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Abstract—The authors investigate the properties of first-order
logic having its semantics based on a generalized (partial)
approximation of sets. The goal of the investigation in this
article is to compare the classical first-order semantics with a
partial and lower approximation-based one. The idea is that
lower approximation represents the reliable knowledge, so the
reasoning used by the lower approximation may be valid or
may be valid with some limitations. First, the authors show
an experimental result which confute the previous supposition
and the result of an algorithm which generates refutations for
some well-known valid arguments: the 12 syllogisms of Aristotle.
We think that these syllogisms represent the most common
usage of categorical statements. A language with single-level
quantification is constructed, as syllogisms can be formalized
using this language. Based on the experimental results, the
authors suggest some modifications of the semantics if the goal
is to approximate the classical case.

I. INTRODUCTION

T
HE rough set theory gives the ability to construct dif-

ferent first-order logical systems (see [1], [2]). By the

generalization1 of rough set theory, the truth domain of a

formula can be approximated using a partial approximation

of sets. The authors introduced earlier a tool-based system

as the semantical basis of a generalized first-order logic [5].

The introduced language let us use more than one kind of

approximation and allowed it in the language level — with

approximative sentence functors — to mix the crisp and rough

evaluation. This rich language was very different from the

classical case; furthermore, many of the classical rules — such

as modus-ponens — failed when they were combined with

the approximative functors. In this work, we focus only to the

lower approximation of sets (later the lower approximation of

truth domains) because of the naïve idea that while the upper

approximation represents possibility, the lower approximation

represents certainty.

We are eager to know whether what we conclude using the

approximation is equal to what we conclude using the classical

first-order reasoning. Whether it is possible to formulate some

conditions which guarantee the validity of the results made by

the approximation.

1Different generalizations of rough set theory (see [3]) and granular
computing play a crucial role in computer sciences (see, e.g. in [4]).

The investigation starts with an experiment, testing some

well-known valid arguments, the 12 syllogisms of Aristotle.

These syllogisms were chosen in order to represent the most

common usage of categorical statements. In the experiment,

we use a simplified language which gives us the ability to

formalize the syllogisms and test their validity using a lower

approximation-based semantics. The language is restricted to

single-level quantification only, but it is still expressive enough

to formalize categorical statements. Initially, this semantics

is defined in the same way as in the tool-based first-order

case, but restricted only to the lower approximation. Later, we

suggest some modifications in the semantical level to ensure

the validity of the classical arguments.

II. ARISTOTLE’S SYLLOGISMS

Aristotle’s syllogisms are valid reasoning, constructed from

three sentences: two premises and one conclusion. The

premises are usually categorized into four types: [6]

• a-type ∀x(p1(x) ⊃ p2(x))
• i-type ∃x(p1(x) ∧ p2(x))
• e-type ¬∃x(p1(x) ∧ p2(x))
• o-type ∃x(p1(x) ∧ ¬p2(x))

Each statement contains two from three predicates — usually

denoted by p, s,m — and each predicate appears in exactly

two statements.

1st figure 2nd figure 3rd figure

m− p

s−m

s− p

p−m

s−m

s− p

m−p

m−s

s−p

premise

premise

conclusion

For example, the syllogism called Barbara contains only

a-type premises and a-type conclusion:

∀x(m(x) ⊃ p(x)), ∀x(s(x) ⊃ m(x)) |= ∀x(s(x) ⊃ p(x))

During the investigation, we focus on the syllogisms from

the first 3 figures, and we do not take care of those which

require an existential pre-supposition, only the remaining 12:

• 1st figure: Barbara, Celarent, Darii, Ferio

• 2nd figure: Cesare, Camestres, Festion, Baroco

• 3rd figure: Disamnis, Datisi, Bocardo, Ferison

There were several similarities in the results, that is why this

article presents only those which belong to the first figure. All
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of them are valid in the classical case, and now the question

is: could we create any refutations using lower approximations

only?

III. SIMPLIFIED PARTIAL FIRST-ORDER LOGIC BASED ON

SET APPROXIMATION

In this section, we would like to introduce a simplified first-

order language, expressive enough to formalize the syllogisms.

A. First-Order Language

Let 〈LC, V ar, Con, Tool, Form〉 be a simplified first-order

language, where:

• logical constant symbols LC = {¬,∧,⊃, ∃, ∀, (, )},

• variables V ar = {x}, note that one variable is enough,

• nonlogical constant symbols Con = {p1, p2, · · · , pn},

where n ≥ 1,

• set of tools Tool = {t1, t2, · · · , tk}, where k ≥ 1.

The formulas of the language are given by the following

definition:

1) Let QF be the set of quantification-free expressions, so

that

a) p(x) ∈ QF — and it is atomic — if p ∈ Con,

b) ¬A ∈ QF if A ∈ QF ,

c) (A ∧B) ∈ QF and (A ⊃ B) ∈ QF

if both A ∈ QF and B ∈ QF

2) The set Form is given by the following inductive

definition:

a) ∀xA ∈ Form and ∃xA ∈ Form if A ∈ QF

b) ¬A ∈ Form if A ∈ Form,

c) (A ∧B) ∈ Form and (A ⊃ B) ∈ Form

if both A ∈ Form and B ∈ Form

Note that the language is restricted to unary predicates (that

is, they are monadic) and single-level quantification. So we

define a fragment of the first-order logic which is decidable.

The disjunction symbol ∨ is also missing from the language,

it is not necessary to formalize the syllogisms later, but this

is not a real restriction.

B. Partial Approximation of Sets

The ordered 5–tuple 〈U,B,DB, l, u〉 is a general partial

approximation space2 if

1) U is a nonempty set;

2) B ⊆ 2U \ ∅, B 6= ∅;

3) DB is an extension of B, i.e., B ⊆ DB, such that

∅ ∈ DB; and
⋃

B ∈ DB for all B ⊆ B

4) the functions l and u form a Pawlakian approximation

pair 〈l, u〉, i.e.,

a) the lower approximation of an S ∈ 2U set is

l(S)
def
= ∪{B : B ∈ B and B ⊆ S};

b) the upper approximation of an S ∈ 2U set is

u(S)
def
= ∪{B : B ∈ B and B ∩ S 6= ∅}.

2One of the most general notion of weak and strong approximation pairs
can be found in Düntsch and Gediga [7].

The Pawlakian approximation pair was chosen because

it is very well-known and most widely used. For other

solutions see [8].

C. Interpretation

The 〈U, ̺〉 pair is an interpretation of the language

〈LC, V ar, Con, Tool, Form〉 if

• U is a nonempty set of objects, and

• ̺ : Con ∪ Tool → 2U is a mapping, and

• ̺(ti) 6= ∅ for all i ∈ {1, ..., k}.

The ̺ mapping assigns a truth domain to each nonlogical

constant symbol and a nonempty truth domain to the tools.

D. Semantic Rules

Let 〈U,B,DB, l, u〉 be a general partial approximation

space generated by the 〈U, ̺〉 interpretation of a given

〈LC, V ar, Con, Tool, Form〉 simplified first-order language.

The ̺ mapping and the Tool set generate the approximation

space:

B = {̺(t) : t ∈ Tool}

No sentence functors appears in the language level. But the

semantic value of a formula [[F ]]〈U,̺〉 and the semantic value

of the quantification-free expressions [[Q ]]
〈U,̺〉
x 7→u are defined

based on the lower approximation.

Let
w
¬,

w
⊃,

w
∧ be weak Kleene connectives [9], such that

w
¬

0 1

1 0

2 2

w
⊃ 0 1 2

0 1 1 2

1 0 1 2

2 2 2 2

w
∧ 0 1 2

0 0 0 2

1 0 1 2

2 2 2 2

Our selection fell on Kleene’s weak connectives because of

the idea to keep the truth value gap. It was the basis of the

semantics defined later for quantifiers too.

1) The semantic value of an atomic expression p(x) ∈ QF

using a given interpretation 〈U, ̺〉 and a variable assign-

ment x 7→ u where u ∈ U :

[[ p(x) ]]〈U,̺〉
x 7→u

def
=











1 if u ∈ l(̺(p))

0 if u ∈ l(U \ u(̺(p)))

2 otherwise

(1)

where the 〈l, u〉 approximation pair belongs to the ap-

proximation space generated by the Tool and 〈U, ̺〉.
2) The semantic value of quantification-free expression is

defined recursively

[[¬A]]〈U,̺〉
x 7→u

def
=

w
¬ [[A]]〈U,̺〉

x 7→u

[[(A ⊃ B)]]〈U,̺〉
x 7→u

def
= [[A]]〈U,̺〉

x 7→u

w
⊃ [[B]]〈U,̺〉

x 7→u

[[(A ∧B)]]〈U,̺〉
x 7→u

def
= [[A]]〈U,̺〉

x 7→u

w
∧ [[B]]〈U,̺〉

x 7→u

3) The semantic value of a formula from Form
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TABLE I
ARISTOTLE’S SYLLOGISMS — THE FIRST FIGURE

Syllogism first premise second premise conclusion

Barbara a-type m, p a-type s,m a-type s, p

∀x(m(x) ⊃ p(x)) ∀x(s(x) ⊃ m(x)) ∀x(s(x) ⊃ p(x))

Celarent e-type m, p a-type s,m e-type s, p

¬∃x(m(x) ∧ p(x)) ∀x(s(x) ⊃ m(x)) ¬∃x(s(x) ∧ p(x))

Darii a-type m, p i-type s,m i-type s, p

∀x(m(x) ⊃ p(x)) ∃x(s(x) ∧m(x)) ∃x(s(x) ∧ p(x))

Ferio e-type m, p i-type s,m o-type s, p

¬∃x(m(x) ∧ p(x)) ∃x(s(x) ∧m(x)) ∃x(s(x) ∧ ¬p(x))

[[∀xA]]〈U,̺〉 def
=



















2 if [[A]]
〈U,̺〉
x 7→u = 2 for all u ∈ U,

0 if there is an u ∈ U,

where [[A]]
〈U,̺〉
x 7→u = 0,

1 otherwise.

[[∃xA]]〈U,̺〉 def
=



















2 if [[A]]
〈U,̺〉
x 7→u = 2 for all u ∈ U,

1 if there is an u ∈ U,

where [[A]]
〈U,̺〉
x 7→u = 1,

0 otherwise.

where A ∈ QF .

[[¬A]]〈U,̺〉 def
=

w
¬ [[A]]〈U,̺〉

[[(A ⊃ B)]]〈U,̺〉 def
= [[A]]〈U,̺〉 w

⊃ [[B]]〈U,̺〉

[[(A ∧B)]]〈U,̺〉 def
= [[A]]〈U,̺〉 w

∧ [[B]]〈U,̺〉

where A,B ∈ Form.

IV. EXPERIMENTAL RESULTS

If we have |U | = 4, then the number of different interpre-

tations is:

(

2|U |
)3

·
(

2(2
|U|−1) − 1

)

= 4096 · 32 767 = 134 213 632,

where the number of different approximation spaces is 32 767
(where the members of the Tool set has different ̺(t)
nonempty truth domain), and there exists 4 096 different

interpretation for Con = {p, s,m}. With such a small U ,

there is an efficient way to implement the formula evaluation.

The idea is that if there is a given 〈U, ̺〉 interpretation, we

can generate the truth domain and falsity domain for each

predicate before the evaluation.

Let us define the truth and falsity domain of an atomic

formula in the classical case

[ p ]
+
= ̺(p) and [ p ]

−
= U \ ̺(p) if p ∈ Con ∪ Tool

and in case of the introduced semantics (with the lower

approximation based on (1))

[

↓p
]+ def

= l(̺(p))

=
{

u ∈ U : [[ p(x) ]]
〈U,̺〉
x 7→u = 1

}

[

↓p
]− def

= l(U \ u(̺(p)))

=
{

u ∈ U : [[ p(x) ]]
〈U,̺〉
x 7→u = 0

}

While the set [ p ]
+

denotes the truth domain of p in

case of classical semantics, the
[

↓p
]+

represents the lower

approximation of this truth domain. Note that
[

↓p
]+

⊆ [ p ]
+

and
[

↓p
]−

⊆ [ p ]
−

. Earlier — in [5] — we defined not

only a lower approximation-based semantics but also a first-

order language with lower and upper approximative sentence

functors denoted by ↓ and ↑. Now we focus only on the lower

approximation, supposing that is represents certainty.

The Java code sample shows the implementation of the

semantics in the case of the ∀ quantifier and in the case of the

∧ connective. The syllogisms are transformed into a postfix

form. For example, in case of Barbara:

∀x(m(x) ⊃ p(x)), ∀x(s(x) ⊃ m(x)) |= ∀x(s(x) ⊃ p(x))

is valid, and so

∀x(m(x) ⊃ p(x)) ∧ ∀x(s(x) ⊃ m(x)) ∧ ¬∀x(s(x) ⊃ p(x))

is unsatisfiable. The last formula is converted to a string

representation as "mp>Asm>A&sp>A-&", where ⊃, ∧, ¬,

and ∀ is replaced with >, &, -, and A, respectively.

The algorithm uses a pair of stacks to evaluate the postfix

expression, one (sfd integer array) for falsity domain, and

another (std integer array) for truth domain. sp refers to the

top of the stack. The
[

↓p
]+

and
[

↓p
]−

sets are represented

by the ptd[’p’] and pfd[’p’] integers. Each set data

structure is represented as a bit array stored in an integer.

A. Refutations for the First Figure

The table (cf. table II) summarizes the results showing the

number of refutations for the syllogisms. It was not necessary
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TABLE II
NUMBER OF REFUTATIONS FOR THE FIRST FIGURE

Number of
interpretations

Number of
approximation

spaces
Barbara

Celarent,
Darii, Ferio

Total 134 213 632 32 767 121 536 227 232

|Tool| ≤ 3 2 355 200 575 4 728 9 576

|Tool| ≤ 2 491 520 120 912 912

covering 132 288 512 32 297 117 696 219 936

not covering 1 925 120 470 3 840 7 296

disjoint tools 208 896 51 1 104 1 104

[ p ]+ 6= ∅ ∀p ∈ Con 64 139 967 32767 110448 193776

[ p ]− 6= ∅ ∀p ∈ Con 689 831 32 767 12 168 25 716

[ p ]+ 6= ∅ ∧ [ p ]− 6= ∅ ∀p ∈ Con 229 940 2 680 1368 10 608

̺(p) 6= ̺(t) ∀t ∈ Tool,∀p ∈ Con 5 18 720 30 580 540 4 752

Algorithm 1 Calculating the truth value of a formula in Java

s w i t ch ( n e x t ) { / / n e x t char o f p o s t f i x f o r m u l a

cas e ’A’ : / / f o r a l l

sp−−; / / pop an argument

a f d = s f d [ sp ] ;
a t d = s t d [ sp ] ;
/ / push t h e r e s u l t

s f d [ sp ] = ( a f d & mask ) != 0 ? mask : 0 ;
s t d [ sp ] = ( a t d & mask ) != 0

&& ( a f d & mask ) == 0 ? mask : 0 ;
sp ++;
break ;

cas e ’&’ : / / c o n j u n c t i o n

sp−−; / / pop an argument

i n t r f d = s f d [ sp ] ;
i n t r t d = s t d [ sp ] ;
sp−−; / / pop an argument

i n t l f d = s f d [ sp ] ;
i n t l t d = s t d [ sp ] ;
/ / push t h e r e s u l t

s f d [ sp ] = ( l f d & ( r f d | r t d ) )
| ( r f d & ( l f d | l t d ) ) ;

s t d [ sp ] = l t d & r t d ;
sp ++;
break ;

/ / . . . o t h e r c o n n e c t i v e s . . .

d e f a u l t : / / an atom

s f d [ sp ] = pfd [ n e x t ] ;
s t d [ sp ] = p t d [ n e x t ] ;
sp ++;
break ;

}

to show all the 12 (only those which belong to the first

figure), because the same number of refutations appears in

the cases of Barbara, Baroco, and Bocardo, as well as in all

of the other cases (Celarent, Darii, Ferio, Cesare, Camestres,

Festion, Disamnis, Datisi, and Ferison). The upper half of

the table summarizes the tested conditions defined on the

approximation space. The restrictions on the Tool set take

their effect on the generated approximation space:

• by restricting the number of different tools to at most 3,

• or at most 2,

• using a covering approximation space U =
⋃

t∈Tool

t,

• or even a noncovering one,

• or by using tools with disjoint truth domain only.

The outcome achieved is not exactly we had hoped for. The

number of approximation spaces decreases, but there still exist

some interpretations where the syllogisms do not hold.

In the lower half of the table, there are some restrictions

on the interpretation of the predicates (the members of the

Con set). Here, the number of approximation spaces can be

lower than 32 767 only if there are some approximation spaces

where none of the interpretations satisfy the condition:

• the truth domain of the lower approximated predicates

must not be empty,

• the falsity domain of the lower approximated predicates

must not be empty,

• neither the truth domain nor the falsity domain of the

lower approximation of the predicates are empty,

• there is no predicate which is also a tool.

p s m t1 t2 t3
↓p ↓s ↓m

u1 0 0 0 1 0 0 0 0 0

u2 1 0 0 0 1 0 1 0 0

u3 0 1 1 0 0 1 2 1 1

u4 1 1 1 0 0 1 2 1 1

The above example shows an interpretation which is a

refutation for all of the followings: Darii, Ferio, Festion,

Datisi, and Ferison. Note that the approximation space is

covering, each approximated predicate has nonempty truth

domain and nonempty falsity domain. The column title p is

an abbreviation for |p(x)|
〈U,̺〉
x 7→u , and ↓p is for [[p]]

〈U,̺〉
x 7→u .

B. How to Create Refutations?

The presented experimental results show that the lower

approximation and the three-valued — two-valued but with

truth value gap — semantics could not represent irrefutable
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t2

t1

U

p

Fig. 1. Illustration of an approximation space

knowledge. In this section, we show a simple way to construct

a formula which is easy to refute.

Now our goal is to construct a formula A such that [[A]] = 1
but [A] = 0. It is enough to create a sentence which is about

objects that exist but are outside of the lower approximation.

Let P = {p1, · · · , pn} and N = {pn+1, · · · , pn+m} be

disjoint sets of predicates, such that n +m ≥ 1. Let S ⊆ U

be a set, where

1) S =

(

n
⋂

i=1

[ pi ]
+

)

∩

(

m
⋂

i=n+1

[ pi ]
−

)

6= ∅

2) S ∩

(

n
⋂

i=1

[

↓pi
]+

)

∩

(

m
⋂

i=n+1

[

↓pi
]−

)

= ∅

3)
n+m
⋂

i=1

(

[

↓pi
]+

∪
[

↓pi
]−

)

6= ∅

Since the set S is not empty,

|¬∃x(p1(x) ∧ · · · ∧ pn(x)∧

∧ ¬pn+1(x) ∧ · · · ∧ ¬pn+m(x))| = 0,

but — because of the second criterion — the set is hidden for

the lower approximation. It causes

[[¬∃x(p1(x) ∧ · · · ∧ pn(x)∧

∧ ¬pn+1(x) ∧ · · · ∧ ¬pn+m(x))]] 6= 0.

The third criterion ensures computability. In other words,

it avoids the truth value gap, so the existentially quantified

formula must have a truth value other than 2. As a result,

[[¬∃x(p1(x) ∧ · · · ∧ pn(x)∧

∧ ¬pn+1(x) ∧ · · · ∧ ¬pn+m(x))]] = 1.

C. Example

Let 〈U, ̺〉 be an interpretation — illustrated by Fig. 1 —

for a language with Con = {p, t1, t2} and Tool = {t1, t2}.

Let S be a set in connection with the approximation space

such that P = {p} and N = {t2}.

1) S = [ p ]+ ∩ [ t2 ]
− and S 6= ∅

2) S ∩ [↓p ]+ ∩ [↓t2 ]
− = S ∩ [ t2 ]

+ ∩ [ t1 ]
+ = ∅

3) ([↓p ]+ ∪ [↓p ]−) ∩ ([↓t2 ]
+ ∪ [↓t2 ]

−) =
([ t2 ]

+ ∪ [ t1 ]
+) ∩ ([ t2 ]

+ ∪ [ t1 ]
+) 6= ∅.

The formula created from the sets P and N is

¬∃x (p(x) ∧ ¬t2(x)) ,

which is false in the classical case. There are some objects in

S = ̺(p)∩(U \̺(t2)) 6= ∅, but the lower approximation hides

them. Even in the very simple case, which is illustrated by 1, it

was easy to show that |A| = 1 is not the logical consequence

of [[A]] = 1.

A sample 〈U, ̺〉 interpretation in a connection with

Fig. 1. can be

̺(p) = {u2, u3}, ̺(t1) = {u4}, ̺(t2) = {u3}

p t1 t2
↓p ↓t1

↓t2

u1 0 0 0 2 2 2

u2 1 0 0 2 2 2

u3 1 0 1 1 0 1

u4 0 1 0 0 1 0

in case of U = {u1, u2, u3, u4}.

V. RELEVANCE OF THE LOWER APPROXIMATION

In this section, we summarize the conditions of stating that

|A| = 1 is a logical consequence of [[A]] = 1. The conditions

are formalized in a form of fractions, like,

[[A]] = 1− τ ⇒ |A| = 1− τ

[[¬A]] = τ ⇒ |¬A| = τ

where τ ∈ {0, 1}. Note that τ refers to the classical semantical

value of a formula A, denoted by |A|〈U,̺〉 or for the sake of

simplicity: |A|. (|A|〈U,̺〉 ∈ {0, 1}.) To satisfy the condition

below the line, it is enough to satisfy the condition above the

line. As an example, [[¬p(x)]] = 1 ⇒ [¬p(x)] = 1 holds if

[[p(x)]] = 0 ⇒ [p(x)] = 0 holds as well. The ∅ represents no

conditions.

∅

[[p(x)]] = τ ⇒ |p(x)| = τ

[[A]] = τ ⇒ |A| = τ ; [[B]] = τ ⇒ |B| = τ

[[(A ∧B)]] = τ ⇒ |(A ∧B)| = τ

[[A]] = 1− τ ⇒ |A| = 1− τ ; [[B]] = τ ⇒ |B| = τ

[[(A ⊃ B)]] = τ ⇒ |(A ⊃ B)| = τ

The rules above are promising in the case of the zero-order

logical connectives but not in the case of the quantifiers.

[[A]] = 0 ⇒ |A| = 0

[[∀xA]] = 0 ⇒ |∀xA| = 0

[[A]] = 1 ⇒ |A| = 1

[[∃xA]] = 1 ⇒ |∃xA| = 1

Using the semantics which gives us the ability to assign

0 or 1 truth value to quantified formulas if we have at least

partial information causes that we lost the guarantees to have

the classical results.

Now we suggest a modification on the first-order semantics,

in a case where only the lower approximation is used. The
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pessimistic3 semantics of quantifiers is based on the idea that

the missing knowledge (represented by the value 2) could be

relevant.

The pessimistic semantic value of a formula [[F ]]〈U,̺〉

and the pessimistic semantic value of the quantification-free

expressions [[Q ]]
〈U,̺〉
x 7→u are defined recursively:

1) The semantic value of an atomic expression p(x) ∈ QF

using a given interpretation 〈U, ̺〉 and a variable substi-

tution x 7→ u where u ∈ U :

⌊ p(x) ⌋〈U,̺〉
x 7→u = [[ p(x) ]]〈U,̺〉

x 7→u

where the 〈l, u〉 approximation pairs belongs to the

approximation space generated by the Tool and 〈U, ̺〉.
2) The semantic value of a quantified expression is defined

as

⌊∀xA⌋〈U,̺〉 def
=



















0 if there is an u ∈ U,

where ⌊A⌋
〈U,̺〉
x 7→u = 0,

1 if ⌊A⌋
〈U,̺〉
x 7→u = 1 for all u ∈ U,

2 otherwise.

⌊∃xA⌋〈U,̺〉 def
=



















0 if ⌊A⌋
〈U,̺〉
x 7→u = 0 for all u ∈ U,

1 if there is an u ∈ U,

where ⌊A⌋
〈U,̺〉
x 7→u = 1,

2 otherwise.

3) The semantic value of a quantification-free expression

or a formula based on zero-order connectives

Let
s
¬,

s
⊃,

s
∧ be strong Kleene connectives, such that

s
¬

0 1

1 0

2 2

s
⊃ 0 1 2

0 1 1 1

1 0 1 2

2 2 1 2

s
∧ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 2

⌊¬A⌋〈U,̺〉
x 7→u

def
=

s
¬ ⌊A⌋〈U,̺〉

x 7→u

⌊(A ⊃ B)⌋〈U,̺〉
x 7→u

def
= ⌊A⌋〈U,̺〉

x 7→u

s
⊃ ⌊B⌋〈U,̺〉

x 7→u

⌊(A ∧B)⌋〈U,̺〉
x 7→u

def
= ⌊A⌋〈U,̺〉

x 7→u

s
∧ ⌊B⌋〈U,̺〉

x 7→u

where A,B ∈ QF , and

⌊¬A⌋〈U,̺〉 def
=

s
¬ ⌊A⌋〈U,̺〉

⌊(A ⊃ B)⌋〈U,̺〉 def
= ⌊A⌋〈U,̺〉 s

⊃ ⌊B⌋〈U,̺〉

⌊(A ∧B)⌋〈U,̺〉 def
= ⌊A⌋〈U,̺〉 s

∧ ⌊B⌋〈U,̺〉

where A,B ∈ Form.

The goal of using the pessimistic semantic in case of the

first-order connectives (quantifiers) are the validity of the rules

⌊A⌋ = 1 ⇒ |A| = 1

⌊∀xA⌋ = 1 ⇒ |∀xA| = 1

3Our approach differs from the idea presented in [10] which talks about
pessimistic, optimistic, and average membership functions.

⌊A⌋ = 0 ⇒ |A| = 0

⌊∃xA⌋ = 0 ⇒ |∃xA| = 0

Unfortunately, as another effect, it increases the number

of interpretations, where a quantified formula has truth value

gap. Kleene’s strong connectives have opposite effect. It is not

necessary to change the weak connectives to strong, the goal

is reached anyway:

⌊A⌋ = τ ⇒ |A| = τ.

VI. CONCLUSION

As a general observation, we can conclude that if we

change the semantics to lower approximation-based, then

the syllogisms of Aristotle are not valid. There are several

ways for further investigation by creating restrictions on the

approximation space or by changing the semantical meaning

of the logical connectives or the first-order quantifiers, as it

was demonstrated in the second half of the article.
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