark that chunk t0 does not really contain “live”
position of video stream, due to delay introduced previously

by operation of encoder and packager.

Described behavior of the player is illustrated below in

Fig. 6, which depicts chunks that are advertised when the

player joins a live stream. The advertised window length is

equal to 60s, which corresponds to 29 chunks of length 2s.

The player parameters assumed for the purpose of example

are: buffer=6s, backoff=6s, offset=20s.

The first (newest) chunk reached by the player has

timestamp equal to t0 – 26s. Since the buffer size is smaller

than the offset, all the buffer may be filled immediately by

retrieving 3 chunks (6s) without waiting for any new chunks

to be produced by the server. After retrieving enough chunks

to fill the buffer to required length, the player starts

playback, starting with the chunk tstart.

t0
tstart_playback

offset backoff

Chunks downloaded immediately to the buffer

Newst chunk

available for client

to download

buffer=6s

backoff=6s

offset=20s

widndow length=60s

chunk_duration=2s

Fig. 5. Illustration of player behavior in the case buffer < offset

Player behavior when buffer is greater than offset

In the case when buffer > offset, the buffer cannot be

immediately filled because the player is not allowed to fetch

MAREK DĄBROWSKI ET AL.: ANALYSIS OF VIDEO DELAY IN INTERNET TV SERVICE 145

chunks that are newer than t0 - backoff. So, it immediately

(as fast as the network bandwidth can support) fetches the

amount of video chunks corresponding to the duration of an

offset, and then waits for new chunks to arrive, to fill the

remaining part of the buffer. After the time (buffer – offset)

the buffer is filled and the player may start video playback,

beginning from the chunk with timestamp tstart. But tstart is

now additionally delayed from t0 by (buffer – offset) because

player had to wait that time to fill the buffer. So:

bufferbackofft

offsetbufferoffsetbackoffttstart

0

0)(
 (4)

The video delay is equal to t0 – tstart, that is:

bufferbackoffDplay 2
 (5)

Described behavior of the player is illustrated below in

Fig. 7. The advertised window length is equal to 60s, which

corresponds to 29 chunks of length 2s. The example player

parameters are the following: buffer=20s, backoff=6s,

offset=7s.

tstart

offset backoff

buffer=20s

backoff=6s

offset=7s

widndow length=60s

chunk length=2s

Chunks downloaded

immediately to the

buffer. Player has to

wait for new chunks

to fill rest of the

buffer.

t0

backoff

t0+(buffer

-offset)

New chunks

downloaded

to fill the rest

of the buffer.

Fig. 6. Illustration of player behavior in the case buffer > offset

The first (newest) chunk reached by the player it the one

with timestamp tstart = t0 – backoff – offset. Since the buffer

length is greater than the offset, all the buffer may not be

filled immediately. The player thus retrieves rapidly (as fast

as bandwidth may support) only “offset” portion of video

chunks, and waits (buffer-offset) to gather enough newly

arrived chunks to fill the rest of the buffer. Then, the player

starts playback, starting with the chunk tstart.

Summarizing and merging equations (3) and (5)

corresponding to different cases of player parameter settings,

the formula for player delay can be written as:

 offsetbufferbackoffDplay ,max (6)

Remark that since packets sent over the network may be

delayed or lost, causing a retransmission, the delay

calculations should be treated as being “at least” values and
the actual delay experienced may be greater than that.

Playback startup delay

We may expect that playback startup delay (between

moment when user clicks on “play” button and moment
when content actually starts playing) should grow with the

size of the player buffer length. This is quite understandable

because while joining the live stream the player must wait

until the buffer is sufficiently filled, according to its

configured value. More precisely, if the player buffer size is

configured smaller that the value of offset, the player

immediately asks for video chunks to fill the buffer

completely. The chunks are thus downloaded almost

instantly and the time player waits for filling the buffer is

practically not observable. On the other hand, if the buffer

size configured in the player is greater that the offset, the

player cannot retrieve immediately the number of chunks

required to fill the buffer. Thus it has to wait until sufficient

number of new chunks appear on the origin server. The time

it has to wait is equal to buffer minus offset (amount of video

time that is missing in the current window stored on the

origin server):

 offsetbufferD startplay ,0max_
 (7)

III. Experimental setup

A. Testbed architecture

A series of experiments have been performed for

confirmation of protocol analysis from section II.

Measurements have been carried out in a testbed, which

reflects architecture of commercial OTT TV service of

Orange Polska. Remark that names of equipment elements

are only provided for information of the reader. It is not a

goal of experiments described in this paper to evaluate

particular vendor solutions. The characteristics that have

been studied and measured are intrinsically related with

generic technology (HTTP adaptive streaming) and only to a

lesser extent depend on particular vendor implementation.

• Descrambler: Cisco DCM. It outputs a single decrypted

TV channel in the form of IP multicast Transport

Stream (TS), for further preparation of adaptive

streaming content.

• Encoder: Ffmpeg v2.2 transcodes the content into H.264

stream packaged in fMP4 (fragmented MP4) format.

• Origin Server: Unified Streaming Platform (USP) v1.5.7

packages fMP4 content into the SmoothStreaming file

format and produces manifest file. The content and

manifest is served to clients by Apache HTTP server.

• CDN: Akamai Verivue.

• PC player: a web-based player developed in MS

Silverlight.

• Mobile player: a reference application provided by the

vendor of streaming player software.

B. End-to-end delay measurement

The instrumentation used for measurements of delay in

OTT testbed is presented in Fig.8. The configuration of

encoder machine allows us for adding current timestamp as

an overlay, visually “burned” in video picture. This entry-

point timestamp (measurement point A) can be visually

compared with the current time on the user device

(measurement point B), after passing entire delivery and

146 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

decoding process. Both clocks (in measurement point A and

B) are synchronized with central clock by NTP protocol.

LAN
IPTV head-end

Live

transcoder

Origin Server

Tablet

Measurement

point A

Measurement

point B

Injection of current

timestamp

Visual reading of

current time in point

B, and timestamp

injected in point A

Test CDN

1)

2)

Measurement

point A’

Fig. 7. End-to-end measurement testbed setup

The tesbed allows us for performing measurements

including, or not, the impact of CDN. In the first case (path 1

on Fig.8) the end device retrieves content directly from the

Origin Server, through a LAN laboratory network. The

impact of network latency can thus be considered as

negligible and CDN is totally eliminated. In the second case

(path 2) the player reaches content through test CDN,

consisting of a single cache node.

The test executor launches video player on a tablet

connected to the test network and manually (visually) reads

the measurement results.

Current timestamp in point A (TA) is embedded in each

video frame. Simultaneous readout of this timestamp and

current timestamp (absolute time) in measurement point B

(TB) lets us estimate total time of processing given video

frame in entire content delivery chain. The e2e delay can be

calculated in any given moment as:

ABee TTD 2 (8)

Accuracy of assumed measurement method is limited due

to visual readout of timestamps. Normally, human tester may

read the timestamp from computer and tablet screen with

granularity of around 1 second. More fine-grained

measurement of time would require some automation of the

method and more precise instrumentation. For limiting the

impact of human error, each measurement has been repeated

several times. Taking into account that typically e2e delay in

OTT delivery chain may be in the order of 20 sec – 1min,

the granularity of assumed method seems to be sufficient.

Remark that presented method actually measures e2e

delay, which is a sum of several delay components:

playCDNpackencee DDDDD 2 (9)

Additional actions must be taken to split it into particular

components, as explained below.

C. Encoder delay measurement

Factors which impact on delay introduced by encoding

process include: encoder implementation efficiency,

performance of hardware on which it is being run, whether

the encoder itself is software or hardware based, numerous

parameters that can be set on the encoder and may alter its

performance.

The transcoder installed in the testbed and used in the

scope of this study is a software-based solution ffmpeg 2.2,

running on Centos 6.5 64 bit system, installed as virtual

machine (Oracle VM VirtualBox, 1GB RAM, 2 CPU). The

virtual machine was running on Windows Server 2008 R2

Standard 64-bit (HP ML150: 2xIntel Xeon CPUE5504

2GHz, 4GB RAM).

Fig.9 gives more details into the configuration of

transcoder, presenting video processing steps and the

detailed points where timestamp was embedded into the

video for purpose of measuring delays.

ffmpeg

decoding

process

ffmpeg

encoding process

(smoothstreaming)

Timestamp A

(system time at

start of encoding)
Encoded

chunks

(fmp4) with

timestamp
Input MPEG

Transport

Stream

Decoded

video File

saved

on disk

Timestamp A’
(file save

system time)

Fig. 8 Encoder configuration (with timestamp embedding) for

measurements of encoding delay

As the first step within the transcoder module, FFmpeg

decodes the input stream to produce raw video, which is then

encoded to smoothstreaming compatible format by the

encoder. However, prior to encoding, ffmpeg process

“burns” a timestamp in each produced video frame. The

timestamp value in point A (TA) corresponds to current

system time when given frame has entered the transcoding

process.

The output of the encoder is an fmp4 file, containing

amount of video corresponding to a duration of a chunk.

Remark that although the encoding and packaging processes

are logically separated, the encoder is not totally independent

of the packager as it prepares an encoded portion of the

video which suits the packager’s chunk size.
The encoded chunks (in fmp4 format) are then saved to

the storage of transcoder machine. The time of file

modification is recorded in the file system as a normal

operation of the computer’s operating system and it is

considered as a timestamp in point A’ (TA’). By comparing

timestamp A’ of a chunk, with timestamp A of the last video

frame of each chunk, we can estimate the delay introduced

by the whole transcoding process.

AAenc TTD ' (10)

D. Packager delay measurement

In order to evaluate impact of packager in the e2e delay

budget, we have performed a set of measurements using the

same methodology as described for the e2e delay, but with a

specific setting of player parameters. By setting buffer=1,

offset=0 and backoff=0 we reduce the impact of player

practically to zero. Without backoff and offset the player

reaches for the newest available chunk while joining the live

stream (see Fig.10). Since this single chunk is sufficient to

MAREK DĄBROWSKI ET AL.: ANALYSIS OF VIDEO DELAY IN INTERNET TV SERVICE 147

fill the buffer, the player may start playback immediately

after receiving it. In a real network situation such

configuration is not recommended since it is very susceptible

to network impairments. However in the “idealized” testbed
environment we were able to properly play a live stream with

such non-realistic parameter setting.

t0

tstart

buffer=1s

backoff=0s

offset=0s

widndow length=60s chunk

length=2s

Fig. 9. Illustration of player behavior in the case buffer=1, offset=0,

backoff=0

Since player starts playback immediately after receiving

the newest chunk from the origin server, we may expect that

observed delay in measurement point B is only related with

the packager and encoding delay (Dplay=0). So, the assumed

procedure was to measure delay in e2e relation (without

CDN: DCDN=0) and substract from it known value of

encoding delay, obtained by previous measurement of Denc in

the same setup.

enceepack DDD 2 (11)

E. CDN delay measurement

As depicted in Fig.8, testbed configuration allows for

performing measurements with, or without CDN in the

delivery chain. The assumed indirect methodology for

evaluating impact of CDN itself assumes comparing the end-

to-end delay results measured “with” and “without” CDN.

NewithoutCDeewithCDNeCDN DDD 22 (12)

F. Player delay measurement

The methodology of evaluating impact of the player alone

assumes performing measurements in end-to-end mode (see

section III.B), without CDN (DCDN=0) and substracting from

result the values of delay of encoder and packager, known

from prior measurements in the same setup. Thus,

packenceeplay DDDD 2 (13)

IV. MEASUREMENT RESULTS

A. Encoder delay impact

The encoder delay has been measured according to the

methodology described in section III.C, with chunk length

changed from 1s to 10s (remark that although chunk length is

a parameter of packager, the encoder must be configured

accordingly in order to produce encoded video fragments

that are suitable for the packager).

In addition, several encoding profiles have been tested

(baseline, main), with several settings of ffmepg tool

encoding parameters (medium, fast, ultrafast). The results of

experiments are presented in Table I. Reported measured

delay is an average calculated over five repetitions of each

experiment.

TABLE I.

MEASURED ENCODER DELAY

Encoder

profile

Chunk

size

Avg

measured

delay [s]

Baseline, fast

1 1.49

2 1.74

5 1.78

7 1.76

10 1.79

Baseline,

medium

1 1.54

10 2.11

Main, fast

1 1.73

10 1.94

Main, ultrafast

1 1.36

10 1.19

The encoder delay in testbed environment is roughly

between 1.5 and 2 seconds. We recognize that obtained

results could differ for another encoder type, running in

different environment. Therefore, we stress that the results

are relevant for particular hardware/software configuration

of our testbed and cannot be generalized in straight forward

way to other types of encoders available on the market.

B. Packaging delay impact

The packager delay has been measured as described in

section III.D, with various chunk length set on the packager

(1 to 10s), and with different values of lookahead parameter

(1, 2, 4, 6 fragments).

The results are presented in Table II and Fig.11 (subset of

results with lookahead=2). The measured delay is compared

with theoretical value Dpack from equation (1).

TABLE II.

MEASURED PACKAGER DELAY

Chunk

length

[s] Lookahead

Measured

packager

delay [s]

Theoretical

value of Dpack

(eq.1) [s]

1 2 5.51 3.5

2 2 7.86 7

5 2 18.22 17.5

7 2 25.44 24.5

10 2 34.61 35

2 1 6.46 5

5 1 13.02 12.5

7 1 19.64 17.5

10 1 24.61 25

2 4 12.66 11

10 4 57.41 55

5 4 28.82 27.5

2 6 16.26 15

One can observe that measured packager delay can be

quite well approximated by formula (1).

148 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

D
e

la
y

 [
s]

Chunk length [s]

Measured packager delay

Theoretical value of

packager delay

Fig. 10 Measured packager delay, with lookahead=2

C. CDN delay impact

The delay impact of CDN has been assessed using

methodology described in section III.E. Measurements were

done with different value of chunk size on packager (1, 2, 5,

7, 10s) and with fixed value of lookahead = 2. The results of

measurements, averaged over 5 repetitions of each

experiment, are presented in Table III. The average delay

impact of CDN is indirectly estimated as difference of delay

measured with, and without CDN in the testbed.

TABLE III.

MEASURED CDN DELAY

Chunk

length [s]

Average

delay

with

CDN [s]

Average

delay w/out

CDN [s]

Average

delay of

CDN [s]

1 6 6.6 0.6

2 8.8 9 0.2

5 14.4 15.8 1.4

7 18.6 22 3.4

10 26.2 30.8 4.6

We can observe that CDN does not introduce significant

delay in the end-to-end chain. The observed delay is between

0.2 and 4.6s, depending on the chunk length.

D. Video player delay impact

Delay has been measured in end-to-end mode, without a

CDN (see section III.F). The delay of encoder and packager

has been eliminated by subtracting the results of previous

measurements from section IV.A and IV.B, performed with

the same parameter setting.

 In first series of experiments, the delay was measured

with different values of buffer length in video player. The

values of two other player parameters were fixed to

backoff=6s, offset=7s. Note that the values buffer=5s,

backoff=6s and offset=7s are considered as default in the

Microsoft Smoothstreaming protocol. Two values are

reported as result of experiments (see Table IV and Fig.12):

• “Start delay” corresponds to stream startup time. It was

measured with a stop watch, as time between clicking

“play” on a player, and actual start of video playout.
Reported value is an average over 5 repetitions of each

experiment.

• “Player delay” corresponds to the observed difference

between watched video and actual “live” position,
measured as described in section III.F. The reported

values are an average and minimum over 5 repetitions

of each experiment.

TABLE IV.

MEASURED PLAYER DELAY AS FUNCTION OF BUFFER LENGTH

Player

parameters Startup delay [s]

Player delay

[s]

Theoreti

cal Dplay

(eq.6) [s]

buffe

r [s]

ba

ck

off

[s]

off

set

[s] Avg

Dplay_st

art

(eq.7)

[s]

Aver

age Min

3 6 7 1.26 0 14.06 13.26 13

5 6 7 1.75 0 14.26 13.26 13

7 6 7 2.56 0 15.46 15.26 13

10 6 7 3.67 3 18.26 15.26 16

13 6 7 4.10 6 17.46 16.26 19

15 6 7 6.68 8 19.26 18.26 21

17 6 7 7.73 10 20.26 19.26 23

18 6 7 10.81 11 23.46 23.26 24

20 6 7 11.73 13 25.66 24.26 26

25 6 7 15.59 18 28.46 27.26 31

30 6 7 23.00 23 36.46 36.26 36

One may observe that the player delay can be quite well

predicted using formula (6).

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

D
e

la
y

 [
s]

Buffer length [s] (backoff=6s, offset=7s)

Measured average delay

Theoretical delay

Fig. 11. Measured player delay as function of player buffer length

Fig. 13 shows the measured playback startup delay. We

may observe that it is well approximated by formula (7).

MAREK DĄBROWSKI ET AL.: ANALYSIS OF VIDEO DELAY IN INTERNET TV SERVICE 149

0

5

10

15

20

25

0 10 20 30 40

P
la

y
b

a
ck

 s
ta

rt
 d

e
la

y
 [

s]

Buffer length[s]

Measured startup delay

Theoretical startup delay

Fig. 12. Measured playback start delay as function of player buffer

length

In the second set of experiments, the player offset

parameter was varied, with fixed buffer length equal to 5s,

and fixed backoff equal to 6s. The results are presented in

Fig.14.

Note that the playback startup delay does not significantly

depend on value of offset parameter, because in this

particular case the buffer is usually smaller than the offset

(except from the first two measurements).

Once again the results confirm validity of formula (6) for

predicting latency of the player. Above the value of

offset=60s chunks that should be retrieved are out of the

range of advertised window, which means that player wants

to download chunks that are too old and do not exists

anymore on the server. Thus, formula (6) does not apply.

0

20

40

60

80

100

120

0 20 40 60 80 100

D
e

la
y

 [
s]

Offset [s] (buffer=5s, backoff=6s)

Measured delay

Theoretical delay

Fig. 13. Measured player delay as function of player buffer offset

In the last set of experiments, the player backoff time has

been varied in the range from 0 to 90s, with constant

buffer=5s and offset=7s. The results are presented in Fig.15.

0

10

20

30

40

50

60

0 10 20 30 40 50

D
e

la
y

 [
s]

Backoff [s] (buffer=5s, offset=7s)

Measured delay

Theoretical delay

Fig. 14. Measured player delay as function of player buffer backoff

Once again, the results confirm that the delay introduced

by the player can be estimated by equation (6).

V. CONCLUSIONS

The paper has presented results of analysis and

measurements of user-perceived delay in Live TV service

delivered over the Internet using adaptive HTTP streaming

technique. The following elements of content delivery

architecture have been identified as major contributors to

overall latency: source stream transcoding, packaging

(applying adaptive streaming format), delivery over CDN,

and buffering on end-device.

Presented results are of analytical as well of experimental

type and may have practical importance for video service

providers as hints for setting key system parameters, taking

into account both technical constraints and user Quality of

Experience.

REFERENCES

[1] EUREKA / CELTIC NOTTS: http://projects.celticplus.eu/notts/

[2] Broadband TV news:

http://www.broadbandtvnews.com/2014/06/12/world-cup-matches-to-

set-new-streaming-records/, last accessed on 23.04.2015

[3] R.Merkuria, P.Cesar, D. Bulterman, “Digital TV: The Effect of Delay

when Watching Football”, EuroITV’12, 10th European Conference on

Interactive TV and Video, Berlin, July 2012,

http://dx.doi.org/10.1145/2325616.2325632

[4] T.Stockhammer, “Dynamic adaptive streaming over HTTP: standards

and design principles, ACM MMSys '11,

dx.doi.org/10.1145/1943552.1943572

[5] Microsoft SmoothStreaming: http://msdn.microsoft.com/en-

us/library/microsoft.web.media.smoothstreaming.smoothstreamingme

diaelement.liveplaybackoffset%28v=vs.95%29.aspx , last accessed on

26.06.2015

[6] K.Kaczmarski, M.Pilarski, “Content Delivery Network Monitoring”,

Federated Conference on Computer Science and Information Systems

(FedCSIS), 2012, pages 633 – 639,

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6354443&

isnumber=6354297

150 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

