
Encoding Relative Orientation and Mereotopology
Relations with Geometric Constraints in CLP(QS)

Carl Schultz
Institute for Geoinformatics

University of Münster, Germany
Email: schultzc@uni-muenster.de

Mehul Bhatt
Department of Computer Science
University of Bremen, Germany

Email: bhatt@informatik.uni-bremen.de

Abstract—One approach for encoding the semantics of spatial
relations within a declarative programming framework is by sys-
tems of polynomial constraints. However, solving such constraints
is computationally intractable in general (i.e. the theory of real-
closed fields), and thus far the proposed symbolic algebraic
methods do not scale to real world problems. In this paper we
address this intractability by investigating the use of constructive
geometric constraint solving (in combination with numerical
optimisation) within the context of constraint logic programming
over qualitative spaces, CLP(QS). We present novel geometric
encodings for relative orientation and mereotopology relations
and show that our encodings are significantly more robust than
other proposed approaches for directly encoding inequalities,
due to our encodings being based on a standard, well known
set of relations encoded as quadratic equations. Our encodings
are general (i.e. not implementation specific) and can thus be
directly employed in all standard geometric constraint solvers,
particularly solvers that are prominent within the Computer
Aided Design and Manufacturing communities. We empirically
evaluate our approach on a range of benchmark problems from
the Qualitative Spatial Reasoning community, and show that
our method outperforms other symbolic algebraic approaches
to spatial reasoning by orders of magnitude on those benchmark
problems (such as Cylindrical Algebraic Decomposition).

I. INTRODUCTION

Many complex, real world problems can be elegantly ex-
pressed in a declarative manner within the paradigm of logic
programming. In particular, the user specifies what needs to
be accomplished, rather than procedurally prescribing how the
problem should be solved. Often such real world problems
inherently involve spatial aspects: variables ranging over spa-
tial object domains (polygons, circles, points, etc.) and spatial
relations between those objects.

Qualitative spatial representation and reasoning has re-
ceived considerable attention, especially from the viewpoint
of the research communities of spatial information theory, and
knowledge representation and reasoning. Knowledge represen-
tation and reasoning about space may be formally interpreted
within diverse frameworks such as: (a) geometric reasoning
& constructive (solid) geometry [20]; (b) relational algebraic
semantics of ‘qualitative spatial calculi’ [25]; and (c) by
axiomatically constructed formal systems of mereotopology
and mereogeometry [1]. Independent of formal semantics,
commonsense spatio-linguistic abstractions offer a human-
centred and cognitively adequate mechanism for logic-based
automated reasoning about spatio-temporal information [4].

However, what is clearly still lacking is a systematic knowl-
edge representation (KR) centred methodological foundation
that provides a computational backbone —formal semantics in

the context of mainstream KR methods, declarative (spatial)

programming paradigm, general toolsets – for commonsense
reasoning about space. This is essential in order to provide
a developmental basis and seamless, systematic integration
within large-scale AI, and hybrid intelligent systems that
involve diverse types of knowledge representation, reasoning,
and learning modules (e.g., IBM Watson).

Our long-term research agenda is to integrate spatial reason-
ing natively within declarative, logic-based frameworks [3].
We have partially realised aspects of this in the Constraint
Logic Programming over Qualitative Spatial domains system:
CLP(QS) [3]. Users can specify logic programs that are
solved with a seamless combination of spatial reasoning and
Prolog’s standard variable unification, i.e. logic programming
extended to natively handle qualitative and geometric spatial
constraints. Specifically, we utilise the following features of
logic programming:

• declarativeness - a Prolog program is a specification of
the conditions that need to be satisfied, or the goals that
must be accomplished, rather than a procedural set of
instructions; that is, the user specifies what the program
should accomplish, rather than how the problem at hand
should be solved

• recursive variable generation - languages such as Prolog
are able to infer the existence of objects that are required
to solve the problem that were not explicitly specified
by the user; combined with recursion, this enables a user
to explore the unboundedness and density of objects in
space

Relation algebraic qualitative spatial reasoning (e.g. the
left-right calculus LR [26]), while efficient, is incomplete in
general [21, 22, 25].1 Alternatively, constraint logic program-
ming based systems such as CLP(QS) [3] and others (see

1Incompleteness refers to the inability of a spatial reasoning method to
determine, in general, whether a given set of qualitative spatial constraints is
consistent or inconsistent. Relation-algebraic spatial reasoning (i.e. using al-
gebraic closure based on weak composition) has been shown to be incomplete
for a number of spatial languages and cannot guarantee consistency in general,
e.g. relative directions [22] and containment relations between linearly ordered
intervals [21], Theorem 5.9.

Preprints of the Federated Conference on
Computer Science and Information Systems pp. 55–63

c©2015 55



[6, 7, 28, 29]) adopt an analytic geometry approach where
spatial relations are encoded as systems of polynomial equa-
tion and inequality constraints. Thus, the task of determining
whether a set of spatial constraints is consistent becomes
equivalent to determining the satisfiability of a system of
polynomial constraints with variables ranging over reals.2

We have investigated a range of polynomial constraint
solving methods including CLP(R) for linear constraints, and
SAT Modulo Theories and quantifier elimination by Cylin-
drical Algebraic Decomposition (CAD) for general systems
of non-linear constraints [3, 31, 32]. However, solving such
constraints is computationally intractable in general (i.e. the
theory of real-closed fields; for example, the CAD algorithm
has double exponential complexity, O(ab

n

), in the number
of variables in the polynomial constraints, n) [2], and thus
far, prominent symbolic algebraic methods do not scale to
real world problems [24]. In this paper we address this
intractability by investigating the use of constructive geometric
constraint solving for spatial reasoning within the context of
CLP(QS).

The paper is structured as follows. In the remainder of
introduction we highlight some key benefits of the utilisa-
tion of geometric constraint solving within constraint logic
programming over qualitative spaces. Section II provides an
introduction to spatial reasoning by polynomial encodings, and
formally specifies the standard geometric constraint language.
In Section III we empirically evaluate our approach on a
range of well known benchmark problems from the Qualitative
Spatial Reasoning community, and show that our system
outperforms other symbolic algebraic approaches to spatial
reasoning by orders of magnitude. Section IV evaluates our
encodings using a range of spatial benchmark problems. We
then present our conclusions about the main contributions of
the paper and directions for future research.

A. Motivations for utilising geometric constraint solving

Geometric constraint solving for higher-level qualitative
spatial reasoning has a range of benefits: problems can have
a combination of numerical and qualitative information, the
methods scale to real world sized problems (in the order
of hundreds of objects), and they can produce consistent
and “best found” instantiations for both solved and unsolved
problems, respectively. Moreover, at each iteration, the solver
produces increasingly better configurations as it attempts to
converge on the solution; we can directly study and visu-
alise these intermediate configurations as a spatial history of
configurations [17, 18] giving further insight into the nature
of the problem at hand. However, a key limitation is that

2Tarski famously proved that the theory of real-closed fields is decidable
via quantifier elimination (see [2, 12, 13] for an overview and algorithms); i.e.
in a finite amount of time we can determine the consistency (or inconsistency)
of any formula consisting of quantifiers (∀, ∃) over the reals, and polynomial
equations and inequalities combined using logical connectors (∧, ∨, ¬). Thus,
by encoding spatial relations as systems of polynomial constraints (i.e. analytic
geometry) we can employ polynomial constraint solving methods that are
guaranteed to determine (in)consistency, giving us sound and complete spatial
reasoning.

B C

B1 CB2 C
B1

B2

B

C

C
B1

B2

C

B2
B1

...

...

...

...

Fig. 1. Recursively enumerating the ways that a rectangle A can be
partitioned into a union of rectangles, union(B,C).

these methods do not handle inequalities well [16], which are
used for encoding a large range of qualitative spatial relations,
including relative orientation and mereotopology.

Building on results within the geometric constraint com-
munity, we present novel geometric encodings for relative
orientation and topology relations using only equations (i.e.
corresponding to robust ruler and compass construction meth-
ods [27], and thus avoid problematic saddles near local optima
that are common with inequality encodings using numerical
optimisation methods [16]. Moreover, as our encodings rely
on a standard set of geometric constraints, they can be used
to enhance all standard geometric constraint solvers with a
variety of qualitative spatial relations that are prominent within
the Computer Aided Design and Manufacturing communities.

B. An example of Spatial Reasoning in CLP(QS)

Using recursive variable generation we can declaratively
explore the ways that a rectangle can be partitioned into a
set of rectangles (employing CLP(QS) mereology relations
between boolean combinations of rectangles) [32]:

partition(A, union(B,C)) :-

mereology(equal, A, union(Br,Cr)),

mereology(discrete_from, Br, Cr),

((B = Br, C = Cr)

;

partition(Br, B),

partition(Cr, C)

).

?- partition(rectangle(_,_,_), union(B,C)).

Importantly, the initial specification of the partitioning task
is completely qualitative and does not contain any numerical
information. We can continually request further solutions from
Prolog to generate new solutions. Each solution is defined
by a set of qualitative constraints between rectangles and
thus represents an infinite set of rectangle configurations. For
example, in Figure 1 the left solution in the first row is defined
by the constraints: Aw = Bw + Cw, Ah = Bh = Ch,
Ax = Bx, Bx < Cx where Aw, Ah is the width and height
of A, and (Ax, Ay) is the coordinate of the bottom left corner
of A. For each qualitatively distinct solution we can then
generate a concrete, numerically defined instantiation of the
objects using geometric constraint solving.

We can further constrain the problem to enumerate the ways
that a square can be partitioned into n squares, n > 1. As
illustrated in Figure 2, CLP(QS) determines that solutions exist
for n = 4, 6, 7, 8, 9 and no solutions exist for n = 2, 3, 5.

56 PREPRINTS OF THE LQMR WORKSHOP. ŁÓDŹ, 2015



Fig. 2. Square partitioning solutions for n = 4, 6, 7, 8, 9.

all_squares(square(_,_)).

all_squares(union(A,B)) :-

all_squares(A), all_squares(B).

?- A=square(_,_),

partition(A, union(B,C)),

all_squares(union(B,C)).

II. SPATIAL REASONING BY POLYNOMIAL ENCODINGS

Analytic geometry methods parameterise classes of objects
and encode spatial relations as systems of polynomial equa-
tions and inequalities [10]. For example, we can define a
sphere as having a 3D centroid point (x, y, z) and a radius r,
where x, y, z, r are reals. Two spheres s1, s2 externally connect

or touch if

(xs1 −xs2)
2+(ys1 −ys2)

2+(zs1 −zs2)
2 = (rs1 + rs2)

2 (1)

If the system of polynomial constraints is satisfiable then
the spatial constraints are consistent. Specifically, the system
of polynomial (in)equalities over variables X is satisfiable if
there exists a real number assignment for each x ∈ X such that
the (in)equalities are true. Partial geometric information (i.e. a
combination of numerical and qualitative spatial information)
is utilised by assigning the given real numerical values to the
corresponding object parameters.

A. Constructive Geometric Constraint Solving

A plethora of methods have been developed for geometric
constraint solving via solving systems of polynomial con-
straints, and can be broadly categorised as: numerical opti-
misation (e.g. [16]), symbolic methods (e.g. [10, 14]), and
constructive (synthetic) methods (e.g. [8, 15, 27]). We focus
on graph-based constructive methods due to their practical
efficiency and popularity in industry (e.g. Autodesk Inventor,3

LEDAS LGS2D,4 FreeCAD5), although our encodings can
be similarly applied to any of the aforementioned geometric
constraint solving approaches.

In a seminal paper, Owen [27] identifies a particular set
of spatial relations that, on one hand, are useful for a wide
range of applications, particularly engineering and computer
aided manufacturing, and on the other hand, can be reasoned
about efficiently enough to address real-world scale problems.
The particular set of relations correspond to distance, inci-
dence, and angle constraints that can be encoded as quadratic
equations over 2D points, lines, and circles. Geometrically,
these correspond to relations that can be constructed using the
familiar idealised ruler and compass from Euclid’s Elements

[19]. We refer to this restricted set of spatial relations as the

3www.autodesk.com/products/inventor/overview
4ledas.com/products/lgs2d/
5www.freecadweb.org/

standard geometric constraint language. This set of relations
is now standard within the geometric constraint solving com-
munity, and all prominent, industry-standard constraint solvers
that we are aware of adopt precisely this set of relations
(although sometimes such systems also support ellipses), par-
ticularly within Computer Aided Design and Manufacturing.

Owen [27] also presents an influential graph-based reduc-
tion method for constructive geometric constraint solving.
Spatial information is represented as a graph, where nodes
are variables that range over a spatial domain of geometries,
and edges represent spatial constraints. Firstly, the graph is
analysed, and then a sequence of construction steps is deter-
mined that produces a configuration of objects that satisfies
the (declarative) geometric constraints.

We emphasise that, as our encodings are based on this
standard geometric constraint language, they can be utilised
within all prominent geometric constraint solvers that also
adopt this language. That is, our encodings are not solver-
implementation specific.

B. The Standard Geometric Constraint Language

The spatial domains of objects in the standard geometric
constraint language are points P, lines L, and circles C:

• a point p ∈ P is a pair of reals, (xp, yp) ∈ R
2

• a line lab ∈ L is a pair of distinct points, a, b ∈ P, a 6= b

• a circle Ci ∈ C is a circle with centre point pi ∈ P and
radius ri ∈ R, 0 < ri

We use lower case letters to refer to points. We use lp1p2

to refer to lines between points in the subscript. We use upper
case Ci with a subscript number (if needed) to refer to circles.
For brevity, if two points a, b have been declared, then we
can refer to the line lab without explicitly quantifying l, and
doing so implicitly constrains a, b to be distinct, e.g. let ϕ be
a predicate, then:

∃a, b ∈ P, ∃lab ∈ L
(

ϕ(lab)
)

≡ ∃a, b ∈ P
(

ϕ(lab)
)

.

Table I presents polynomial encodings for the standard set
of geometric constraints between points, lines, circles. They
correspond to:

• incidence between points-lines, and points-circles
(collinear, coincident);

• orientation between lines (parallel, perpendicular);
• constant distance and angles for lines and circles (dis-

tance between points, radii of circles, angle between
points a, b about a reference point p).

III. ENCODING QUALITATIVE SPATIAL RELATIONS USING

GEOMETRIC CONSTRAINT LANGUAGES

In this section we present a range of novel encodings
that enable us to reason about qualitative spatial relations
over extended regions (in particular, relative orientation and
mereotopology over regions) using traditional geometric con-
straint solving methods that are restricted to the standard
geometric constraint language.

CARL SCHULTZ, MEHUL BHATT 57



Relation Polynomial Encoding

collinear (COLL) (xb − xa)(yp − ya) = (xb − ya)(xp − xa)
(point p, line lab)
coincident (COIN) (xpi

− xa)
2 + (ypi

− ya)
2 = r2i

(point a, circle Ci)
coincident (COIN) COINa,Ci

∧COINb,Ci
(line lab, circle Ci)
perpendicular (PERP) (yb − ya)(yd − yc) = −(xb − xa)(xd − xc)
(lines lab, lcd)
parallel (PARA) (yb − ya)(xd − xc) = (yd − yc)(xb − xa)
(lines lab, lcd)
vertical (VERT) xa = xb

(line lab)
length (LEN) (xa − xb)

2 + (ya − yb)
2 = k2

(line lab, constant k)
angle (ANG) θ = atan2((yb − yp), (xb − xp))
(points a, b, p, constant θ) − atan2((ya − yp), (xa − xp))

TABLE I
POLYNOMIAL ENCODINGS OF GEOMETRIC CONSTRAINT

RELATIONS.

A. Minimum distance

A minimum distance circle MDISTC is a circle C with
a diameter at least ε. This encoding provides a means to
implement a minimum bound on the diameter of a circle.
The constrained circle can then be used to enforce minimum
distances between spatial objects. Many prominent geometric
constraint solving systems (including Inventor and FreeCAD)
do not support this constraint.

As illustrated in Figure 3, the encoding adds a fixed-length
chord to the circle (i.e. a line where the endpoints are coin-
cident with the circle). The length of the chord determines
the minimum permitted diameter of the circle. The circle
diameter is minimised when the chord intersects the centroid
of the circle. The circle diameter has no upper bound, that
is, the chord can be positioned an arbitrary distance from the
centroid; the circle diameter must then increase in order to
maintain the constraint that the chord endpoints are coincident
with the circle. Additionally, we impose a vertical constraint
on the chord to improve the solving efficiency of the encoding
(i.e. the effect of the vertical constraint is to eliminate one x

variable from the chord).

MDIST(C) ≡
∃lab ∈ L

(

VERT(lab) ∧ COIN(lab, C) ∧ LEN(lab, ε)
)

Various numerical optimisation methods do provide box

constraints, i.e. constant bounds on variables, e.g. limited
BFGS-B [9]. In such systems this encoding is redundant, as
we can enforce a box constraint on the radius of the circle.

B. Point-segment coincidence

While the collinear constraint between points and lines is
common in geometric constraint systems (i.e. a point lies
anywhere on an infinite line), the ability to constrain a point
to lie coincident on a line segment (i.e. between two points)
is typically not supported. The following encoding realises a
coincidence constraint between a point p and a segment lab.

As illustrated in Figure 4, firstly, the encoding adds a circle
C1 such that the two endpoints of the given line segment lab
are made coincident to C1, and the centroid of the circle is

a

b

C

(a)

a

b

C

(b)

Fig. 3. Minimum distance circle C can not have diameter less than ε.

a

b

C1

p
p1

c

d

(a)

a

b

C1

p1

c

p

d

(b)

Fig. 4. Point p is constrained to lie on the segment between points a, b.

made collinear with lab; in Section III-D we formalise this
useful construction between a circle and line, and refer to it
as a brace relation. Importantly, due to the brace relation, the
length of lab is equal to the diameter of the circle. Next, the
encoding adds a line lcd with endpoints coincident to C1 and
perpendicular to lab. The perpendicular constraint ensures that
the two lines always intersect within the interior of C1. Finally,
as the non-parallel lines necessarily intersect at a single point,
the given point p is constrained to be collinear to both lines,
and is thus always constrained to lie on the segment lab.

COIN(p, lab) ≡
∃C1 ∈ C

(

COIN(lab, C1) ∧ COLL(p1, lab)∧
∃lcd ∈ L

(

COIN(lcd, C1) ∧ PERP(lab, lcd)
)

∧

COLL(p, lab) ∧ COLL(p, lcd)
)

For convenience and brevity we also define the relation that
segment lab is coincident with segment lcd as: the endpoints
a, b are coincident with the segment lcd.

COIN(lab, lcd) ≡ COIN(a, lcd) ∧ COIN(b, lcd)

Points p can not be equal to either endpoint a, b as the line
lcd can not have zero length. If we drop this line constraint
for lcd so that c, d can also be equal, then p can also equal the
endpoints. These are useful predicates for defining topological
relations in Section III-D, and thus we refer to them as:
COIN⊆(p, lab) and COIN⊆(lab, lcd).

C. Relative Orientation

To the best of our knowledge, no geometric constraint solver
is able to directly express qualitative orientation (left, right)
between line segments and regions (nor points). This stems
from the inability of standard solvers to robustly express
inequalities. That is, one common polynomial encoding of

58 PREPRINTS OF THE LQMR WORKSHOP. ŁÓDŹ, 2015



relative orientation is using the sign of the cross product to
determine the orientation of a point with respect to a directed
line segment, i.e. a point p is left of the segment a, b according
to the following inequality:

p left of lab ≡def (xb − xa)(yp − ya) > (yb − ya)(xp − xa)

As reported by [16], a “trick” in numerical optimisation of
introducing a new variable to express the inequality fails, as it
produces a saddle near the optimum, thus making the problem
significantly more difficult to solve. We have confirmed this re-
sult using the state-of-the-art numerical optimisation method:
limited LBFGS-B [9].6

We have identified the following geometric encoding of
relative orientation using the standard geometric constraint lan-
guage; as such, it is supported, and robustly solved for, by all
prominent geometric constraint solvers (Inventor, FreeCAD,
LEDAS).

As illustrated in Figure 5, the encoding for the left of

relation adds a new point c collinear to the given line lab,
and adds a line lcp, between the given point p and the new
point c. The encoding then adds the constraint that the angle
between lab and lcp is 90o counter-clockwise. The length of
the line lcp is unbounded, and thus p can be moved an arbitrary
distance away from lab. The key is that, if p is moved to the
right side of lab, then the angle constraint is violated, and thus
p is forced to remain of the left side.

LEFT(p, lab) ≡
∃c ∈ P

(

ANG(b, p, c, π
2 ) ∧ COLL(c, lab)

)

RIGHT(p, lab) ≡
∃c ∈ P

(

ANG(b, p, c,−π
2 ) ∧ COLL(c, lab)

)

We extend this definition to relative orientation relations
between lines and circles (Figure 6(a)).

LEFT(C1, lab) ≡
∃c, d ∈ P

(

ANG(b, p1, c,
π
2 ) ∧ COLL(c, lab)∧

COIN(d, C1) ∧ COIN(d, lcp1
)
)

RIGHT(C1, lab) ≡
∃c, d ∈ P

(

ANG(b, p1, c,−
π
2 ) ∧ COLL(c, lab)∧

COIN(d, C1) ∧ COIN(d, lcp1
)
)

As illustrated in Figure 6(b), alternative encodings for rela-
tive orientation exist that introduce fewer additional constraints
and objects per orientation relation, and may also be solved
in a more stable way depending on the implementation for
the ANG geometric constraint. In the example illustrated in
Figure 6(b), a circle C1 is introduced and constrained to be
left of the line a, b, and for each point c, d, e, a line is created
parallel to lab with each endpoint c′, d′, e′ coincident to C1;
this encoding aims to minimise the use of the ANG constraint
when numerous points are constrained to be left of the same
line. Identifying the best encodings for particular tasks is a
topic of future work.

6Implementation available at:
users.iems.northwestern.edu/∼nocedal/lbfgsb.html

a

b

p

c

(a)

a

bp

c

(b)

Fig. 5. Point p is constrained to lie anywhere to the left of line (a, b). The
angle from point b to p about c is fixed at π

2
counter-clockwise. The distance

between c, p is not constrained.

a

b

C1

p1

c

d

(a) Circle C1 is con-
strained to lie any-
where to the left of line
(a, b).

a

c

bp1

C1

d

e
c’

d’
e’

(b) Alternative, more robust encod-
ing for numerous left of constraints.
Points c, d, e are left of line (a, b).

Fig. 6. Relative orientation encodings for regions and more efficient
encodings.

D. Topological relations between circles

In standard geometric constraint solvers there is no way
of directly specifying mereotopological constraints between
higher-level objects and regions such as circles, squares,
triangles, polygons, and so on. In this section we present
encodings for topological relations between circles, and then
use these encodings as a basis for defining relations between
more general regions. Firstly we define a useful BRACE
relation between a line segment and a circle that ensures the
diameter of the circle is equal to the length of the segment
(Figure 7(a)).

BRACE(lab, Ci) ≡ COIN(lab, Ci) ∧ COLL(pi, lab)

We adopt the terminology of the prominent topological
spatial logic, the Region Connection Calculus (RCC) [30]:
disconnects (DC), externally connects (EC), partial overlap

(PO), tangential proper part (TPP), non-tangential proper

part (NTPP), proper part (PP), part of (P), discrete from

(DR), equal (EQ). Note that EQ between two circles is
trivially satisfied by constraining the centroids and radii to
be equal.

The topological relation encodings are illustrated in Fig-
ure 7. To ensure circle intersection (e.g. TPP, NTPP, PO),
the encodings constrain one or both endpoints of the brace
segments of one circle to be coincident to the brace segment
of the other circle; a pair of brace endpoints are made equal
for boundary contact (e.g. TPP). EC is encoded with a point
of boundary contact a that is coincident to a segment lp1p2

between the circle centroids. DC is encoded by introducing a

CARL SCHULTZ, MEHUL BHATT 59



third circle C3 so that one endpoint of each of the braces of
C1 and C2 lie on different sides of the centroid of C3, along
the brace of C3.

Observe that the brace segment within a circle can be
rotated about the circle’s centroid. Thus, considering NTPP
for example, C1 can occupy any circular region within C2 by
moving C1 along the brace of C2, and rotating the brace of
C2.

TPP(C1, C2) ≡
∃lab, lac ∈ L

(

BRACE(lab, C2)∧
BRACE(lac, C1) ∧ COIN(c, lab)

)

NTPP(C1, C2) ≡
∃lab, lcd ∈ L

(

BRACE(lab, C2)∧
BRACE(lcd, C1) ∧ COIN(lcd, lab)

)

PO(C1, C2) ≡
∃lab, lcd ∈ L

(

BRACE(lab, C2) ∧ BRACE(lcd, C1)∧
COIN(a, lcd) ∧ COIN(d, lab)

)

EC(C1, C2) ≡
∃a ∈ P

(

COIN(a, lp1p2
)∧

COIN(a, C1) ∧ COIN(a, C2)
)

DC(C1, C2) ≡
∃a, b ∈ P, ∃C3 ∈ C

(

BRACE(lp1p2
, C3)

∧ COIN(a, lp1p3
) ∧ COIN(a, C1)

)

∧ COIN(b, lp2p3
) ∧ COIN(b, C2)

)

We can drop the distinction between boundaries (i.e. corre-
sponding to RCC5 and other RCC relations) by employing the
modified coincident constraint between points and segments
COIN⊆(p, lab), where a point p can also equal the segment
endpoints lab. Thus, we encode the definitions that:

• PP is a disjunction of NTPP and TPP;
• P is a disjunction of PP and EQ;
• DR is a disjunction of DC and EC.

PP(C1, C2) ≡
∃lab, lcd ∈ L

(

BRACE(lab, C2) ∧ BRACE(lcd, C1)

∧ COIN⊆(c, lab) ∧ COIN(d, lab)
)

P(C1, C2) ≡
∃lab, lcd ∈ L

(

BRACE(lab, C2) ∧ BRACE(lcd, C1)

∧ COIN⊆(lcd, lab)
)

DR(C1, C2) ≡
∃a, b ∈ P, ∃C3 ∈ C

(

BRACE(lp1p2),C3

∧ COIN⊆(a, lp1p3
) ∧ COIN(a, C1)

)

∧ COIN⊆(b, lp2p3
) ∧ COIN(b, C2)

)

E. Egg-yolk approach for defining relations between regions

We employ the egg-yolk method of modelling regions
with indeterminante boundaries [11] to characterise a class
of regions (including polygons) that satisfies topological and
relative orientation relations. Each egg-yolk region is an equiv-
alence class for all regions that are contained within the upper
approximation (the egg white), and completely contain the
lower approximation (the egg yolk). Let R be the domain of

a

b

Ci

pi

(a) BRACE(lab, Ci)

c

d

C2

p2

C1

a

b

p1

(b) PO(C1, C2)

a

b

C2
p2

p1

C1

c

(c) TPP(C1, C2)

a

b

C2
p2

p1

C1

d

c

(d) NTPP(C1, C2)

a C2

p2

C1

p1

(e) EC(C1, C2)

a C2

p2

C1

p1

C3
p3

b

(f) DC(C1, C2)

Fig. 7. Topological relations between circles.

egg-yolk regions, where egg-yolk region R ∈ R consists of a
circular upper and a lower approximation R+, R− ∈ C such
that NTPP(R−, R+) (see Figure 8(a)).

We can realise these regions through constructive geomet-
ric constraint encodings, giving us a method of generating
arbitrary regions that satisfy qualitative spatial constraints. We
declaratively define a (simple, non-self-intersecting) polygon
as a sequence of vertices such that:

1) all vertices are contained within the upper approximation
2) no segment between adjacent vertices intersects the

lower approximation
3) the (absolute) winding number about the centroid of the

lower approximation is 1

We can generate polygons by placing n vertices on the upper
approximate circle, evenly distributed (satisfying Condition 3),
such that each vertex and line segment is geometrically con-
strained to satisfy Conditions 1 and 2 above. The user can
explore the space of consistent polygons directly through dy-
namic geometry [33], or polygons can be randomly generated.

Relative orientation between egg-yolk regions and lines
can now be defined based on the upper approximations (see
Figure 6(a)):

LEFT(R, lab) ≡ LEFT(R+, lab)

RIGHT(R, lab) ≡ RIGHT(R+, lab)

The following topological relations between pairs of egg-
yolk regions are defined based on the relation between their
approximations (see Figure 8):

60 PREPRINTS OF THE LQMR WORKSHOP. ŁÓDŹ, 2015



R

R-

R+

(a) Egg-yolk region.

R2

R1

(b) PP(R1, R2)

R2

R1

(c) PO(R1, R2)

Fig. 8. Egg-yolk region R is defined by a lower circular approximation R−

and an upper circular approximation R+.

PP(R1, R2) ≡ P(R+
1 , R

−
2 )

DC(R1, R2) ≡ DC(R+
1 , R

+
2 )

DR(R1, R2) ≡ DR(R+
1 , R

+
2 )

PO(R1, R2) ≡ PO(R+
1 , R

+
2 ) ∧ PO(R−

1 , R
−
2 )

The partial overlap definition requires some explanation:
firstly, the partial overlap condition between the upper approx-
imations ensures that the regions each have interior regions not
shared by the other, but the regions could still be disconnected.
Secondly, the partial overlap condition between the lower
approximations ensures that the regions share a common
interior region, but one region might completely contain the
other. Thus, together the conditions encode the partial overlap

relation between egg-yolk regions.
The above relative orientation and topological egg-yolk

relation encodings are sound, i.e. they correctly encode the
intended relation between the true regions, and are incomplete,
i.e. they do not capture all possible ways that the true regions
can satisfy the intended relation.

IV. EMPIRICAL EVALUATION

In this section we empirically evaluate our geometric en-
codings on a range of benchmark problems from the Qual-
itative Spatial Reasoning community. We have implemented
the encodings in CLP(QS) using geometric constraint solvers
FreeCAD7 and limited BFGS-B [9]. The results show that
(a) our system can handle problems from these benchmarks
that are unsolvable using relation algebraic methods for quali-
tative spatial reasoning, and (b) our system outperforms other
symbolic algebraic approaches for these benchmark problems
by orders of magnitude (such as Cylindrical Algebraic De-
composition). Experiments were run on a MacBookPro, OS
X 10.8.5, 2.6 GHz, Intel Core i7.8

A. Tent Benchmark Problem

The generalised tent problem [23] is a relative orientation
benchmark problem in qualitative spatial reasoning. The prob-
lem is specifically designed to be unsolvable using relation al-
gebraic approaches by creating inconsistent relative orientation
constraints that cannot be determined to be inconsistent using
those methods. Given a set of n distinct 2D points p1, . . . , pn,
let LEFT(p1, p2, p3) be true if p3 is left of the line (p1, p2)

7 www.freecadweb.org
83D visualisations have been rendered using glc_player:

www.glc-player.net

a b c

d

e

f

g

Fig. 9. Consistent tent configuration with n = 7 points: a, . . . , g.

where left of is interpreted axiomatically (e.g. using relation
algebras [26] or a first-order spatial logic [5]) or polynomially
(using analytic methods). The consistent tent problem has
constraints: LEFT(pi, pj , pk) for all 0 ≤ i < j < k ≤ n.
The inconsistent tent problem has the same constraints with
the exception that LEFT(p1, p2, pn), LEFT(p2, p3, pn) are
replaced with the equivalent RIGHT constraints.

Using an off-the-shelf geometric constraint solver,
FreeCAD, our encodings can solve the tent problem for n = 7
within 20 seconds for both consistency and inconsistency,
which significantly out performs symbolic approaches (in
[23] the authors report that quantifier elimination algorithms
could not solve for n = 6 after 6 hours). We also note that,
once the consistent scene has been constructed, incremental
updates occur in real-time9 e.g. the user can move points
around the scene and the FreeCAD solver manipulates the
other objects to ensure that the relative orientation constraints
are maintained (see Figure 9).

B. Contact problems

A range of contact problems require combining topological
and size information that are not solvable using relation alge-
braic methods. Standard approaches to QSR employ algebraic
closure by ensuring that all sub-graphs with 3 vertices are
satisfiable. Thus, any problem that inherently requires check-
ing four or more objects simultaneously is beyond algebraic
closure. We consider the task of determining the maximum
number of spheres and circles that can be mutually externally
connected; we also consider the variation where the spheres
(circles) must all be the same size.

CLP(QS) correctly solves these spatial contact problems: 5
spheres; 4 same-size spheres; 4 circles; 3 same-size circles (see
Figure 10). To demonstrate the scalability of the approach, we
consider 100 same size circles (illustrated in Figure 11) and
100 spheres. All of the above contact problems for n < 10 are
solved within 2 seconds in CLP(QS). Both contact problems
with n = 100 are solved in 20 seconds.

At each iteration, CLP(QS) produces a series of configura-
tions as it attempts to converge on the solution; an extract
of snapshots of the solution history for n = 100 same

9FreeCAD solver reports solve time of 0.004s.

CARL SCHULTZ, MEHUL BHATT 61



(a) 4 spheres (equal
size).

(b) 5 spheres. (c) 4 circles.

Fig. 10. Contact benchmark problems.

1 2 3 4

Fig. 11. Four snapshots of the solving history of CLP(QS) attempting to
solve 100 mutually touching circles, equal size. Snapshot 4 is the best solution
found.

size circles is illustrated in Figure 11. By treating time as a
third dimension we can construct a space-time history region
[17, 18] from the sequence of intermediate configurations as
illustrated in Figure 12. We can directly visualise and study the
qualitative relations between these history regions to provide
further insight into the nature of the problem at hand and
the underlying solving process, e.g. automatically generating
natural language explanations of the search space explored
during the solving process.

C. Computer Aided Product Design

The task is to design an adjustable desk lamp with the
following qualitative requirements: the lamp has a base and
three bars connected by three joints; the joints can only
turn inwards; the lamp shade connects to the third joint; the
bulb must fit completely within the lamp shade. Figure 13
illustrates the constraint graph and corresponding FreeCAD
interactive diagram that maintains the specified qualitative
relations. As the user manipulates the diagram, the FreeCAD
geometric solver maintains the qualitative constraints in real
time (reported solving time: 0.001 seconds).

V. DISCUSSION AND CONCLUSIONS

We have presented novel geometric encodings of qualitative
relations for: relative orientation between lines and either
points or regions; mereotopological relations between circles
(or, more accurately, disks); topological relations between
regions represented by an upper and lower approximation
(i.e. providing an approach for reasoning about polygons and
regions bounded by jordan curves).

Importantly, our encodings are based on a standard ge-
ometric constraint language that is well known within the

iterations

y
x

Fig. 12. Space-time history volumes derived from intermediate configurations
produced during the solving process. Task requirement is five mutually
touching, same-sized circles.

base

bar-1

joint-1

bar-2

joint-2

bar-3

joint-3

left

left

left

shade

bulb

proper
part

(a) Lamp constraint graph. (b) Interactive lamp diagram
with qualitative constraints.

Fig. 13. Lamp shade product design with qualitative constraints.

constructive geometric constraint solving community: points,
lines, and circles, with relations that correspond to quadratic

equations (parallel, coincidence, perpendicularity, dimension
constraints, etc.). This standard language is adopted by all
prominent solvers that we are aware of, particularly in the
Computer Aided Design and Manufacturing domain. Thus, our
encodings can be directly employed in all prominent com-
mercially available constructive geometric constraint solvers
(including Autodesk Inventor, FreeCAD, LEDAS LGS2D) to
extend those systems to also reason about qualitative spatial
relations.

Constructive geometric constraint solving is significantly
more computationally efficient compared to other approaches
for solving systems of polynomial constraints (e.g. Cylindrical
Algebraic Decomposition, the Gröbner basis method, and
Wu’s characteristic set method all have double exponential
complexity), and can scale to real-world problems that involve
hundreds of spatial objects. However, the supported spatial
language is rather restricted, only permitting relations that can
be encoded as quadratic equations. Traditionally, qualitative
orientation and mereotopological relations are encoded using
inequalities, thus ruling out the use of standard geometric
constraint solvers; directly encoding inequalities for numer-
ical optimisation methods is also known to be significantly
less robust compared to quadratic equations, as it introduces

62 PREPRINTS OF THE LQMR WORKSHOP. ŁÓDŹ, 2015



saddles near optima.
Our key contribution is showing that indeed we can encode

these qualitative relations based on the restricted standard geo-
metric constraint language. Thus, we have an efficient method
for solving problems involving qualitative orientation and
mereotopology beyond computationally intractable symbolic
methods. The results of our empirical evaluation, based on an
implementation in FreeCAD and limited BFGS-B (providing
numerical optimisation, which is effective for solving certain
sub-problems), show that our encodings can solve contact
and orientation benchmark problems within seconds that take
hours (or more) using other symbolic approaches such as
Cylindrical Algebraic Decomposition.

One open problem is determining the most efficient encod-
ings for certain problem classes. Our encodings are certainly
not unique, and many alternative encodings can be employed
that have different properties, e.g. comparing encodings that
minimise the number of objects and constraints introduced
as the problem size increases, or encodings that avoid the
use of computationally more expensive constructions (i.e.
encodings that introduce more objects and constraints, but
simpler constraints to solve for). We are continuing to iden-
tify more efficient encodings to further increase the horizon
of solvable real-world problems, and benchmark problems,
within the context of declarative constraint logic programming
over qualitative spatial domains.

Another interesting open question is how to handle in-
consistent qualitative constraints in general: methods such
as Cylindrical Algebraic Decomposition are both sound and
complete, whereas constructive geometric constraint solving
is incomplete in general. Thus, a result of inconsistency
using constructive approaches is usually annotated with some
measure of confidence (i.e. the problem, or sub-problems, are
executed a number of times with different initial randomised
parameter values until no further progress towards a solution
is made). Identifying tractable classes of qualitative problems
that have specific properties with respect to completeness (and
statistical confidence in the case of reported inconsistency) is
an interesting direction for future research.

VI. ACKNOWLEDGEMENTS

We sincerely thank the reviewers for their very careful
reading of the paper, particularly in their diligence in reviewing
our definitions. This work is funded by the German Research
Foundation (DFG) under grant for a SketchMapia project
(Grant SCHW 1372/7-1).

REFERENCES
[1] M. Aiello, I. E. Pratt-Hartmann, and J. F. v. Benthem. Handbook of Spatial Logics.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007. ISBN 978-1-4020-
5586-7.

[2] D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical Algebraic Decomposition
I: The basic algorithm. SIAM Journal on Computing, 13(4):865–877, 1984.

[3] M. Bhatt, J. H. Lee, and C. Schultz. CLP(QS): A Declarative Spatial Reasoning
Framework. In Proceedings of the 10th international conference on Spatial

information theory, COSIT’11, pages 210–230, Berlin, Heidelberg, 2011. Springer-
Verlag. ISBN 978-3-642-23195-7.

[4] M. Bhatt, C. Schultz, and C. Freksa. The ‘Space’ in Spatial Assistance Systems:
Conception, Formalisation and Computation. In T. Tenbrink, J. Wiener, and
C. Claramunt, editors, Representing space in cognition: Interrelations of behavior,
language, and formal models. Series: Explorations in Language and Space. 978-
0-19-967991-1, Oxford University Press, 2013.

[5] S. Borgo. Euclidean and mereological qualitative spaces: A study of SCC and DCC.
In C. Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint

Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009,
pages 708–713, 2009. URL http://ijcai.org/papers09/Papers/IJCAI09-123.pdf.

[6] D. Bouhineau. Solving geometrical constraint systems using CLP based on
linear constraint solver. In Artificial Intelligence and Symbolic Mathematical

Computation, pages 274–288. Springer, 1996.
[7] D. Bouhineau, L. Trilling, and J. Cohen. An application of CLP: Checking the

correctness of theorems in geometry. Constraints, 4(4):383–405, 1999.
[8] W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. Geometric constraint

solver. Computer-Aided Design, 27(6):487–501, 1995.
[9] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound

constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208,
1995.

[10] S.-C. Chou. Mechanical geometry theorem proving, volume 41. Springer Science
& Business Media, 1988.

[11] A. G. Cohn and N. M. Gotts. The Ôegg-yolkÕrepresentation of regions with
indeterminate boundaries. Geographic objects with indeterminate boundaries, 2:
171–187, 1996.

[12] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In Automata Theory and Formal Languages 2nd GI Conference

Kaiserslautern, May 20–23, 1975, pages 134–183. Springer, 1975.
[13] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier

elimination. Journal of Symbolic Computation, 12(3):299 – 328, 1991. ISSN 0747-
7171. doi: http://dx.doi.org/10.1016/S0747-7171(08)80152-6. URL http://www.
sciencedirect.com/science/article/pii/S0747717108801526.

[14] X.-S. Gao and S.-C. Chou. Solving geometric constraint systems. ii. a symbolic
approach and decision of rc-constructibility. Computer-Aided Design, 30(2):115–
122, 1998.

[15] X.-S. Gao and S.-C. Chou. Solving geometric constraint systems. i. a global
propagation approach. Computer-Aided Design, 30(1):47–54, 1998.

[16] J.-X. Ge, S.-C. Chou, and X.-S. Gao. Geometric constraint satisfaction using
optimization methods. Computer-Aided Design, 31(14):867–879, 1999.

[17] P. J. Hayes. The second naive physics manifesto. In J. R. Hubbs and R. C.
Moore, editors, Formal Theories of the Commonsense World. Ablex Publishing
Corporation, Norwood, NJ, 1985.

[18] S. M. Hazarika. Qualitative Spatial Change : Space-Time Histories and Continuity.
PhD thesis, The University of Leeds, School of Computing, 2005. Supervisor -
Anthony Cohn.

[19] T. L. Heath (ed). The thirteen books of Euclid’s Elements, volume 1. Courier
Dover Publications, 1956.

[20] D. Kapur and J. L. Mundy, editors. Geometric Reasoning. MIT Press, Cambridge,
MA, USA, 1988. ISBN 0-262-61058-2.

[21] P. B. Ladkin and R. D. Maddux. On binary constraint problems. Journal of the

ACM (JACM), 41(3):435–469, 1994.
[22] J. H. Lee. The complexity of reasoning with relative directions. In 21st European

Conference on Artificial Intelligence (ECAI 2014), 2014.
[23] J. H. Lee and D. Wolter. A new perspective on reasoning with qualitative spatial

knowledge. In IJCAI-2011 Workshop 27, page 3, 2011.
[24] Y.-T. Li, S.-M. Hu, and J.-G. Sun. A constructive approach to solving 3-d geometric

constraint systems using dependence analysis. Computer-Aided Design, 34(2):97–
108, 2002.

[25] G. Ligozat. Qualitative Spatial and Temporal Reasoning. Wiley-ISTE, 2011.
[26] G. F. Ligozat. Qualitative triangulation for spatial reasoning. In Spatial Information

Theory A Theoretical Basis for GIS, pages 54–68. Springer, 1993.
[27] J. C. Owen. Algebraic solution for geometry from dimensional constraints. In

Proceedings of the first ACM symposium on Solid modeling foundations and

CAD/CAM applications, pages 397–407. ACM, 1991.
[28] G. Pesant and M. Boyer. QUAD-CLP (R): Adding the power of quadratic

constraints. In Principles and Practice of Constraint Programming, pages 95–108.
Springer, 1994.

[29] G. Pesant and M. Boyer. Reasoning about solids using constraint logic program-
ming. Journal of Automated Reasoning, 22(3):241–262, 1999.

[30] D. A. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and
connection. In KR’92. Principles of Knowledge Representation and Reasoning,
pages 165–176. Morgan Kaufmann, San Mateo, California, 1992.

[31] C. Schultz and M. Bhatt. Towards a Declarative Spatial Reasoning System. In
20th European Conference on Artificial Intelligence (ECAI 2012), 2012.

[32] C. Schultz and M. Bhatt. Declarative spatial reasoning with boolean combinations
of axis-aligned rectangular polytopes. In ECAI 2014 - 21st European Conference

on Artificial Intelligence, pages 795–800, 2014.
[33] H. Winroth. Dynamic projective geometry. Tekniska högsk., 1999.

CARL SCHULTZ, MEHUL BHATT 63


